JPH05146919A - Electrode feeding device for electric discharge machining - Google Patents
Electrode feeding device for electric discharge machiningInfo
- Publication number
- JPH05146919A JPH05146919A JP4691192A JP4691192A JPH05146919A JP H05146919 A JPH05146919 A JP H05146919A JP 4691192 A JP4691192 A JP 4691192A JP 4691192 A JP4691192 A JP 4691192A JP H05146919 A JPH05146919 A JP H05146919A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- piezoelectric element
- radial
- electric discharge
- discharge machining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、放電加工用電極送り装
置に関するもので、特に、電極のみを送り出す機能を有
する電極送り装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode-feeding device for electric discharge machining, and more particularly to an electrode-feeding device having a function of feeding only electrodes.
【0002】[0002]
【従来の技術】従来より、放電加工機の電極送り装置と
しては、特開平3−79237号公報に示されるよう
に、圧電素子の伸縮を利用して電極を移動させ、電極を
ワークに近接させて放電加工するものが知られている。2. Description of the Related Art Conventionally, as an electrode feeding device for an electric discharge machine, as shown in Japanese Patent Application Laid-Open No. 3-79237, the electrode is moved by utilizing expansion and contraction of a piezoelectric element to bring the electrode close to a work. It is known that electrical discharge machining is performed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、このよ
うな特開平3−79237号公報に示される放電加工機
は、圧電素子の一端に固定される移動体が電極を保持
する構成であるから、電極摩耗時に電極交換作業が煩雑
になり、また移動体が筒体内周壁に摺動可能に支持さ
れているため、摺動抵抗により電極の送り量が制限され
る、さらに移動体の支持部の摩耗、油付着等により摩
擦係数が変化するので電極の送り量が不定量になりやす
いという問題がある。However, in the electric discharge machine disclosed in Japanese Patent Application Laid-Open No. 3-79237, the moving body fixed to one end of the piezoelectric element holds the electrode. Electrode replacement work becomes complicated at the time of wear, and since the moving body is slidably supported on the peripheral wall of the cylinder, the feed amount of the electrode is limited by sliding resistance. Since the friction coefficient changes due to oil adhesion and the like, there is a problem that the feed amount of the electrode tends to be indefinite.
【0004】また、特開平2−186204号公報に示
されるものは、電極のみを送り出し可能な電極装置であ
るが、このものは、環状の圧電素子の内径変化を利用
して電極の圧着動作(閉動作)および離脱動作(開動
作)を行うものであるから、直径1mm以下の微小径の
シャフトを送る場合、圧電素子動作時の内径収縮代が小
さい分送り精度が低い、しかも圧電素子が積層体でな
く単層体のものであるから相対的に圧電素子の内径収縮
代が小さく、送り精度が低いという問題がある。Further, the one disclosed in Japanese Patent Laid-Open No. 2-186204 is an electrode device capable of sending out only an electrode, but this one uses the change of the inner diameter of an annular piezoelectric element to perform the pressure bonding operation of the electrode ( Since a closing operation) and a detaching operation (opening operation) are performed, when feeding a shaft having a diameter of 1 mm or less, the feeding accuracy is low due to the small inner diameter contraction allowance during the operation of the piezoelectric element, and the piezoelectric elements are laminated. Since it is not a body but a monolayer body, there is a problem that the inner diameter shrinkage allowance of the piezoelectric element is relatively small and the feeding accuracy is low.
【0005】本発明は、このような問題点を解決するた
めになされたもので、電極のみの送り出しが可能で、安
定した定量送りができ、電極摩耗を想定して電極の連続
使用可能な、かつ小型の放電加工用電極送り装置を提供
することを目的とする。The present invention has been made in order to solve such a problem, and it is possible to feed only the electrode, to perform stable fixed amount feeding, and to continuously use the electrode assuming electrode wear. It is an object of the present invention to provide a small-sized electrode-feeding device for electric discharge machining.
【0006】[0006]
【課題を解決するための手段】前記課題を解決するため
の本発明第1発明の放電加工用電極送り装置は、ハウジ
ングに収容され、電極の軸方向に平行に伸縮可能に設け
られる積層型の第1軸方向圧電素子と、前記第1軸方向
圧電素子の自由端に固定され、前記ハウジングに対し電
極の軸方向に移動可能なケースと、前記ケースに収容さ
れ、電極の径方向に伸縮可能な積層型の第2径方向圧電
素子と、前記第2径方向圧電素子の自由端に当接し、前
記第2径方向圧電素子の伸長動作および収縮動作に応じ
て電極を圧着および離脱する第1電気絶縁体と、ハウジ
ングに収容され、電極の径方向に伸縮可能な積層型の第
3径方向圧電素子と、前記第3径方向圧電素子の自由端
に当接し、前記第3径方向圧電素子の伸長動作および収
縮動作に応じて電極を圧着および離脱する第2電気絶縁
体とを備えたことを特徴とする。In order to solve the above-mentioned problems, the first aspect of the present invention provides an electrode-feeding device for electric discharge machining, which is of a laminated type housed in a housing and provided so as to be capable of expanding and contracting in parallel with the axial direction of the electrodes. A first axial piezoelectric element, a case fixed to the free end of the first axial piezoelectric element and movable in the axial direction of the electrode with respect to the housing, and housed in the case and expandable and contractible in the radial direction of the electrode. A second laminated piezoelectric element and a first radial contact element that abuts on a free end of the second radial piezoelectric element and crimps and separates electrodes in accordance with expansion and contraction operations of the second radial piezoelectric element. An electric insulator, a stacked third radial piezoelectric element housed in a housing and expandable / contractible in the radial direction of the electrode, and abutting on a free end of the third radial piezoelectric element, the third radial piezoelectric element Depending on the extension and contraction movements of the Characterized in that a second electrical insulator crimping and extracting.
【0007】第2発明の放電加工用電極送り装置は、前
記第1発明の構成に加えて、前記第1電気絶縁体によっ
て他部から電気的に絶縁され、前記第2径方向圧電素子
の伸長動作時、加工用電源を前記電極に接続する第1給
電電極を有することを特徴とする。第3発明の放電加工
用電極送り装置は、前記第1または第2発明の構成に加
えて、前記第2電気絶縁体によって他部から電気的に絶
縁され、前記第3径方向圧電素子の伸長動作時、加工用
電源を前記電極に接続する第2給電電極を有することを
特徴とする。In addition to the structure of the first aspect of the present invention, the electrode-feeding device for electric discharge machining according to the second aspect of the invention is electrically insulated from other parts by the first electrical insulator, and the extension of the second radial piezoelectric element. In operation, it has a first power feeding electrode for connecting a processing power source to the electrode. In addition to the configuration of the first or second aspect of the invention, the electrode-feeding device for electric discharge machining according to a third aspect of the invention is electrically insulated from other parts by the second electrical insulator, and the extension of the third radial piezoelectric element. In operation, it has a 2nd electric power feeding electrode which connects a processing power supply to the said electrode.
【0008】第4発明の電極送り制御方式は、電極1ス
テップ当たりの変位量を決める前記第1軸方向圧電素子
に対し、素子への印加電圧をオンオフのみでなくアナロ
グ的な電圧も印加可能とする制御回路を備えたことを特
徴とする。第5発明の電極の送りを制御する駆動方式と
その装置は、前記第4発明の電極駆動方式に加えて、圧
電素子の駆動周波数を系の折れ点周波数(遮断周波数)
を超えた領域での高次共振周波数に合致させて電極の送
りを制御することを特徴とする。According to the electrode feed control method of the fourth invention, not only the on / off voltage applied to the element but also the analog voltage can be applied to the first piezoelectric element in the axial direction which determines the displacement amount per step of the electrode. It is characterized by comprising a control circuit for controlling. In addition to the electrode driving method of the fourth aspect of the invention, the driving method and device for controlling the electrode feed of the fifth aspect of the invention are such that the driving frequency of the piezoelectric element is the break frequency of the system (cutoff frequency)
It is characterized in that the feed of the electrode is controlled by matching with the higher resonance frequency in the region exceeding.
【0009】第6発明の電極の送りを制御する駆動方式
とその装置は、前記第4または第5発明の電極駆動方式
に加えて、電極とワーク間のギャップ電圧の変動に対し
て制御信号の位相を反転させて電極の送りを制御するこ
とを特徴とする。第7発明の電極掴み放し形状は、前記
第1発明の構成に加えて、前記径方向圧電素子先端に固
定された電極掴み部分に、電極を安定的に送りまた電極
交換時等の電極挿入を簡単にすることを目的とした形状
を有することを特徴とする。In addition to the electrode driving method of the fourth or fifth aspect of the invention, the driving method and device for controlling the feed of the electrode according to the sixth aspect of the present invention include a control signal for the fluctuation of the gap voltage between the electrode and the work. It is characterized in that the feed of the electrodes is controlled by reversing the phase. In addition to the configuration of the first aspect of the invention, the electrode gripping shape of the seventh aspect of the invention is such that the electrode is stably fed to the electrode gripping portion fixed to the tip end of the radial direction piezoelectric element and the electrode can be inserted when exchanging the electrode. It is characterized by having a shape intended for simplification.
【0010】[0010]
【作用】本発明の放電加工用電極送り装置によれば、電
極の軸方向に伸縮可能な第1圧電素子、電極の径方向に
伸縮可能な第2径方向圧電素子および第3径方向圧電素
子を設け、これらの圧電素子群の伸長動作および収縮動
作の各動作の切替えによって、電極の「送り」および
「戻し」を電気的に操作するため、電極のみの定量送り
および定量戻しが可能になる。According to the electrode-feeding device for electric discharge machining of the present invention, the first piezoelectric element capable of expanding / contracting in the axial direction of the electrode, the second radial direction piezoelectric element capable of expanding / contracting in the radial direction of the electrode, and the third radial direction piezoelectric element. By switching between the expansion operation and contraction operation of these piezoelectric element groups, the "feed" and "return" of the electrodes are electrically operated, so that it is possible to perform fixed-quantity feeding and fixed-quantity returning of only the electrodes. ..
【0011】[0011]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。穴あけ放電加工機の電極送り装置に本発明を適用
した第1実施例を図1〜図4に示す。電極送り装置1
は、図1に示すように、ハウジング2の電極挿通用の穴
3に電極4が挿通されている。図1において穴3を中心
として左右対称の構成であるから、説明の都合上、ま
ず、穴3の右側半分の構成について説明する。ハウジン
グ2には、電極4の軸方向に平行に円筒状の圧電素子取
付け用穴5が形成され、この穴底5aに第1軸方向圧電
素子7の一端が固定され、内周壁5bに第1軸方向圧電
素子7が軸方向に摺動可能に収容され、ケ−ス8に他端
7bが固定されている。第1軸方向圧電素子7は円板状
の圧電素子が板厚方向に積層されて形成される。Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 show a first embodiment in which the present invention is applied to an electrode feeding device of a hole electric discharge machine. Electrode feeding device 1
As shown in FIG. 1, the electrode 4 is inserted into the electrode insertion hole 3 of the housing 2. In FIG. 1, the hole 3 is symmetrical with respect to the center, so for convenience of description, the structure of the right half of the hole 3 will be described first. A cylindrical piezoelectric element mounting hole 5 is formed in the housing 2 in parallel to the axial direction of the electrode 4, one end of the first axial piezoelectric element 7 is fixed to the hole bottom 5a, and the first piezoelectric element 7 is attached to the inner peripheral wall 5b. The axial piezoelectric element 7 is housed slidably in the axial direction, and the other end 7b is fixed to the case 8. The first axial piezoelectric element 7 is formed by stacking disk-shaped piezoelectric elements in the plate thickness direction.
【0012】ケース8は、図2に示すように、頂面8a
および底面8bがハウジング2に対し電極4の軸方向に
摺動可能に収容される。ケース8の円筒状の穴10に
は、その穴底10aに第2径方向圧電素子12の一端1
2aが固定されている。ケース8に収容される一対の電
気絶縁体14、15および給電電極43は、電極4を挟
んで上下に設けられている。給電電極43は上側の電気
絶縁体15の底面15の底面凹に嵌合されている。下側
の電気絶縁体14の底面14aは第2径方向圧電素子1
2の他端12bに固定される。上側の電気絶縁体15の
頂面15aはケース8に固定される。電気絶縁体14の
頂面ならびに給電電極43の底面には、電極4を挟み込
み可能に円弧状の凹部14bおよび凹部43bが形成さ
れる。The case 8 has a top surface 8a as shown in FIG.
The bottom surface 8b is accommodated in the housing 2 so as to be slidable in the axial direction of the electrode 4. The cylindrical hole 10 of the case 8 has a hole bottom 10a at which one end 1 of the second radial direction piezoelectric element 12 is formed.
2a is fixed. The pair of electric insulators 14 and 15 and the feeding electrode 43 housed in the case 8 are provided above and below the electrode 4 in between. The power supply electrode 43 is fitted in the bottom surface recess of the bottom surface 15 of the upper electric insulator 15. The bottom surface 14a of the lower electrical insulator 14 has the second radial piezoelectric element 1
2 is fixed to the other end 12b. The top surface 15 a of the upper electric insulator 15 is fixed to the case 8. On the top surface of the electric insulator 14 and the bottom surface of the power feeding electrode 43, arcuate recesses 14b and recesses 43b are formed so that the electrode 4 can be sandwiched therebetween.
【0013】図1に示すように、ハウジング2の端面2
aに固定されるハウジング18は、電極4の径方向に形
成される円筒状の穴21に第3径方向圧電素子20を収
容し、その穴底21aに第3径方向圧電素子20の一端
を固定している。第3径方向圧電素子20の他端は電気
絶縁体22に固定される。電気絶縁体22および給電電
極44は、前述した電気絶縁体14および給電電極43
と同様の構成で、その頂面および底面にそれぞれ電極4
を掴み込み可能な円弧状の凹部を有している。また、ハ
ウジング18の端面には、電極4を挿通可能な案内孔2
5aをもつ電極ガイド25が固定されている。As shown in FIG. 1, the end surface 2 of the housing 2
The housing 18 fixed to a accommodates the third radial piezoelectric element 20 in a cylindrical hole 21 formed in the radial direction of the electrode 4, and has one end of the third radial piezoelectric element 20 at the hole bottom 21a. It is fixed. The other end of the third radial piezoelectric element 20 is fixed to the electrical insulator 22. The electrical insulator 22 and the feeding electrode 44 are the same as the electrical insulator 14 and the feeding electrode 43 described above.
With the same structure as above, the electrodes 4 are provided on the top surface and the bottom surface, respectively.
It has an arcuate concave portion that can be gripped. The end face of the housing 18 has a guide hole 2 through which the electrode 4 can be inserted.
The electrode guide 25 with 5a is fixed.
【0014】第2径方向圧電素子12および第3径方向
圧電素子20は、それぞれ積層状のもので、通電時積層
方向に伸長し、電気絶縁体14、電気絶縁体22をそれ
ぞれ上昇し、給電電極43、給電電極44とでそれぞれ
電極4を挟み込む。電気絶縁体14、電気絶縁体22
は、図9に示すように、電極4が挿嵌される溝部14
b、22bが形成され、この溝部14b、22bは、両
端が口拡されて、電極4の挿入が容易となるようになっ
ている。The second radial piezoelectric element 12 and the third radial piezoelectric element 20 are laminated, respectively, and extend in the laminating direction when energized to raise the electric insulator 14 and the electric insulator 22, respectively, and supply power. The electrode 4 is sandwiched between the electrode 43 and the feeding electrode 44. Electrical insulator 14, electrical insulator 22
As shown in FIG. 9, the groove portion 14 into which the electrode 4 is fitted is inserted.
b and 22b are formed, and both ends of the groove portions 14b and 22b are widened so that the electrode 4 can be easily inserted.
【0015】以上図1における右側半分の電極送り装置
の構成について説明したが、図1の左側半分の構成につ
いては右側半分の構成と同様であるので実質的に同一構
成部分には同一符号を付し、説明を省略する。なお、左
半分の構成に示す第1軸方向圧電素子27、第2径方向
圧電素子32、第3径方向圧電素子40および給電電極
41、42は、それぞれ第1軸方向圧電素子7、第2径
方向圧電素子12、第3径方向圧電素子20および給電
電極44、43に対応している。Although the configuration of the electrode feeding device on the right half of FIG. 1 has been described above, the configuration of the left half of FIG. 1 is the same as the configuration of the right half, and therefore substantially the same components are designated by the same reference numerals. However, the description is omitted. The first axial piezoelectric element 27, the second radial piezoelectric element 32, the third radial piezoelectric element 40, and the feeding electrodes 41 and 42 shown in the left half configuration are respectively the first axial piezoelectric element 7 and the second axial piezoelectric element 27. It corresponds to the radial direction piezoelectric element 12, the third radial direction piezoelectric element 20, and the feeding electrodes 44 and 43.
【0016】前記第1実施例において、第1軸方向圧電
素子7、27、第2径方向圧電素子12、32および第
3径方向圧電素子20、40を右側と左側とで一対ずつ
合計2セットの圧電素子群を設けたのは、右側の第1セ
ットの圧電素子群で送り動作を行い、左側の第2セット
の圧電素子群で戻し動作を行い、送り機能と戻し機能と
を分担するためである。これは、電極の送り時および戻
し時に電極4に引張力のみを作用することにより電極4
のたるみを防止し定量送りを的確に行うためである。ま
た第1セットおよび第2セットがそれぞれ一方向のみ、
つまり互いに相反する方向の一方向のみに送り機能ある
いは戻し機能のみを有することで、圧電素子の通電時に
電極定量送りの精度が向上する。In the first embodiment, the first axial piezoelectric elements 7 and 27, the second radial piezoelectric elements 12 and 32, and the third radial piezoelectric elements 20 and 40 are paired on the right side and the left side, for a total of two sets. This piezoelectric element group is provided so that the first set of piezoelectric element groups on the right side performs the feeding operation and the second set of piezoelectric element groups on the left side performs the returning operation, thus sharing the feeding function and the returning function. Is. This is because by applying only a tensile force to the electrode 4 when the electrode is fed and returned.
This is to prevent slack and to perform fixed-quantity feeding accurately. Also, the first set and the second set are each only in one direction,
In other words, by having only the feeding function or the returning function only in one direction which is opposite to each other, the accuracy of the fixed amount electrode feeding when the piezoelectric element is energized is improved.
【0017】前記第1実施例では、2セットの圧電素子
群を設けたが、本発明としてはもちろん1セットの圧電
素子群によっても前述した目的を達成できることはもち
ろんである。次に、前記第1実施例の動作を図3および
図4にもとづいて説明する。図3に示すように、電極送
り装置1の初期状態では、第1軸方向圧電素子7、2
7、第2径方向圧電素子12、32および第3径方向圧
電素子20、40がすべてオフ状態にある。次いで、第
2径方向圧電素子12をオンし、図1に示す電気絶縁体
14、給電電極43を閉じる(a)。次いで、第1軸方
向圧電素子7をオンする(b)。すると、第1軸方向圧
電素子7の伸長により図1に示すケース8が図1で右方
向に移動し、電気絶縁体14、給電電極43とともに電
極4が送り方向(右方向)に移動する。次いで、第3径
方向圧電素子20をオンし(c)、第2径方向圧電素子
12をオフにする(d)。次に第1軸方向圧電素子7を
オフにする(e)。すると、電極4がその位置に保持さ
れた状態で、電気絶縁体14、給電電極43が開かれた
状態になり第1軸方向圧電素子7の収縮によりケース8
が図1に示す初期状態に戻る。前記(a)から(e)ま
での一連の動作を繰り返すことで電極4を必要量だけ送
り出す。In the first embodiment, two sets of piezoelectric element groups are provided, but it goes without saying that the present invention can achieve the above-mentioned object even with one set of piezoelectric element groups. Next, the operation of the first embodiment will be described with reference to FIGS. As shown in FIG. 3, in the initial state of the electrode feeding device 1, the first axial piezoelectric elements 7, 2
7, the second radial piezoelectric elements 12 and 32, and the third radial piezoelectric elements 20 and 40 are all in the off state. Then, the second radial piezoelectric element 12 is turned on, and the electric insulator 14 and the power feeding electrode 43 shown in FIG. 1 are closed (a). Next, the first axial piezoelectric element 7 is turned on (b). Then, the case 8 shown in FIG. 1 moves rightward in FIG. 1 due to the extension of the first axial piezoelectric element 7, and the electrode 4 moves in the sending direction (rightward) together with the electrical insulator 14 and the power feeding electrode 43. Next, the third radial piezoelectric element 20 is turned on (c), and the second radial piezoelectric element 12 is turned off (d). Next, the first axial piezoelectric element 7 is turned off (e). Then, with the electrode 4 held in that position, the electrical insulator 14 and the power feeding electrode 43 are opened, and the case 8 is contracted by the contraction of the first axial piezoelectric element 7.
Returns to the initial state shown in FIG. By repeating a series of operations from (a) to (e), the required amount of electrode 4 is sent out.
【0018】次いで、電極4の送り量の微調整は、図4
に示すように、初期状態から第2径方向圧電素子12を
オンし、次いで(b)に示すように第1軸方向圧電素子
7へのアナログ電圧のオンによりこの電圧調整によって
第1軸方向圧電素子7の伸長量を微調整し、これにとも
ない電極4の送り量を最終的に微調整する。また、電極
4と図示しないワーク間で放電させ、放電加工による穴
あけを行わせるための電極4への放電電圧印加は、図4
に示すように、第2径方向圧電素子12または、第3径
方向圧電素子20のオン時に行われる。図示しない元電
源にて発生する供給電圧は、図示しないスイッチング回
路により、給電電極43、44を経て電極4に印加され
る。またスイッチング回路から給電電極43、44への
電圧印加オン、オフは、図3に示すように、給電電極4
3または給電電極44が電極4に確実に接触していると
きに行われ、給電電極43または給電電極44と電極4
の間の放電等の原因となる電気導通不良を抑制してい
る。Next, the fine adjustment of the feed amount of the electrode 4 is performed by referring to FIG.
As shown in (b), the second radial direction piezoelectric element 12 is turned on from the initial state, and then, as shown in (b), by turning on the analog voltage to the first axial direction piezoelectric element 7, the first axial direction piezoelectric element is adjusted by this voltage adjustment. The extension amount of the element 7 is finely adjusted, and accordingly, the feed amount of the electrode 4 is finally finely adjusted. In addition, the discharge voltage is applied to the electrode 4 in order to perform the electric discharge between the electrode 4 and the work (not shown) and to perform the drilling by the electric discharge machining.
As shown in FIG. 5, this is performed when the second radial direction piezoelectric element 12 or the third radial direction piezoelectric element 20 is turned on. The supply voltage generated by the original power source (not shown) is applied to the electrode 4 via the power supply electrodes 43, 44 by a switching circuit (not shown). Further, as shown in FIG. 3, the application of voltage from the switching circuit to the power supply electrodes 43 and 44 is turned on and off as shown in FIG.
3 or the feeding electrode 44 is surely in contact with the electrode 4, the feeding electrode 43 or the feeding electrode 44 and the electrode 4
It suppresses a poor electrical continuity that causes a discharge or the like.
【0019】穴あけ加工終了後、第2セットの第1軸方
向圧電素子27、第2径方向圧電素子32および第3径
方向圧電素子40の動作によって電極4の戻し動作を行
う。電極4の戻し時、前述した図1に示す右側半分の第
1セットの第1軸方向圧電素子7、第2径方向圧電素子
12および第3径圧電素子20はオフにする。図1に示
す左側半分の第2セットによる戻し動作は、図3に示す
ような初期状態から(e)の一連の動作を第2セットの
圧電素子27、32および40で繰り返すことにより必
要戻し量だけこれら一連の動作を繰り返す。これによ
り、ワークへの一穴加工を終了する。After the boring process, the electrode 4 is returned by the operation of the second set of the first axial piezoelectric element 27, the second radial piezoelectric element 32 and the third radial piezoelectric element 40. When the electrode 4 is returned, the first set of the first axial piezoelectric element 7, the second radial piezoelectric element 12 and the third radial piezoelectric element 20 in the right half shown in FIG. 1 are turned off. The return operation by the second set of the left half shown in FIG. 1 is the required return amount by repeating the series of operations (e) from the initial state as shown in FIG. 3 with the piezoelectric elements 27, 32 and 40 of the second set. Only these series of operations are repeated. This completes the one-hole machining on the work.
【0020】前記第1実施例によれば、3個の圧電素子
7、12、20のオンオフの組み合わせ動作によって圧
電素子7の伸長量だけ図1で右方向に送り可能である。
これを繰り返すことにより必要量送り出すことができ
る。通電加工時、圧電素子7の印加電圧をアナログ制御
することにより、電極4の位置調整の精度を高められ
る。According to the first embodiment, it is possible to feed the piezoelectric element 7 in the right direction in FIG. 1 by the extension amount of the piezoelectric element 7 by the combined operation of turning on and off the three piezoelectric elements 7, 12, 20.
By repeating this, the required amount can be sent out. The accuracy of the position adjustment of the electrode 4 can be improved by analogly controlling the voltage applied to the piezoelectric element 7 during the energization processing.
【0021】電極の着脱時、圧電素子の径方向の伸縮で
なく軸方向の伸縮により電極4を圧着または離脱するた
め、軸方向に大きな伸び量または縮み量を確保できるの
で小径の電極を的確に掴み離しできる。しかも、積層さ
れた圧電素子の軸方向の伸縮動作によって電極を圧着ま
たは離脱するので、小径の電極を的確に掴み離しでき
る。When the electrode is attached or detached, the electrode 4 is crimped or separated by axial expansion or contraction, not by radial expansion or contraction of the piezoelectric element, so that a large amount of expansion or contraction can be secured in the axial direction, so that an electrode with a small diameter can be accurately applied. You can grab and release. Moreover, since the electrodes are pressure-bonded or separated by the axial expansion / contraction operation of the laminated piezoelectric elements, it is possible to accurately grasp and separate the electrodes having a small diameter.
【0022】電極の送り時、積層された圧電素子の軸方
向に大きな伸び量または縮み量を確保できるので、電極
の送りを的確にできる。送り動作の繰り返しにより電極
の送り量を適宜調整できる。また、送り時と戻し時とで
別個の圧電素子群7、12、20および27、32、4
0によって送り時および戻り時の個別制御が可能とな
り、送り量ならびに戻し量の精密制御が可能である。ま
た、軸方向の圧電素子のアナログ制御時、2つの径方向
圧電素子による電極の掴み替えが不要となるため無駄時
間を減少でき電極の応答性を向上させる。When the electrodes are fed, a large amount of expansion or contraction can be secured in the axial direction of the laminated piezoelectric elements, so that the electrodes can be fed accurately. By repeating the feeding operation, the feeding amount of the electrode can be adjusted appropriately. Also, the piezoelectric element groups 7, 12, 20 and 27, 32, 4 which are separate at the time of feeding and at the time of returning
With 0, individual control at the time of feeding and returning is possible, and precise control of the feeding amount and the returning amount is possible. Further, during analog control of the piezoelectric element in the axial direction, it becomes unnecessary to re-hold the electrodes by the two radial piezoelectric elements, so that the dead time can be reduced and the responsiveness of the electrode can be improved.
【0023】さらに、本装置を用いた場合の電極送り駆
動方式として、駆動周波数を一般の制御領域以外であ
る、系の折れ点周波数(遮断周波数)を超えた高次共振
周波数に合致させた領域で電極の送りを制御することが
可能である。そのため第1軸法高圧電素子の共振周波数
を利用した場合の電極送りでは、電極1ステップ当たり
の変位量が大きくなり、また電極に高周波の振動を付与
することも可能となる。共振周波数においては、一般に
制御信号に対して位相遅れが起こるために制御が不可能
とされてきた。しかし、本装置の場合、共振周波数にお
いて2次系の遅れ(−90°)にさらに圧電素子の応答
遅れ(−90°)が加わるため、系の遅れは全体として
−180°遅れることとなる。従って、電極とワーク間
のギャップ電圧の変動に対する制御信号の位相を−18
0°反転させることにより、従来と同様な制御を可能と
する。Further, as an electrode feed drive system using this apparatus, the drive frequency is in a region other than a general control region, in which the drive frequency is matched with a higher-order resonance frequency exceeding the break point frequency (cutoff frequency) of the system. It is possible to control the feed of the electrodes. Therefore, in the electrode feeding when the resonance frequency of the first-axis method high piezoelectric element is used, the displacement amount per one step of the electrode becomes large, and high-frequency vibration can be applied to the electrode. At the resonance frequency, control has generally been impossible because a phase delay occurs with respect to the control signal. However, in the case of this device, since the response delay (-90 °) of the piezoelectric element is added to the delay (-90 °) of the secondary system at the resonance frequency, the delay of the system is delayed by -180 ° as a whole. Therefore, the phase of the control signal with respect to the fluctuation of the gap voltage between the electrode and the work is set to −18.
By reversing 0 °, the same control as the conventional one is possible.
【0024】さらには、電極4が線状のものであるので
電極摩耗しても連続的に電極が補給送りされるので、電
極消耗時の交換作業の頻度が低減でき、電極の頻繁な交
換作業が不要となり、保守点検作業が容易になるという
効果がある。次に、本発明の第2実施例を図5〜図8に
示す。第2実施例は、第1実施例に示す給電電極41、
42、43、44に代えて、外部より電極4に加工用電
源を供給する例である。Further, since the electrode 4 is linear, the electrode is continuously replenished and fed even if the electrode is worn, so that the frequency of replacement work when the electrode is worn out can be reduced, and frequent replacement work of the electrode is possible. Is unnecessary and maintenance and inspection work is easy. Next, a second embodiment of the present invention is shown in FIGS. The second embodiment is the power supply electrode 41 shown in the first embodiment,
This is an example in which a machining power source is externally supplied to the electrode 4 in place of 42, 43, and 44.
【0025】電極送り装置1は、図5に示すように、ハ
ウジング2の電極挿通用の穴3に電極4が挿通されてい
る。図5において穴3を中心として左右対称の構成であ
るから、説明の都合上、まず、穴3の右側半分の構成に
ついて説明する。ハウジング2には、電極4の軸方向に
平行に円筒状の圧電素子取付け用穴5が形成され、この
穴底5aに第1軸方向圧電素子7の一端が固定され、内
周壁5bに第1軸方向圧電素子7が軸方向に摺動可能に
収容され、ケ−ス8に他端7bが固定されている。第1
軸方向圧電素子7は円板状の圧電素子が板厚方向に積層
されて形成される。In the electrode feeding device 1, as shown in FIG. 5, the electrode 4 is inserted through the electrode insertion hole 3 of the housing 2. In FIG. 5, the hole 3 is symmetrical with respect to the center, so for convenience of description, first, the structure of the right half of the hole 3 will be described. A cylindrical piezoelectric element mounting hole 5 is formed in the housing 2 in parallel to the axial direction of the electrode 4, one end of the first axial piezoelectric element 7 is fixed to the hole bottom 5a, and the first piezoelectric element 7 is attached to the inner peripheral wall 5b. The axial piezoelectric element 7 is housed slidably in the axial direction, and the other end 7b is fixed to the case 8. First
The axial piezoelectric element 7 is formed by laminating disk-shaped piezoelectric elements in the plate thickness direction.
【0026】ケース8は、図6に示すように、頂面8a
および底面8bがハウジング2に対し電極4の軸方向に
摺動可能に収容される。ケース8の円筒状の穴10に
は、その穴底10aに第2径方向圧電素子12の一端1
2aが固定されている。ケース8に収容される一対の電
気絶縁体14、15は、電極4を挟んで上下に設けられ
ている。下側の電気絶縁体14の底面14aは第2径方
向圧電素子12の他端12bに固定される。上側の電気
絶縁体15の頂面15aはケース8に固定される。電気
絶縁体14の頂面ならびに電気絶縁体15の底面には、
電極4を挟み込み可能に円弧状の凹部14bおよび凹部
15bが形成される。The case 8 has a top surface 8a as shown in FIG.
The bottom surface 8b is accommodated in the housing 2 so as to be slidable in the axial direction of the electrode 4. The cylindrical hole 10 of the case 8 has a hole bottom 10a at which one end 1 of the second radial direction piezoelectric element 12 is formed.
2a is fixed. The pair of electric insulators 14 and 15 housed in the case 8 are provided above and below with the electrode 4 interposed therebetween. The bottom surface 14a of the lower electrical insulator 14 is fixed to the other end 12b of the second radial piezoelectric element 12. The top surface 15 a of the upper electric insulator 15 is fixed to the case 8. On the top surface of the electric insulator 14 and the bottom surface of the electric insulator 15,
Arc-shaped recesses 14b and 15b are formed so that the electrode 4 can be sandwiched therebetween.
【0027】図5に示すように、ハウジング2の端面2
aに固定されるハウジング18は、電極4の径方向に形
成される円筒状の穴21に第3径方向圧電素子20を収
容し、その穴底21aに第3径方向圧電素子20の一端
を固定している。第3径方向圧電素子20の他端は電気
絶縁体22に固定される。電気絶縁体22および電気絶
縁体23は、前述した電気絶縁体14および電気絶縁体
15と同様の構成で、その頂面および底面にそれぞれ電
極4を掴み込み可能な円弧状の凹部を有している。ま
た、ハウジング18の端面には、電極4を挿通可能な案
内孔25aをもつ電極ガイド25が固定されている。As shown in FIG. 5, the end surface 2 of the housing 2 is
The housing 18 fixed to a accommodates the third radial piezoelectric element 20 in a cylindrical hole 21 formed in the radial direction of the electrode 4, and has one end of the third radial piezoelectric element 20 at the hole bottom 21a. It is fixed. The other end of the third radial piezoelectric element 20 is fixed to the electrical insulator 22. The electric insulator 22 and the electric insulator 23 have the same configuration as the electric insulator 14 and the electric insulator 15 described above, and have arc-shaped concave portions on the top and bottom surfaces thereof, respectively, into which the electrodes 4 can be gripped. There is. Further, an electrode guide 25 having a guide hole 25a through which the electrode 4 can be inserted is fixed to the end surface of the housing 18.
【0028】第2径方向圧電素子12および第3径方向
圧電素子20は、それぞれ積層状のもので、通電時積層
方向に伸長し、電気絶縁体14、電気絶縁体22をそれ
ぞれ上昇し、電気絶縁体15、電気絶縁体23とでそれ
ぞれ電極4を挟み込む。以上図5における右側半分の電
極送り装置の構成について説明したが、図5の左側半分
の構成については右側半分の構成と同様であるので実質
的に同一構成部分には同一符号を付し、説明を省略す
る。なお、左半分の構成に示す第1軸方向圧電素子2
7、第2径方向圧電素子32および第3径方向圧電素子
40は、それぞれ第1軸方向圧電素子7、第2径方向圧
電素子12および第3径方向圧電素子20に対応してい
る。The second radial direction piezoelectric element 12 and the third radial direction piezoelectric element 20 are laminated, respectively, and extend in the laminating direction when energized to raise the electric insulator 14 and the electric insulator 22, respectively. The electrode 4 is sandwiched between the insulator 15 and the electrical insulator 23. Although the configuration of the electrode feeding device on the right half in FIG. 5 has been described above, the configuration of the left half of FIG. 5 is similar to the configuration of the right half, and therefore, substantially the same components are denoted by the same reference numerals and will not be described. Is omitted. The first axial piezoelectric element 2 shown in the left half configuration
7, the second radial piezoelectric element 32, and the third radial piezoelectric element 40 correspond to the first axial piezoelectric element 7, the second radial piezoelectric element 12, and the third radial piezoelectric element 20, respectively.
【0029】次に前記第2実施例の動作を図7および図
8にもとづいて説明する。図7に示すように、電極送り
装置1の初期状態では、第1軸方向圧電素子7、27、
第2径方向圧電素子12、32および第3径方向圧電素
子20、40がすべてオフ状態にある。次いで、第2径
方向圧電素子12をオンし、図5に示す電気絶縁体1
4、15を閉じる(a)。次いで、第1軸方向圧電素子
7をオンする(b)。すると、第1軸方向圧電素子7の
伸長により図1に示すケース8が図5で右方向に移動
し、電気絶縁体14、15とともに電極4が送り方向
(右方向)に移動する。次いで、第3径方向圧電素子2
0をオンし(c)、第2径方向圧電素子12をオフにす
る(d)。次に第1軸方向圧電素子7をオフにする
(e)。すると、電極4がその位置に保持された状態
で、電気絶縁体14、15が開かれた状態になり第1軸
方向圧電素子7の収縮によりケース8が図5に示す初期
状態に戻る。前記(a)から(e)までの一連の動作を
繰り返すことで電極4を必要量だけ送り出す。Next, the operation of the second embodiment will be described with reference to FIGS. 7 and 8. As shown in FIG. 7, in the initial state of the electrode feeding device 1, the first axial piezoelectric elements 7, 27,
The second radial piezoelectric elements 12 and 32 and the third radial piezoelectric elements 20 and 40 are all in the off state. Then, the second radial direction piezoelectric element 12 is turned on, and the electric insulator 1 shown in FIG.
4 and 15 are closed (a). Next, the first axial piezoelectric element 7 is turned on (b). Then, the case 8 shown in FIG. 1 moves to the right in FIG. 5 due to the extension of the first axial piezoelectric element 7, and the electrode 4 moves in the feed direction (to the right) together with the electrical insulators 14 and 15. Then, the third radial piezoelectric element 2
0 is turned on (c), and the second radial piezoelectric element 12 is turned off (d). Next, the first axial piezoelectric element 7 is turned off (e). Then, with the electrode 4 held at that position, the electrical insulators 14 and 15 are opened, and the case 8 returns to the initial state shown in FIG. 5 due to the contraction of the first axial piezoelectric element 7. By repeating a series of operations from (a) to (e), the required amount of electrode 4 is sent out.
【0030】次いで、電極4の送り量の微調整は、図8
に示すように、初期状態から第2径方向圧電素子12を
オンし、次いで(b)に示すように第1軸方向圧電素子
7へのアナログ電圧のオンによりこの電圧調整によって
第1軸方向圧電素子7の伸長量を微調整し、これにとも
ない電極4の送り量を最終的に微調整する。続いて、図
示しないスリップリングから電極4への放電電圧を印加
することによって、電極と図示しないワーク間で放電
し、放電加工による穴あけ加工が行われる。Next, the fine adjustment of the feed amount of the electrode 4 is performed with reference to FIG.
As shown in (b), the second radial direction piezoelectric element 12 is turned on from the initial state, and then, as shown in (b), by turning on the analog voltage to the first axial direction piezoelectric element 7, the first axial direction piezoelectric element is adjusted by this voltage adjustment. The extension amount of the element 7 is finely adjusted, and accordingly, the feed amount of the electrode 4 is finally finely adjusted. Then, by applying a discharge voltage from a slip ring (not shown) to the electrode 4, a discharge is generated between the electrode and a work (not shown), and drilling is performed by electric discharge machining.
【0031】穴あけ加工終了後、第2セットの第1軸方
向圧電素子27、第2径方向圧電素子32および第3径
方向圧電素子40の動作によって電極4の戻し動作を行
う。電極4の戻し時、前述した図5に示す右側半分の第
1セットの第1軸方向圧電素子7、第2径方向圧電素子
12および第3径圧電素子20はオフにする。図5に示
す左側半分の第2セットによる戻し動作は、図7に示す
ような初期状態から(e)の一連の動作を第2セットの
圧電素子27、32および40で繰り返すことにより必
要戻し量だけこれら一連の動作を繰り返す。これによ
り、ワークへの一穴加工を終了する。After completion of the boring process, the electrode 4 is returned by the operation of the second set of the first axial piezoelectric element 27, the second radial piezoelectric element 32 and the third radial piezoelectric element 40. When the electrode 4 is returned, the first set of the first axial piezoelectric element 7, the second radial piezoelectric element 12 and the third radial piezoelectric element 20 in the right half shown in FIG. 5 are turned off. The return operation by the second set of the left half shown in FIG. 5 is the required return amount by repeating the series of operations (e) from the initial state as shown in FIG. 7 with the piezoelectric elements 27, 32 and 40 of the second set. Only these series of operations are repeated. This completes the one-hole machining on the work.
【0032】前記第2実施例によれば、3個の圧電素子
7、12、20のオンオフの組み合わせ動作によって圧
電素子7の伸長量だけ図5で右方向に送り可能である。
これを繰り返すことにより必要量送り出すことができ
る。通電加工時、圧電素子7の印加電圧をアナログ制御
することにより、電極4の位置調整の精度を高められ
る。また、アナログ制御時、電極の掴み替えによる無駄
時間を短縮できるため電極の応答性を向上させる。According to the second embodiment, it is possible to feed the piezoelectric element 7 in the right direction in FIG. 5 by the extension amount of the piezoelectric element 7 by the on / off combination operation of the three piezoelectric elements 7, 12, 20.
By repeating this, the required amount can be sent out. The accuracy of the position adjustment of the electrode 4 can be improved by analogly controlling the voltage applied to the piezoelectric element 7 during the energization processing. Also, during analog control, the dead time due to electrode re-grabbing can be shortened, so the responsiveness of the electrodes is improved.
【0033】さらに、本装置を用いた場合の電極送り駆
動方式として、駆動周波数を一般の制御領域以外であ
る、系の折れ点周波数(遮断周波数)を超えた高次共振
周波数に合致させた領域で電極の送りを制御することが
可能である。そのため第1軸法高圧電素子の共振周波数
を利用した場合の電極送りでは、電極1ステップ当たり
の変位量が大きくなり、また電極に高周波の振動を付与
することも可能となる。共振周波数においては、一般に
制御信号に対して位相遅れが起こるために制御が不可能
とされてきた。しかし、本装置の場合、共振周波数にお
いて2次系の遅れ(−90°)にさらに圧電素子の応答
遅れ(−90°)が加わるために、系の遅れは全体とし
て−180°遅れることとなる。従って、電極とワーク
間のギャップ電圧の変動に対する制御信号の位相を−1
80°反転させることにより、従来と同様な制御を可能
とする。Further, as an electrode feed drive method using this apparatus, the drive frequency is in a region other than a general control region, in which the drive frequency is matched with a higher-order resonance frequency exceeding the break point frequency (cutoff frequency) of the system. It is possible to control the feed of the electrodes. Therefore, in the electrode feeding when the resonance frequency of the first-axis method high piezoelectric element is used, the displacement amount per one step of the electrode becomes large, and high-frequency vibration can be applied to the electrode. At the resonance frequency, control has generally been impossible because a phase delay occurs with respect to the control signal. However, in the case of this device, since the response delay (-90 °) of the piezoelectric element is added to the delay (-90 °) of the secondary system at the resonance frequency, the system delay is delayed by -180 ° as a whole. .. Therefore, the phase of the control signal with respect to the variation of the gap voltage between the electrode and the work is -1.
By reversing by 80 °, the same control as the conventional one becomes possible.
【0034】電極の着脱時、圧電素子の径方向の伸縮で
なく軸方向の伸縮により電極4を圧着または離脱するた
め、軸方向に大きな伸び量または縮み量を確保できるの
で小径の電極を的確に掴み離しできる。しかも、積層さ
れた圧電素子の軸方向の伸縮動作によって電極を圧着ま
たは離脱するので小径の電極を的確に掴み離しできる。When the electrode is attached or detached, the electrode 4 is crimped or released by axial expansion or contraction instead of radial expansion or contraction of the piezoelectric element, so that a large expansion or contraction amount can be secured in the axial direction, so that an electrode with a small diameter can be accurately applied. You can grab and release. Moreover, since the electrodes are pressure-bonded or separated by the axial expansion / contraction operation of the laminated piezoelectric elements, it is possible to accurately grasp and separate the electrodes having a small diameter.
【0035】電極の送り時、積層された圧電素子の軸方
向に大きな伸び量または縮み量を確保できるので電極の
送りを的確にできる。送り動作の繰り返しにより電極の
送り量を適宜調整できる。前述の第1実施例及び第2実
施例では2セットの圧電素子群による例を示したが、1
セットの圧電素子群のみによっても本発明が成立するこ
とはもちろんである。When the electrodes are fed, a large amount of expansion or contraction can be secured in the axial direction of the laminated piezoelectric elements, so that the electrodes can be fed accurately. By repeating the feeding operation, the feeding amount of the electrode can be adjusted appropriately. In the above-described first and second embodiments, an example using two sets of piezoelectric element groups is shown.
It goes without saying that the present invention can be realized only by the piezoelectric element group of the set.
【0036】[0036]
【発明の効果】以上説明したように、本発明の放電加工
用電極送り装置によれば、電極のみを送り出し可能であ
る。また電極のみの送り出しにより駆動部の慣性質量が
減少し加工機主軸の応答性を向上させるとともに積層圧
電素子の軸方向伸びによって大きな伸び量または縮み量
を確保できしかも電圧アナログ調整により送り量の精密
な制御が可能になるという効果がある。As described above, according to the electrode-feeding device for electric discharge machining of the present invention, it is possible to feed out only the electrode. Also, by sending out only the electrodes, the inertial mass of the drive unit is reduced and the responsiveness of the main shaft of the processing machine is improved, and a large amount of expansion or contraction can be secured by the axial extension of the laminated piezoelectric element. The effect is that various controls are possible.
【0037】系の共振周波数領域において電極送りが制
御可能であるため加工機主軸の応答性が非常に速くな
り、さらに電極に高次の振動を与えることが可能とな
る。これにより、電極ワーク間の微小な隙間に存在する
加工粉をポンプ作用により効率的に除去し、加工速度を
飛躍的に向上させる。また、電極消耗時、電極を連続し
て送り出し可能な構成であるから電極交換のための頻繁
な交換作業が不要となり、稼動率が高められるという効
果がある。さらには、圧電素子の径方向ではなく軸方向
の伸縮により電極の脱着動作が行われるため、脱着作業
時の作動量が大となり小径の電極送りにも適用可能にな
るという効果がある。Since the electrode feed can be controlled in the resonance frequency region of the system, the responsiveness of the main shaft of the processing machine becomes very fast, and it becomes possible to give high-order vibration to the electrode. As a result, the machining powder present in the minute gaps between the electrode works is efficiently removed by the pump action, and the machining speed is dramatically improved. Further, since the electrodes can be continuously fed out when the electrodes are consumed, there is no need for frequent replacement work for electrode replacement, and the operation rate can be increased. Further, since the electrode is attached / detached by the expansion / contraction of the piezoelectric element in the axial direction, not in the radial direction, the operation amount during the attachment / detachment operation is large, and the present invention can be applied to electrode feeding of a small diameter.
【図1】本発明の第1実施例による放電加工用電極送り
装置を示す断面図である。FIG. 1 is a sectional view showing an electrode-feeding device for electric discharge machining according to a first embodiment of the present invention.
【図2】図1に示すA−A線拡大断面図である。FIG. 2 is an enlarged cross-sectional view taken along the line AA shown in FIG.
【図3】本発明の第1実施例による電極送り動作ならび
に各圧電素子のオンオフ状態を示す説明図である。FIG. 3 is an explanatory diagram showing an electrode feeding operation and an on / off state of each piezoelectric element according to the first embodiment of the present invention.
【図4】本発明の第1実施例による放電加工用電極送り
装置の送り量調整動作を示す説明図である。FIG. 4 is an explanatory diagram showing a feed amount adjusting operation of the electric-discharge machining electrode feeder according to the first embodiment of the present invention.
【図5】本発明の第2実施例による放電加工用電極送り
装置を示す断面図である。FIG. 5 is a sectional view showing an electrode-feeding device for electric discharge machining according to a second embodiment of the present invention.
【図6】図5に示すB−B線拡大断面図である。6 is an enlarged cross-sectional view taken along line BB shown in FIG.
【図7】本発明の第2実施例による電極送り動作ならび
に各圧電素子のオンオフ状態を示す説明図である。FIG. 7 is an explanatory view showing an electrode feeding operation and an on / off state of each piezoelectric element according to a second embodiment of the present invention.
【図8】本発明の第2実施例による放電加工用電極送り
装置の送り量調整動作を示す説明図である。FIG. 8 is an explanatory diagram showing a feed amount adjusting operation of the electric-discharge machining electrode feeding device according to the second embodiment of the present invention.
【図9】電極を挟み込む凹部形状を示す図である。FIG. 9 is a view showing a shape of a recess that sandwiches an electrode.
2 ハウジング 4 電極 7 第1軸方向圧電素子 8 ケース 12 第2径方向圧電素子 14、15 電気絶縁体(第1電気絶縁体) 18 ハウジング 20 第3径方向圧電素子 22、23 電気絶縁体(第2電気絶縁体) 27 第1軸方向圧電素子 32 第2径方向圧電素子 40 第3径方向圧電素子 42、43 給電電極(第1給電電極) 41、44 給電電極(第2給電電極) 2 Housing 4 Electrode 7 First Axial Piezoelectric Element 8 Case 12 Second Radial Piezoelectric Element 14, 15 Electrical Insulator (First Electrical Insulator) 18 Housing 20 Third Radial Piezoelectric Element 22, 23 Electrical Insulator (No. 2 electrical insulator) 27 first axial piezoelectric element 32 second radial piezoelectric element 40 third radial piezoelectric element 42, 43 feeding electrode (first feeding electrode) 41, 44 feeding electrode (second feeding electrode)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 孝 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 森田 浩充 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 毛利 尚武 愛知県名古屋市天白区久方2−12−1 豊 田工業大学内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Shimizu, 1-1, Showa-cho, Kariya city, Aichi Prefecture, Nihon Denso Co., Ltd. (72) Inventor, Hiromitsu Morita, 1-1, Showa-cho, Kariya city, Aichi prefecture Incorporated (72) Inventor Naotake Mori 2-12-1, Kukata, Tenpaku-ku, Nagoya-shi, Aichi Toyota Institute of Technology
Claims (7)
平行に伸縮可能に設けられる積層型の第1軸方向圧電素
子と、 前記第1軸方向圧電素子の自由端に固定され、前記ハウ
ジングに対し電極の軸方向に移動可能なケースと、 前記ケースに収容され、電極の径方向に伸縮可能な積層
型の第2径方向圧電素子と、 前記第2径方向圧電素子の自由端に当接し、前記第2径
方向圧電素子の伸長動作および収縮動作に応じて電極を
圧着および離脱する第1電気絶縁体と、 前記ハウジングに収容され、電極の径方向に伸縮可能な
積層型の第3径方向圧電素子と、 前記第3径方向圧電素子の自由端に当接し、前記第3径
方向圧電素子の伸長動作および収縮動作に応じて電極を
圧着および離脱する第2電気絶縁体とを備えたことを特
徴とする放電加工用電極送り装置。1. A laminated first axial piezoelectric element housed in a housing and provided so as to be capable of expanding and contracting in parallel with an axial direction of an electrode; and a fixed end of the first axial piezoelectric element fixed to the housing. On the other hand, a case that is movable in the axial direction of the electrode, a stacked second radial piezoelectric element that is housed in the case and that can expand and contract in the radial direction of the electrode, and abuts on the free end of the second radial piezoelectric element. A first electrical insulator that crimps and separates electrodes in accordance with expansion and contraction operations of the second radial piezoelectric element; and a laminated third diameter housed in the housing and expandable and contractible in the radial direction of the electrodes. A directional piezoelectric element and a second electrical insulator that abuts on a free end of the third radial piezoelectric element and crimps and separates electrodes in accordance with expansion and contraction operations of the third radial piezoelectric element. Electric discharge machining characterized by Feeder.
気的に絶縁され、前記第2径方向圧電素子の伸長動作
時、加工用電源を前記電極に接続する第1給電電極を有
することを特徴とする請求項1記載の放電加工用電極送
り装置。2. A first power supply electrode, which is electrically insulated from other parts by the first electrical insulator, and which connects a processing power source to the electrode during extension operation of the second radial piezoelectric element. The electrode feeding device for electric discharge machining according to claim 1.
気的に絶縁され、前記第3径方向圧電素子の伸長動作
時、加工用電源を前記電極に接続する第2給電電極を有
することを特徴とする請求項1または2記載の放電加工
用電極送り装置。3. A second power supply electrode, which is electrically insulated from other parts by the second electrical insulator, and which connects a processing power source to the electrode during extension operation of the third radial piezoelectric element. The electrode-feeding device for electric discharge machining according to claim 1 or 2.
る方式とアナログ的に駆動させる方式を複合させた、電
極送りを制御することを特徴とする請求項1記載の放電
加工用電極送り装置。4. The electrode-feeding device for electric discharge machining according to claim 1, wherein the electrode-feeding is controlled by a combination of a stepwise driving method and an analog-driving method.
領域での高次共振周波数に合致させて電極の送りを制御
することを特徴とする請求項4記載の放電加工用電極送
り装置。5. The electrode-feeding device for electric discharge machining according to claim 4, wherein the electrode feeding is controlled by matching the driving frequency with a higher-order resonance frequency in a region exceeding the break point frequency of the system.
対して制御信号の位相を反転させて電極の送りを制御す
ることを特徴とする請求項5記載の放電加工用電極送り
装置。6. The electrode-feeding device for electric discharge machining according to claim 5, wherein the feed of the electrode is controlled by inverting the phase of the control signal with respect to the fluctuation of the gap voltage between the electrode and the work.
絶縁体は、電極が挿嵌される溝部を有し、この溝部は両
端が口拡されていることを特徴とする請求項1記載の放
電加工用電極送り装置。7. The first electrical insulator and the second electrical insulator have a groove portion into which an electrode is inserted, and both ends of the groove portion are widened. Electrode feed device for electric discharge machining.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04691192A JP3262580B2 (en) | 1991-09-30 | 1992-03-04 | Electrode feeder for electric discharge machining |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-251789 | 1991-09-30 | ||
JP25178991 | 1991-09-30 | ||
JP04691192A JP3262580B2 (en) | 1991-09-30 | 1992-03-04 | Electrode feeder for electric discharge machining |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05146919A true JPH05146919A (en) | 1993-06-15 |
JP3262580B2 JP3262580B2 (en) | 2002-03-04 |
Family
ID=26387059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04691192A Expired - Lifetime JP3262580B2 (en) | 1991-09-30 | 1992-03-04 | Electrode feeder for electric discharge machining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3262580B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5951883A (en) * | 1997-07-31 | 1999-09-14 | Ann Arbor Machine Company | Floating cover electrode guide system for electric discharge machining |
US7019247B1 (en) * | 2005-02-22 | 2006-03-28 | Ann Arbor Machine Company | Electrical discharge machine apparatus with piezo-electric head |
JP2011115910A (en) * | 2009-12-04 | 2011-06-16 | Denso Corp | Electric discharge machine and method of manufacturing nozzle body using the same |
CN103185572A (en) * | 2011-12-27 | 2013-07-03 | 上海宝钢设备检修有限公司 | Measurement location device for edge cover of electrode plate of sheet coating unit |
-
1992
- 1992-03-04 JP JP04691192A patent/JP3262580B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5951883A (en) * | 1997-07-31 | 1999-09-14 | Ann Arbor Machine Company | Floating cover electrode guide system for electric discharge machining |
US7019247B1 (en) * | 2005-02-22 | 2006-03-28 | Ann Arbor Machine Company | Electrical discharge machine apparatus with piezo-electric head |
JP2011115910A (en) * | 2009-12-04 | 2011-06-16 | Denso Corp | Electric discharge machine and method of manufacturing nozzle body using the same |
CN103185572A (en) * | 2011-12-27 | 2013-07-03 | 上海宝钢设备检修有限公司 | Measurement location device for edge cover of electrode plate of sheet coating unit |
Also Published As
Publication number | Publication date |
---|---|
JP3262580B2 (en) | 2002-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4862030A (en) | Piezo-electric device | |
DE69109164T2 (en) | Piezoelectric motor. | |
US4885498A (en) | Stacked type piezoelectric actuator | |
AU2315497A (en) | Piezoelectric actuator or motor, method therefor and method for fabrication thereof | |
US5872418A (en) | Piezoelectric motor | |
US5751090A (en) | Peristaltic driver apparatus | |
US20070132343A1 (en) | Method and apparatus for a D33 mode piezoelectric actuator with a bending motion | |
AU2001250400A1 (en) | Vibratory motor and method of making and using same | |
JP2003503816A (en) | Micromachined electrostatic switch for high pressure | |
US4423347A (en) | Positioning element with a piezo-ceramic body | |
WO2001079731A1 (en) | Piezoelectric actuator | |
EP1288918A3 (en) | Piezoelectric actuator | |
JPH05146919A (en) | Electrode feeding device for electric discharge machining | |
JPH08103088A (en) | Vibration actuator | |
JPH06165540A (en) | Manufacture of element for laminated ultrasonic motor | |
US9425378B2 (en) | Actuator, actuator system and actuation of an actuator | |
JP2005507323A (en) | Curved electric start actuator | |
KR960032525A (en) | Piezoelectric transformer, manufacturing method thereof, and driving method thereof | |
US7245061B2 (en) | Micro-beam friction liner and method of transferring energy | |
JPH0360988A (en) | Piezo-electric type grasping device | |
JP2760729B2 (en) | Inch worm | |
JP2645212B2 (en) | Inchworm device | |
JPH0133018B2 (en) | ||
JP3475443B2 (en) | Electrostatic actuator | |
EP4128515B1 (en) | Method of controlling at least two interacting piezoelectric actuators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20101221 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20111221 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20121221 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20121221 |