JPH05147975A - Heat resistant glass fiber - Google Patents
Heat resistant glass fiberInfo
- Publication number
- JPH05147975A JPH05147975A JP3335500A JP33550091A JPH05147975A JP H05147975 A JPH05147975 A JP H05147975A JP 3335500 A JP3335500 A JP 3335500A JP 33550091 A JP33550091 A JP 33550091A JP H05147975 A JPH05147975 A JP H05147975A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- glass fiber
- fiber
- fibers
- heat resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、繊維全体の平均的ガラ
ス組成においてはEガラス繊維のそれと実質的に同一で
ありながらEガラス繊維よりも耐熱性が顕著に優れてい
て断熱材や高温電気絶縁用途に好適な耐熱性ガラス繊維
に関するものである。BACKGROUND OF THE INVENTION The present invention has an average glass composition which is substantially the same as that of E-glass fiber, but has a significantly higher heat resistance than E-glass fiber, which is a heat insulating material or a high temperature electrical conductor. The present invention relates to a heat resistant glass fiber suitable for insulating applications.
【0002】[0002]
【従来の技術】Eガラス繊維は電気絶縁性や耐腐食性に
優れ、引張強度も大きいので、最も一般的なガラス繊維
として電気絶縁用材、断熱材、各種繊維強化複合材料用
の補強繊維等に広く利用されており、長繊維のほとんど
はEガラス繊維が占めている。組成上の特徴は、無アル
カリガラス繊維と呼ばれるようにアルカリ金属の含有率
が1%未満のホウケイ酸ガラスからなることにある。E
ガラス繊維の軟化点は約845℃であるが、普通は約3
50℃が使用可能な温度の上限である。それ以上の温度
では、何らかの荷重が加えられている実用状態において
は徐々に変形が起こり、それは冷却後も回復しないか
ら、たとえばマット状のものは弾力性の無い塊になって
しまう。Eガラス繊維では耐熱性が不足する分野におい
てはセラミック繊維、一般的にはシリカアルミナ繊維が
使用される。しかしながら、セラミック繊維はガラス繊
維よりも耐熱性が良いかわりに原料セラミックスを繊維
化するときの温度も高く、また繊維化にも高度の技術を
必要とするから、ガラス繊維と比べるときわめて高価で
ある。しかも、一般的には連続繊維の製造は困難であ
る。したがって、Eガラス繊維の耐熱性では不十分であ
ってもセラミック繊維ほどの耐熱性は必要としない用途
においては、セラミック繊維よりも、ガラス繊維の改質
によって製造可能な高度耐熱性繊維のほうが好ましい。
セラミック繊維に代わり得る耐熱性繊維は、健康への悪
影響が近年指摘され始めたセラミック繊維の使用量を減
らそうとする観点からも有意義である。2. Description of the Related Art E-glass fibers are excellent in electrical insulation and corrosion resistance and have high tensile strength, so they are the most common glass fibers for electrical insulation materials, heat insulating materials, and reinforcing fibers for various fiber-reinforced composite materials. It is widely used and most of the long fibers are E glass fibers. A characteristic of the composition is that it is made of borosilicate glass having an alkali metal content of less than 1%, which is called non-alkali glass fiber. E
The softening point of glass fiber is about 845 ° C, but usually about 3
50 ° C. is the upper limit of usable temperature. At a temperature higher than that, in a practical state where some load is applied, it gradually deforms, and it does not recover even after cooling, so that, for example, a mat-like thing becomes an inelastic mass. Ceramic fibers, generally silica-alumina fibers, are used in fields where the E glass fibers lack heat resistance. However, although ceramic fibers have better heat resistance than glass fibers, the temperature at which raw material ceramics are made into fibers is high, and since high technology is required for making them into fibers, they are extremely expensive compared to glass fibers. .. Moreover, it is generally difficult to manufacture continuous fibers. Therefore, in applications in which the heat resistance of E glass fibers is not sufficient but the heat resistance of ceramic fibers is not required, highly heat resistant fibers that can be produced by modifying glass fibers are preferred to ceramic fibers. ..
The heat-resistant fiber that can replace the ceramic fiber is also meaningful from the viewpoint of reducing the amount of the ceramic fiber used, which has recently been pointed out to have an adverse effect on health.
【0003】[0003]
【発明が解決しようとする課題】そこで本発明は、ガラ
ス繊維を原料として製造可能な、そして耐熱性において
セラミック繊維に近い性能を示す耐熱性ガラス繊維を提
供することを目的とするものである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat-resistant glass fiber which can be produced from glass fiber as a raw material and has heat resistance close to that of ceramic fiber.
【0004】[0004]
【課題を解決するための手段】本発明が提供することに
成功した耐熱性ガラス繊維は、繊維全体としてはEガラ
ス繊維と実質的に同一のガラス組成を有するが、表層部
はSiO2含有率が80重量%以上、好ましくは85重量
%以上、特に好ましくは90重量%以上のシリカ質ガラ
スからなることを特徴とするものである。The heat-resistant glass fiber successfully provided by the present invention has a glass composition which is substantially the same as that of E glass fiber as a whole, but the surface layer portion has a SiO 2 content. Of 80% by weight or more, preferably 85% by weight or more, and particularly preferably 90% by weight or more of siliceous glass.
【0005】一般的なEガラス繊維のSiO2含有率は約
50〜63重量%であり、本発明のガラス繊維も全体の
平均的組成としては上記Eガラス繊維と実質的に同一
の、すなわち多くても70重量%を超えないSiO2含有
率のものであるから、上記高シリカ質の表層部は本発明
のガラス繊維において薄いライニング層のように明確に
存在する。但し、繊維表面から芯部までの間で組成が不
連続に変化する明確な2層構造を有するわけではなく、
SiO2含有率は繊維表面から内側に向かって、急激にで
はあるが連続的に減少するので、本発明においてSiO2
含有率を問題にする場合は繊維表面から深さ120Åま
での領域を表層部と呼ぶ。繊維の芯部よりも高いSiO2
含有率を有することが分析により確認できる高シリカ質
の領域は、上記表層部からさらに数百Åないし約100
0Åの深さまで伸びているが、この高シリカ質領域全体
をみても、それは繊維径が10μm(10万Å)程度の
普通のガラス繊維においてはきわめて薄い“表皮”とで
もいうべき狭い領域である。The SiO 2 content of a typical E glass fiber is about 50 to 63% by weight, and the glass fiber of the present invention has substantially the same average composition as the above E glass fiber, that is, a large amount. Since the SiO 2 content is not more than 70% by weight, the high siliceous surface layer portion is clearly present in the glass fiber of the present invention like a thin lining layer. However, it does not have a clear two-layer structure in which the composition changes discontinuously from the fiber surface to the core,
Since SiO 2 content towards the inside from the fiber surface, albeit rapidly but continuously decreases, SiO 2 in the present invention
When the content is a problem, the region from the fiber surface to the depth of 120Å is called the surface layer. SiO 2 higher than the fiber core
The high siliceous region, which can be confirmed by analysis to have a content ratio, is several hundred liters to about 100 from the surface layer.
Although it extends to a depth of 0Å, even if you look at this high-silica region as a whole, it is a very narrow "skin" that is very thin in ordinary glass fiber with a fiber diameter of about 10 μm (100,000Å). ..
【0006】表層部におけるSiO2以外の成分は特に限
定されるものではないが、耐熱性に悪影響がある成分た
とえばB2O3等はできるだけ少ないことが望ましい。本
発明によるガラス繊維の主要構成成分のおよその含有率
を表層部と繊維全体について示すと次のようになる。参
考値として一般的なEガラス繊維の組成を併せて示す。 繊維表層部 繊維全体の平均値 Eガラス繊維 SiO2(%) 80以上 50〜65 50〜63 Al2O3(%) 少量 10〜16 12〜16 B2O3(%) 少量 2〜12 8〜13 CaO+MgO(%) 少量 14〜21 15〜20 Na2O+K2O(%) 微量 微量 微量The components other than SiO 2 in the surface layer are not particularly limited, but it is desirable that the components having a bad influence on the heat resistance such as B 2 O 3 are as small as possible. The approximate content of the main constituent components of the glass fiber according to the present invention is shown below for the surface layer portion and the entire fiber. A general E glass fiber composition is also shown as a reference value. Average value of the entire fiber surface layer fiber E glass fiber SiO 2 (%) 80 or more 50 to 65 50 to 63 Al 2 O 3 (%) small amount 10 to 16 12 to 16 B 2 O 3 (%) small amount 2 to 12 8 〜13 CaO + MgO (%) Small amount 14-21 15-20 Na 2 O + K 2 O (%) Trace amount Trace amount
【0007】[0007]
【作用】SiO2含有率が80重量%以上の表層部を有す
る本発明のガラス繊維は、理由は解明されていないが実
用上の耐熱限界温度がEガラス繊維のそれよりも著しく
高い。たとえば、Eガラス繊維からなるマットは約70
0℃を超える温度では繊維の熱変形により急速に収縮し
て密度の高い塊になり、耐火被覆材としての機能を果た
さなくなるが、本発明のガラス繊維からなるものは、少
なくとも900℃で30分間の加熱に耐え、1050℃
・30分間の加熱に耐えるものさえある。本発明のガラ
ス繊維は、耐熱性が上述のように従来のガラス繊維の水
準を超えるものであるが、耐熱性以外の物性および化学
的性質においては、繊維全体の平均的なガラス組成から
期待されるとおり、Eガラス繊維と同等のものである。The reason for the glass fiber of the present invention having a surface layer portion having a SiO 2 content of 80% by weight or more is that the practical heat resistance limit temperature is significantly higher than that of the E glass fiber, although the reason has not been clarified. For example, a mat made of E glass fiber is about 70
When the temperature exceeds 0 ° C, the fiber rapidly shrinks due to thermal deformation to become a dense lump, which does not function as a fireproof coating material. However, the glass fiber of the present invention can be used for at least 900 ° C for 30 minutes. Endures heating of 1050 ℃
Some even withstand heating for 30 minutes. The glass fiber of the present invention has heat resistance exceeding the level of conventional glass fibers as described above, but in physical properties and chemical properties other than heat resistance, it is expected from the average glass composition of the entire fiber. As described above, it is the same as E glass fiber.
【0007】本発明のガラス繊維と同様に高シリカ質の
表面層とEガラス類似の芯層を持つものであっても、シ
リカ質表面層が厚く、それにより繊維全体の平均的なガ
ラス組成もEガラス繊維のそれとは著しく異なる高シリ
カ質繊維は、組成的にはいわゆるシリカ繊維に近く、耐
熱性は本発明のガラス繊維よりも優れているが、柔軟性
がなく、さらに引張強度が低いので、ニードルパンチ加
工などの加工ができない。また、もろく崩壊し易いので
発塵による健康への悪影響が懸念されるなど、Eガラス
繊維の持つ特長の幾つかは失われているから、本発明の
目的からは外れるものである。Even if the glass fiber of the present invention has a highly siliceous surface layer and a core layer similar to E-glass, the siliceous surface layer is thick, so that the average glass composition of the entire fiber is also increased. The highly siliceous fiber which is remarkably different from that of the E glass fiber is similar in composition to the so-called silica fiber and is superior in heat resistance to the glass fiber of the present invention, but is not flexible and further has low tensile strength. , Processing such as needle punching is not possible. Further, since it is brittle and easily disintegrates, there is a concern that the dust may adversely affect health, and some of the features of the E glass fiber are lost, which is beyond the scope of the present invention.
【0008】本発明のガラス繊維は、Eガラス繊維を酸
の水溶液中に適当時間浸漬して繊維表面付近にあるアル
カリ土類金属、アルカリ金属、アルミナ、酸化ホウ素
等、シリカ以外の成分を溶出させたのち、水洗し加熱乾
燥するだけで容易に製造することができる。すなわち、
原料繊維を構成するEガラスはきわめて緻密であって酸
を浸透させないため、酸によるガラス成分の溶出は繊維
表面からしか起こらず、一部成分が溶出して表層部の組
織がルーズになることにより初めてその内側への酸の浸
透が可能になるから、酸処理により必ず明確な高シリカ
質表面層が形成され、内部は実質的にもとのEガラスの
まま残るのである。The glass fiber of the present invention is prepared by immersing E glass fiber in an aqueous solution of an acid for a suitable time to elute components other than silica, such as alkaline earth metal, alkali metal, alumina and boron oxide, which are present near the fiber surface. After that, it can be easily manufactured simply by washing with water and heating and drying. That is,
Since the E glass that constitutes the raw material fibers is extremely dense and does not allow the acid to permeate, the elution of the glass component by the acid occurs only from the fiber surface, and a part of the component elutes, causing the texture of the surface layer to become loose. For the first time, the acid can penetrate into the inside, so that the acid treatment always forms a clear high siliceous surface layer, and the inside substantially remains the original E glass.
【0009】酸処理に使用する酸としては、塩酸が最も
適しており、次いで硝酸が適する。酸処理における繊維
成分の溶出速度は、用いる酸の濃度、処理温度、撹拌の
有無もしくは程度等により異なるので、好適処理時間は
実験的に決定する必要があるが、濃度約9〜12%、温
度約40〜70℃の塩酸を使用する場合、約30分〜数
時間の浸漬処理で本発明のガラス繊維を得ることができ
る。As the acid used for the acid treatment, hydrochloric acid is most suitable, and nitric acid is next suitable. Since the elution rate of the fiber component in the acid treatment varies depending on the concentration of the acid used, the treatment temperature, the presence or absence of stirring, the degree, etc., it is necessary to experimentally determine the preferable treatment time. When hydrochloric acid at about 40 to 70 ° C. is used, the glass fiber of the present invention can be obtained by a dipping treatment for about 30 minutes to several hours.
【0010】[0010]
【実施例】日本電気硝子株式会社製のEガラス繊維(平
均繊維径9μmの長繊維)を塩酸水溶液に浸漬して本発
明のガラス繊維を製造した。塩酸水溶液としては濃度9
%、温度40℃のもの、または濃度12%、温度70℃
のものを用い、使用量は、原料繊維重量の7倍量とし
た。浸漬時間を種々変更して得られた繊維および原料繊
維のガラス組成および耐熱性を表1にまとめて示す。な
お、組成分析は、表層部については光電子分光装置によ
り行い、繊維全体については粉砕して化学分析により行
なった。“耐熱性”は下記試験における判定結果を示
す。Example E glass fibers manufactured by Nippon Electric Glass Co., Ltd. (long fibers having an average fiber diameter of 9 μm) were immersed in an aqueous hydrochloric acid solution to produce the glass fibers of the present invention. Concentration 9 as hydrochloric acid aqueous solution
%, Temperature 40 ° C, or concentration 12%, temperature 70 ° C
The amount used was 7 times the weight of the raw material fiber. Table 1 shows the glass compositions and heat resistances of fibers and raw fibers obtained by variously changing the immersion time. The composition analysis was carried out by a photoelectron spectroscopic device for the surface layer portion, and the whole fiber was crushed for chemical analysis. "Heat resistance" indicates the judgment result in the following test.
【0011】耐熱性試験法:繊維をルツボに入れ、電気
炉中で900℃〜1050℃の範囲で50℃おきに30
〜120分間加熱し、繊維の変化を観察し、次の基準で
耐熱性を判定する。 ◎ 繊維のしなやかさがほぼ保たれている。 ○ 繊維のしなやかさが半ば失われている。 △ 繊維の形状は残っているがしなやかさがほとんど失
われている。 ▲ 繊維が融着し変形している。 × 繊維がすべて溶融し試料全体が一つの塊になってい
る。Heat resistance test method: Fiber is put in a crucible and heated in an electric furnace in the range of 900 ° C. to 1050 ° C. at intervals of 50 ° C. to 30 ° C.
Heat for ~ 120 minutes, observe the change in fiber, and judge the heat resistance according to the following criteria. ◎ The suppleness of the fibers is maintained. ○ The suppleness of the fiber is half lost. △ The shape of the fiber remains, but the flexibility is almost lost. ▲ The fibers are fused and deformed. C. All the fibers are melted and the whole sample is one lump.
【0012】[0012]
【表1】 [Table 1]
【0013】また、上記製造例による試料のガラス繊
維の表面から中心方向へのガラス組成変化を30Å間隔
で調べた結果を図1に示す。FIG. 1 shows the results of examining the change in the glass composition from the surface of the glass fiber of the sample according to the above-mentioned production example toward the center at 30 Å intervals.
【0014】[0014]
【発明の効果】上述のように、本発明によるガラス繊維
はEガラス繊維を原料として容易に製造することがで
き、しかも耐熱性においてはセラミック繊維に近い優れ
た性能を示す。したがって、従来Eガラス繊維では耐熱
性が不十分なためセラミック繊維を使用せざるを得なか
った多くの分野で使用することができ、建築における耐
火被覆等のコスト削減と環境衛生の改善に大きな貢献を
なし得るものである。As described above, the glass fiber according to the present invention can be easily produced from E glass fiber as a raw material, and has excellent heat resistance close to that of ceramic fiber. Therefore, it can be used in many fields where ceramic fibers had to be used because of the insufficient heat resistance of conventional E glass fibers, which greatly contributes to the cost reduction of fireproof coating in construction and the improvement of environmental hygiene. Can be done.
【図1】 実施例で処理されたEガラス繊維(試料)
のガラス組成を示すグラフ。FIG. 1 E glass fiber treated in the example (sample)
A graph showing the glass composition of the.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田代 肇 横浜市戸塚区平戸3−6−10−501 (72)発明者 滝本 浩三 横浜市神奈川区松見町4−1000 3−B ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hajime Hajime 3-6-10-501 Hirado, Totsuka-ku, Yokohama (72) Inventor Kozo Takimoto 4-1000 3-B Matsumi-cho, Kanagawa-ku, Yokohama
Claims (1)
に同一のガラス組成を有するが表層部はSiO2含有率が
80重量%以上のシリカ質ガラスからなることを特徴と
する耐熱性ガラス繊維。1. A heat-resistant glass fiber characterized in that the entire fiber has a glass composition substantially the same as that of E glass fiber, but the surface layer portion is made of siliceous glass having a SiO 2 content of 80% by weight or more. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3335500A JPH05147975A (en) | 1991-11-26 | 1991-11-26 | Heat resistant glass fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3335500A JPH05147975A (en) | 1991-11-26 | 1991-11-26 | Heat resistant glass fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05147975A true JPH05147975A (en) | 1993-06-15 |
Family
ID=18289274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3335500A Pending JPH05147975A (en) | 1991-11-26 | 1991-11-26 | Heat resistant glass fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05147975A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2804107A1 (en) | 2000-01-21 | 2001-07-27 | Nitto Boseki Co Ltd | Heat-resistant glass fiber for use, e.g., in an automobile muffler contains oxides of silicon, aluminum, calcium and magnesium |
KR20010109937A (en) * | 2000-06-05 | 2001-12-12 | 김재열 | Treatment method for improving the heatproof of E-glass fiber, car muffler absorbing material and treated absorbing material |
JP2010513187A (en) * | 2006-12-14 | 2010-04-30 | ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド | Low dielectric glass and glass fiber for electronic applications |
JP2010168706A (en) * | 2009-01-26 | 2010-08-05 | Ibiden Co Ltd | Mat material, apparatus for treating exhaust gas and method for manufacturing mat material |
US10207312B2 (en) | 2010-06-14 | 2019-02-19 | Ati Properties Llc | Lubrication processes for enhanced forgeability |
US11059089B2 (en) | 2010-02-05 | 2021-07-13 | Ati Properties Llc | Systems and methods for processing alloy ingots |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5172619A (en) * | 1974-12-20 | 1976-06-23 | Ryosuke Tatsuno | |
JPS5864243A (en) * | 1981-10-13 | 1983-04-16 | Asahi Glass Co Ltd | Glass composition with high elasticity and heat resistance |
-
1991
- 1991-11-26 JP JP3335500A patent/JPH05147975A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5172619A (en) * | 1974-12-20 | 1976-06-23 | Ryosuke Tatsuno | |
JPS5864243A (en) * | 1981-10-13 | 1983-04-16 | Asahi Glass Co Ltd | Glass composition with high elasticity and heat resistance |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2804107A1 (en) | 2000-01-21 | 2001-07-27 | Nitto Boseki Co Ltd | Heat-resistant glass fiber for use, e.g., in an automobile muffler contains oxides of silicon, aluminum, calcium and magnesium |
US6933045B2 (en) | 2000-01-21 | 2005-08-23 | Nitto Boseki Co., Ltd. | Heat-resistant glass fiber and process for the production thereof |
KR100517767B1 (en) * | 2000-01-21 | 2005-09-28 | 니토 보세키 가부시기가이샤 | Heat-resistant glass fiber and process for the production thereof |
KR20010109937A (en) * | 2000-06-05 | 2001-12-12 | 김재열 | Treatment method for improving the heatproof of E-glass fiber, car muffler absorbing material and treated absorbing material |
JP2010513187A (en) * | 2006-12-14 | 2010-04-30 | ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド | Low dielectric glass and glass fiber for electronic applications |
JP2010168706A (en) * | 2009-01-26 | 2010-08-05 | Ibiden Co Ltd | Mat material, apparatus for treating exhaust gas and method for manufacturing mat material |
US11059089B2 (en) | 2010-02-05 | 2021-07-13 | Ati Properties Llc | Systems and methods for processing alloy ingots |
US11059088B2 (en) | 2010-02-05 | 2021-07-13 | Ati Properties Llc | Systems and methods for processing alloy ingots |
US10207312B2 (en) | 2010-06-14 | 2019-02-19 | Ati Properties Llc | Lubrication processes for enhanced forgeability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6933045B2 (en) | Heat-resistant glass fiber and process for the production thereof | |
KR930006322B1 (en) | Fiber-reinforced composites | |
JP3269937B2 (en) | Low dielectric constant glass fiber | |
US2461841A (en) | Method of making fibrous glass articles | |
US3449137A (en) | Refractory fibers for service to 2700 f. | |
US2494259A (en) | Fibrous glass articles | |
TW201012771A (en) | Glass fiber composition and printed circuit board made from the glass fiber composition | |
KR20030041175A (en) | High temperature glass fibers | |
JP2002513730A (en) | Artificial mineral wool | |
JPH0676224B2 (en) | Tempered glass manufacturing method | |
JPH10507993A (en) | Glass composition and fiber using the same | |
JPS58199749A (en) | Glass ceramic product with metal surface | |
JPH07172876A (en) | Method for improving heat resistance of e-glass fiber | |
JPH05147975A (en) | Heat resistant glass fiber | |
CZ305397A3 (en) | Composition for mineral fibers | |
JPH10182182A (en) | Use of glass body for producing chemically pre-tentioned glass body | |
US3600205A (en) | Boric oxide-free glass fibers and compositions for making them | |
JP3132234B2 (en) | Glass long fiber | |
Wallenberger | Structural silicate and silica glass fibers | |
US2685526A (en) | Glass composition | |
JPH06211543A (en) | Glass fiber | |
CA2072946A1 (en) | Rare earth-containing frits having a high glass transition temperature and their use for the production of enamels having improved heat resistance | |
JPS60176946A (en) | Glaze composition containing whisker | |
JP2000026140A (en) | Glass ferrule and its production | |
US3479217A (en) | Copper-coated glass article |