JPH05144635A - Current lead of oxide superconductor - Google Patents

Current lead of oxide superconductor

Info

Publication number
JPH05144635A
JPH05144635A JP33161391A JP33161391A JPH05144635A JP H05144635 A JPH05144635 A JP H05144635A JP 33161391 A JP33161391 A JP 33161391A JP 33161391 A JP33161391 A JP 33161391A JP H05144635 A JPH05144635 A JP H05144635A
Authority
JP
Japan
Prior art keywords
oxide superconductor
current lead
oxide
superconductor
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33161391A
Other languages
Japanese (ja)
Inventor
Hitoshi Mitsubori
仁志 三堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP33161391A priority Critical patent/JPH05144635A/en
Publication of JPH05144635A publication Critical patent/JPH05144635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To increase the mechanical strength by a method wherein an FRP reinforcement structure body is provided on the outer peripheral surface of a superconductor oxide in the title current lead using the superconductor oxide. CONSTITUTION:The specific position on an oxide superconductor 2 is covered with a prepreg 5 cut in required size to be held by upper and lower tables 4. The prepreg 5 is pressure-rolled by sliding the tales 4. Later, when heated, the resin impregnated in the prepreg 5 is melted down making the fiber and the oxide superconductor 2 bond onto each other to be formed into one body. Through these procedures, the reinforcement structure can be formed on the center peripheral surface of the superconductor oxide by an easy process within a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は補強構造を有する酸化物
超電導体電流リードに関する。
FIELD OF THE INVENTION The present invention relates to oxide superconductor current leads having a reinforcing structure.

【0002】[0002]

【従来の技術】酸化物超電導体は、液体窒素温度程度の
比較的高温域で超電導状態を得られ、低温下での熱伝導
率が小さいといった特質を持っている。そのため極低温
下で使用する機器に対する給電を目的とする電流リード
の材料として応用開発がなされている。
2. Description of the Related Art Oxide superconductors have the characteristics that they can obtain a superconducting state in a relatively high temperature range around the temperature of liquid nitrogen and have a low thermal conductivity at low temperatures. Therefore, it has been applied and developed as a material for a current lead for the purpose of feeding power to equipment used at extremely low temperatures.

【0003】一方、酸化物超電導体が機械的強度の小さ
い脆性材料であるため、加工時や製品として使用する際
等に、曲げ応力や衝撃力により亀裂や破損が発生しやす
い。酸化物超電導体を用いる電流リードには破損等を防
ぐ補強材と一体化した構造が求められている。
On the other hand, since the oxide superconductor is a brittle material having a small mechanical strength, cracks and damages are likely to occur due to bending stress and impact force during processing or when used as a product. A current lead using an oxide superconductor is required to have a structure integrated with a reinforcing material that prevents damage and the like.

【0004】従来、銅や銀等の金属材料を用いて酸化物
超電導体を補強する手段が採用されている。しかし、電
流リードとして使用する場合、このような金属材料は熱
伝導率が高く、極低温機器への侵入熱が大きいため、酸
化物超電導体の特性を充分には生かせていない。
Conventionally, a means for reinforcing an oxide superconductor by using a metal material such as copper or silver has been adopted. However, when used as a current lead, such a metal material has a high thermal conductivity and a large amount of heat entering a cryogenic device, so that the characteristics of the oxide superconductor have not been fully utilized.

【0005】[0005]

【発明が解決しようとする課題】上記のような金属材料
を補強に用いる代わりに、酸化物超電導体の特質を生か
せるように、熱伝導率の小さい材料で超電導特性を損ね
ることのないものを用いて補強することが望ましい。ま
た、補強材としては、自重が小さい方が取扱いやすく、
衝撃力を受けた場合に破損に至らずに済むなど、有利で
ある場合が多い。
Instead of using the above metal material for reinforcement, a material having a small thermal conductivity which does not impair the superconducting property is used so as to make use of the characteristics of the oxide superconductor. It is desirable to reinforce. Also, as a reinforcing material, it is easier to handle if its own weight is smaller,
In many cases, it is advantageous in that it is not damaged when subjected to an impact force.

【0006】本発明は、酸化物超電導体を用いた電流リ
ードに対して、軽量で熱伝導が小さく丈夫な補強を行う
ことを目的とする。
An object of the present invention is to provide a current lead using an oxide superconductor with a lightweight, heat conductive and durable reinforcement.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は酸化物超電導体電流リードの補強として
軽量で強度に優れたFRP(繊維強化型複合材)を用い
るものである。FRPに通常用いられる繊維であるカー
ボン繊維、ガラス繊維等は、熱伝導率が金、銀等の数1
000分の1とかなり小さく、これらの繊維を用いたF
RPの熱伝導率も小さい。
In order to solve the above problems, the present invention uses a lightweight and excellent strength FRP (fiber reinforced composite material) as a reinforcement of an oxide superconductor current lead. Carbon fibers, glass fibers, etc., which are usually used for FRP, have a thermal conductivity of 1
It is as small as 1/000, and F using these fibers
The thermal conductivity of RP is also small.

【0008】本発明の酸化物超電導体電流リードは、ガ
ラス繊維等のシートに樹脂を含浸させたもの(以下プリ
プレグと呼ぶ)を酸化物超電導体に巻き付け、加熱硬化
させて一体化した構造とすることにより補強体を形成す
る。
The oxide superconductor current lead of the present invention has a structure in which a sheet of glass fiber or the like impregnated with a resin (hereinafter referred to as a prepreg) is wound around an oxide superconductor and cured by heating to be integrated. This forms a reinforcing body.

【0009】本発明の酸化物超電導体電流リードの構成
を図面とともに説明する。図1は本発明の酸化物超電導
体電流リードの一例における周方向の断面図で、図2は
軸方向の断面図である。円筒状の酸化物超電導体2の外
周にFRP補強部3を有し、酸化物超電導体2の両端の
電極部には端子が接続されている。この例では、円筒状
の酸化物超電導体を用いた電流リードを示しているが、
他のバルク状のものを用いたものに適用することもでき
る。
The structure of the oxide superconductor current lead of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view in the circumferential direction in an example of the oxide superconductor current lead of the present invention, and FIG. 2 is a cross-sectional view in the axial direction. An FRP reinforcing portion 3 is provided on the outer circumference of the cylindrical oxide superconductor 2, and terminals are connected to the electrode portions at both ends of the oxide superconductor 2. In this example, a current lead using a cylindrical oxide superconductor is shown.
It can also be applied to the one using other bulk-shaped ones.

【0010】本発明の酸化物超電導体電流リードの補強
部の成形方法の一例を説明する。図3に筒巻法による成
形方法の例を示す。酸化物超電導体の所定の箇所に必要
な寸法に裁断したプリプレグ5を敷き、上下のテーブル
4で挟む。テーブル4を図中の矢示のようにスライドさ
せて、プリプレグを加圧しながら巻き付ける。複数枚の
プリプレグを巻くか、または、プリプレグを複数回巻い
て積層させると強度が大きくなる。その後、加熱する
と、プリプレグに含浸させてある樹脂が融けて繊維と酸
化物超電導体が接着し、一体化した構造となる。
An example of a method of forming the reinforcing portion of the oxide superconductor current lead of the present invention will be described. FIG. 3 shows an example of the forming method by the tube winding method. A prepreg 5 cut to a required size is laid at a predetermined position of the oxide superconductor and sandwiched between the upper and lower tables 4. Slide the table 4 as shown by the arrow in the figure, and wind the prepreg while applying pressure. When a plurality of prepregs are wound or a plurality of prepregs are wound and laminated, the strength is increased. After that, when heated, the resin impregnated in the prepreg is melted and the fiber and the oxide superconductor are adhered to each other to form an integrated structure.

【0011】図1、図2に示す酸化物超電導体電流リー
ドを上の方法で成形すると、プリプレグを酸化物超電導
体の両端の端子接続部を残した幅に裁断して、テーブル
を用いて加圧しながら巻き付ける。その後加熱してプリ
プレグを接着させた酸化物超電導体の両端に接着あるい
は半田づけ等で端子を接続して完成する。このように、
工程に要する時間が短く、簡便な酸化物超電導体電流リ
ードの補強手段を得ることができる。
When the oxide superconductor current lead shown in FIGS. 1 and 2 is molded by the above method, the prepreg is cut into a width that leaves the terminal connection portions at both ends of the oxide superconductor, and the prepreg is applied with a table. Wrap while pressing. After that, the terminals are connected to both ends of the oxide superconductor to which the prepreg is adhered by heating by adhesion or soldering to complete. in this way,
The time required for the process is short, and a simple reinforcing means for the oxide superconductor current lead can be obtained.

【0012】FRP補強体を酸化物超電導体電流リード
に形成する他の方法としては、ガラス繊維やカーボン繊
維を酸化物超電導体の外周に巻き付け、樹脂で補強する
FW(フィラメントワインディング)法がある。
As another method of forming the FRP reinforcing member on the oxide superconductor current lead, there is a FW (filament winding) method in which glass fiber or carbon fiber is wound around the outer periphery of the oxide superconductor and is reinforced with a resin.

【0013】FW法でFRP補強体を形成する場合、電
流リードを構成する酸化物超電導体は、円筒、円柱等の
曲面を有する形状が一般的であるから、ピンあるいは溝
等で繊維を外周に固定する構造が必要である。ピンを一
体化して成形するか、溝を設けて成形した超電導体にそ
のピンや溝を介して繊維を巻き付け、樹脂で補強するよ
うなものである。繊維は端子を接続する所定の電極部を
残して、巻き付けられるものである。
When the FRP reinforcing body is formed by the FW method, since the oxide superconductor forming the current lead is generally in the shape of a curved surface such as a cylinder or a cylinder, the fiber is surrounded by a pin or groove. A fixing structure is required. It is like integrally molding the pins or winding a fiber through the pins or grooves around a superconductor formed by forming grooves and reinforcing it with resin. The fiber is wound around leaving a predetermined electrode portion for connecting the terminal.

【0014】FW法は、プリプレグを用いるFRP製法
と比べると、すこし加工に手間がかかる。前もって、電
極、端子接続部を決め、酸化物超電導体を成形する際に
補強繊維を固定するための構造を設ける必要がある。成
形後に酸化物超電導体の補強箇所を選択することは困難
である。また端子の接続面を保持するため、補強箇所が
限定される場合もある。端子を接続する際、端子差し込
み部を形成するため、後機械加工を要する場合がある。
The FW method requires a little more time and labor compared to the FRP manufacturing method using a prepreg. In advance, it is necessary to determine the electrode and terminal connection portions and provide a structure for fixing the reinforcing fiber when forming the oxide superconductor. It is difficult to select the reinforcing portion of the oxide superconductor after molding. Further, since the connection surface of the terminal is held, the reinforcing portion may be limited. When connecting the terminals, post-machining may be required to form the terminal insertion portion.

【0015】[0015]

【発明の効果】本発明のFRP補強酸化物超電導体電流
リードはFRPの熱伝導が小さいことから熱侵入量が小
さく、軽量であり、優れた機械的強度が得られるなどの
効果がある。特に、プリプレグを用いて補強構造を形成
するFRP補強酸化物超電導体電流リードは、短時間か
つ簡素な工程で補強構造を形成することができ、端子を
接続するための後機械加工や、繊維固定構造の形成等が
不要である等の利点がある。
The FRP-reinforced oxide superconductor current lead of the present invention has a small amount of heat penetration because of the small thermal conductivity of the FRP, is lightweight, and has the effect of obtaining excellent mechanical strength. In particular, the FRP reinforced oxide superconductor current lead, which forms a reinforcing structure using a prepreg, can form the reinforcing structure in a short time and with a simple process, and is used for post-machining for connecting terminals and fiber fixing. There is an advantage that the formation of a structure is unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸化物超電導体電流リードの一例にお
ける周方向の断面図である。
FIG. 1 is a cross-sectional view in the circumferential direction of an example of an oxide superconductor current lead of the present invention.

【図2】本発明の酸化物超電導体電流リードの一例にお
ける軸方向の断面図である。
FIG. 2 is a sectional view in the axial direction of an example of an oxide superconductor current lead of the present invention.

【図3】本発明の酸化物超電導体電流リードの製造方法
の一例を説明する図である。
FIG. 3 is a diagram illustrating an example of a method for manufacturing an oxide superconductor current lead of the present invention.

【符号の説明】[Explanation of symbols]

1 端子 2 酸化物超電導体 3 FRP補強部 4 テーブル 5 プリプレグ 1 terminal 2 oxide superconductor 3 FRP reinforcement 4 table 5 prepreg

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体を用いた電流リードにお
いて、酸化物超電導体の外周面にFRP補強構造体を設
けたことを特徴とする酸化物超電導体電流リード。
1. A current lead using an oxide superconductor, wherein an FRP reinforcing structure is provided on the outer peripheral surface of the oxide superconductor.
【請求項2】 前記FRP補強構造体が、強化用繊維の
シートに樹脂を含浸させたプリプレグを酸化物超電導体
の外周面に巻き付け加熱硬化させて一体化させたもので
あることを特徴とする請求項1記載の酸化物超電導体電
流リード。
2. The FRP reinforcing structure is characterized in that a prepreg obtained by impregnating a sheet of reinforcing fibers with a resin is wound around an outer peripheral surface of an oxide superconductor and cured by heating to be integrated. The oxide superconductor current lead according to claim 1.
JP33161391A 1991-11-21 1991-11-21 Current lead of oxide superconductor Pending JPH05144635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33161391A JPH05144635A (en) 1991-11-21 1991-11-21 Current lead of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33161391A JPH05144635A (en) 1991-11-21 1991-11-21 Current lead of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH05144635A true JPH05144635A (en) 1993-06-11

Family

ID=18245617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33161391A Pending JPH05144635A (en) 1991-11-21 1991-11-21 Current lead of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH05144635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153825A (en) * 1996-12-27 2000-11-28 Japan Atomic Energy Research Institute Superconducting current lead

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153825A (en) * 1996-12-27 2000-11-28 Japan Atomic Energy Research Institute Superconducting current lead

Similar Documents

Publication Publication Date Title
US3900357A (en) Composite material springs and manufacture
US20020149453A1 (en) Superconducting magnetic coil
US20130172196A1 (en) High-temperature superconductor (hts) coil
KR20190089880A (en) Fabrication method of fiber reinforced polymer
KR100897651B1 (en) High temperature superconducting racetrack coil
CN1734874B (en) Equal diameter connector of power cable, and manufacturing process thereof
KR100217550B1 (en) Superconducting coil and manufacturing method thereof
JPH05144635A (en) Current lead of oxide superconductor
JP6355914B2 (en) Superconducting coil and method of manufacturing the superconducting coil
JPH10188692A (en) Forced cooling superconductor, its manufacture, and manufacture of forced cooling type superconductive coil
US6791033B2 (en) High-voltage insulation system
JP2002231523A (en) Compound-based superconductive coil and its manufacturing method
JPS60225740A (en) Manufacture of tubular product having internal reinforced part
KR100336439B1 (en) The manufacturing method of the fishing rod installed a non-wovenfabric type kevler textile, and the above fishing rod
JP3247117B2 (en) Reinforcing method for oxide superconductor
JP2604063B2 (en) Manufacturing method of coil for electromagnet
JPS60212335A (en) Tubular body for fishing rod
JP2656381B2 (en) Manufacturing method of coil for electromagnet
Dell'Orco et al. Fabrication and component testing results for a Nb/sub 3/Sn dipole magnet
JPS60217606A (en) Superconductive coil
JPH0897033A (en) Current lead
JPS6249972B2 (en)
CN113968050A (en) Thermosetting light composite material and preparation method thereof
JPH09260133A (en) Superconducting current lead
JPH06260330A (en) Electromagnet and manufacture thereof