JPH05144327A - Tidal current resistive submarine cable - Google Patents

Tidal current resistive submarine cable

Info

Publication number
JPH05144327A
JPH05144327A JP33290891A JP33290891A JPH05144327A JP H05144327 A JPH05144327 A JP H05144327A JP 33290891 A JP33290891 A JP 33290891A JP 33290891 A JP33290891 A JP 33290891A JP H05144327 A JPH05144327 A JP H05144327A
Authority
JP
Japan
Prior art keywords
cable
tidal current
submarine cable
outer diameter
laid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33290891A
Other languages
Japanese (ja)
Inventor
Yasuhiro Anzai
康広 安斉
Norio Fujimura
紀夫 藤村
Seiji Hirano
清治 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP33290891A priority Critical patent/JPH05144327A/en
Publication of JPH05144327A publication Critical patent/JPH05144327A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a tidal current resistive submarine cable which is not moved by a tidal current even when laid on a sea bottom without being buried, enhance the reliability of a submarine cable, and facilitate its maintainance and inspection. CONSTITUTION:In a cable being laid on a sea bottom without being buried, the relationship (Wc/D)>98950.V<2> is satisfied, where D (m) represents its outer diameter and Wc (g/m) its underwater weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海底に埋設されること
なく敷設される海底ケーブル(原油などを輸送する可撓
性の海底流体輸送管を含む)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submarine cable (including a flexible submarine fluid transport pipe for transporting crude oil) which is laid without being buried in the seabed.

【0002】[0002]

【従来の技術】海底ケーブルは海底に埋設して敷設する
ことがケーブル保護の面で望ましい。しかし海底の状況
は様々であり、場所によってはケーブルを埋設できない
海底もある。このような場所に敷設された海底ケーブル
は潮流の影響を受け、潮流が激しい場合にはケーブルが
移動することになる。
2. Description of the Related Art It is desirable that a submarine cable is buried and laid under the seabed in terms of cable protection. However, the conditions of the seabed vary, and depending on the location, there are seabeds where the cable cannot be buried. The submarine cable laid in such a place is affected by the tidal current, and when the tidal current is strong, the cable moves.

【0003】[0003]

【発明が解決しようとする課題】潮流によってケーブル
が移動すると、ケーブルに無理な力が加わってケーブル
が損傷したり、機能低下をおこしたりすることがあり、
また保守点検のための敷設位置の確認も困難になる。
When the cable moves due to the tidal current, an unreasonable force may be applied to the cable and the cable may be damaged or its function may deteriorate.
In addition, it becomes difficult to confirm the installation position for maintenance and inspection.

【0004】本発明の目的は、上記のような問題点に鑑
み、海底に埋設することなく敷設された場合でも、潮流
によって移動することのない抗潮流性海底ケーブルを提
供することにある。
In view of the above problems, it is an object of the present invention to provide an anti-tide current submarine cable that does not move due to tidal current even when it is laid without being buried in the seabed.

【0005】[0005]

【課題を解決するための手段】この目的を達成する本発
明の抗潮流性海底ケーブルは、その外径をD(m)、水
中重量をWc (g/m)とし、敷設場所の潮流の速度を
V(m/秒)としたとき、(Wc /D)> 98950・V2
なる関係を有することを特徴とする。
The anti-tide submarine cable of the present invention which achieves this object has an outer diameter of D (m), an underwater weight of Wc (g / m), and a velocity of tidal current at a laying place. Is defined as V (m / sec), (Wc / D)> 98950 · V 2
It is characterized by having the following relationship.

【0006】[0006]

【作用】このようにすると海底に埋設することなく敷設
しても潮流によって移動することのない海底ケーブルが
得られる。以下、その理由を説明する。
By doing so, it is possible to obtain a submarine cable that does not move due to the tidal current even if it is laid without being buried in the seabed. The reason will be described below.

【0007】図1のようにケーブル1が海底2に置かれ
ているとき、ケーブルの見掛けの重量Wa は、ケーブル
の水中重量Wc から、潮流によるz方向の流体力Zを差
し引いた値となる。
When the cable 1 is placed on the seabed 2 as shown in FIG. 1, the apparent weight Wa of the cable is a value obtained by subtracting the fluid force Z in the z direction due to the tidal current from the underwater weight Wc of the cable.

【0008】[0008]

【数1】Wa =Wc −Z## EQU1 ## Wa = Wc-Z

【0009】また潮流によりケーブルが受けるx方向の
力Fr は、海底との摩擦力μWa とx方向の流体力Xの
差で表される。
The force Fr applied to the cable in the x direction by the tidal current is represented by the difference between the frictional force μWa with the seabed and the fluid force X in the x direction.

【0010】[0010]

【数2】Fr =μWa −X## EQU2 ## Fr = μWa-X

【0011】ここでμは海底面の摩擦係数で、一般に
0.3〜0.7 の範囲にあるとされている(砂 0.5〜0.7 、
砂利0.5 )が、ここでは中間値をとって0.5 とする。
Where μ is the coefficient of friction on the sea floor, and is generally
It is said to be in the range of 0.3 to 0.7 (sand 0.5 to 0.7,
Gravel 0.5), but here the intermediate value is taken as 0.5.

【0012】ケーブルが受けるx方向の力Fr が0のと
きケーブルは動きはじめる。つまりこのときの潮流の速
度が臨界流速となる。数式1および数式2より次式が得
られる。
When the force Fr applied to the cable in the x direction is 0, the cable starts to move. In other words, the velocity of the tidal current at this time becomes the critical velocity. The following equation is obtained from the equations 1 and 2.

【0013】[0013]

【数3】 Fr =μ(Wc −Z)−X=μWc −μZ−X=0 ∴ μWc =μZ+X ∴ Wc =Z+(1/μ)X## EQU3 ## Fr = μ (Wc-Z) -X = μWc-μZ-X = 0 ∴μWc = μZ + X ∴Wc = Z + (1 / μ) X

【0014】一方、ケーブルに働く抗力係数Cx および
揚力係数Cz は次のように定義される。
On the other hand, the drag coefficient Cx and lift coefficient Cz acting on the cable are defined as follows.

【0015】[0015]

【数4】Cx =X/(ρDV2 /2) ただし ρ:海水の質量密度(g/m3 ) (海水の塩分濃度 3.5%、温度10℃のとき104.71×1
03 ) D:ケーブル外径(m) V:潮流の流速(m/秒)
Equation 4] Cx = X / (ρDV 2/ 2) but [rho: seawater mass density (g / m 3) (salinity 3.5% seawater, 104.71 × 1 at a temperature 10 ° C.
0 3 ) D: Cable outer diameter (m) V: Tidal current (m / sec)

【0016】[0016]

【数5】Cz =Z/(ρDV2 /2)[Number 5] Cz = Z / (ρDV 2/ 2)

【0017】数式3に数式4および数式5を代入して次
式が得られる。
By substituting the equations 4 and 5 into the equation 3, the following equation is obtained.

【0018】[0018]

【数6】 Wc =(Cz ρDV2 /2)+(1/μ)(Cx ρDV2 /2) =(ρDV2 /2){Cz +(1/μ)Cx }[6] Wc = (Cz ρDV 2/2 ) + (1 / μ) (Cx ρDV 2/2) = (ρDV 2/2) {Cz + (1 / μ) Cx}

【0019】この式より次式が得られる。From this equation, the following equation is obtained.

【0020】[0020]

【数7】 (Wc /D)=(ρV2 /2){Cz +(1/μ)Cx }Equation 7] (Wc / D) = (ρV 2/2) {Cz + (1 / μ) Cx}

【0021】この式より臨界流速はケーブルの外径Dと
水中重量Wc の比に関係することがわかる。
From this equation, it is understood that the critical flow velocity is related to the ratio of the outer diameter D of the cable to the underwater weight Wc.

【0022】次に、ケーブルの抗力係数Cx および揚力
係数Cz を求めるべく、ケーブル模型を回流水槽の底部
に設置し、単位長さ当たりに働くx方向の流体力X(k
g)と、z方向の流体力Z(kg)を、レイノルズ数Re
を変えて測定した。レイノルズ数Re は次式
Next, in order to obtain the drag coefficient Cx and the lift coefficient Cz of the cable, a cable model is installed at the bottom of the circulating water tank, and a fluid force X (k) acting in a unit length in the x direction is applied.
g) and the fluid force Z (kg) in the z direction, Reynolds number Re
Was changed and measured. Reynolds number Re is

【0023】[0023]

【数8】Re =DV/ν ただし D:ケーブル模型外径(m) V:水槽内の水の流速(m/秒) ν:水の動粘性係数(m2 /秒) (海水の塩分濃度 3.5%、温度10℃のとき1.35383 ×10
-6
[Equation 8] Re = DV / ν where D: outer diameter of cable model (m) V: flow velocity of water in tank (m / sec) ν: coefficient of kinematic viscosity of water (m 2 / sec) (salt concentration of seawater When the temperature is 3.5% and the temperature is 10 ° C, 1.35383 × 10
-6 )

【0024】で表されるので、ケーブル模型は外径50m
m、76mm、100 mmの3種類を用意し、各々について流速
を約 0.4〜1.8 (m/秒)の範囲で変化させて測定を行
った。この結果から数式4および数式5によりCx およ
びCz を求めた。
Since the cable model is represented by
Three types of m, 76 mm, and 100 mm were prepared, and the measurement was performed by changing the flow velocity in the range of about 0.4 to 1.8 (m / sec) for each. From this result, Cx and Cz were calculated by the formulas 4 and 5.

【0025】ただし流速Vは水槽底部付近では底部に近
づくほど低くなるので、底部からケーブル外径に応じた
高さまでの平均流速Vavを求め、(Vav/V)の値でC
x およびCz の計算値を補正した。(Vav/V)の値は
表1のとおりであった。
However, since the flow velocity V becomes lower near the bottom of the water tank as it approaches the bottom, the average flow velocity Vav from the bottom to a height corresponding to the outer diameter of the cable is obtained, and C is the value of (Vav / V).
The calculated values of x and Cz were corrected. The value of (Vav / V) was as shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】以上の測定、計算の結果から得られたレイ
ノルズ数Re と抗力係数Cx の関係を図2に、レイノル
ズ数Re と揚力係数Cz の関係を図3に示す。
The relationship between the Reynolds number Re and the drag coefficient Cx obtained from the above measurement and calculation results is shown in FIG. 2, and the relationship between the Reynolds number Re and the lift coefficient Cz is shown in FIG.

【0028】次に、図2および図3よりCx およびCz
の値を読み出して数式7内の、{Cz +(1/μ)Cx
}の値を計算すると表2のようになる。なお実際のケ
ーブル外径と潮流速度を考えると、レイノルズ数Re は
0.2×105 〜 1.0×105の範囲で十分であるので、レイ
ノルズ数Re はその範囲として計算した。
Next, referring to FIGS. 2 and 3, Cx and Cz
Then, the value of {Cz + (1 / μ) Cx in Equation 7 is read out.
} Is calculated as shown in Table 2. Considering the actual cable outer diameter and power flow velocity, the Reynolds number Re is
Since the range of 0.2 × 10 5 to 1.0 × 10 5 is sufficient, the Reynolds number Re was calculated as that range.

【0029】[0029]

【表2】 [Table 2]

【0030】表2によれば{Cz +(1/μ)Cx }の
値は1.78〜1.89であり、レイノルズ数Re との相関は実
質的にないといえるので、この値としては最大値の1.89
を使用することとする。この値を数式7に代入すると、
次式が得られる。
According to Table 2, the value of {Cz + (1 / μ) Cx} is 1.78 to 1.89, and it can be said that there is substantially no correlation with the Reynolds number Re. Therefore, this value is 1.89 which is the maximum value.
Will be used. Substituting this value into Equation 7,
The following equation is obtained.

【0031】[0031]

【数9】(Wc /D)> 98950・V2 [Equation 9] (Wc / D)> 98950 ・ V 2

【0032】この式より、ケーブル敷設場所の潮流速度
Vがわかれば、そこに敷設するケーブルは、その外径と
水中重量の比(Wc /D)が 98950・V2 より大きくな
るように構成することにより、潮流による移動を防止で
きる、ということになる。数式9をグラフに表すと図4
のようになる。図4中の斜線の領域が潮流の影響を受け
ないケーブルの外径と水中重量の比(Wc /D)であ
る。
From this equation, if the tidal current velocity V at the cable laying location is known, the cable laid there is constructed so that the ratio of its outer diameter to the underwater weight (Wc / D) is larger than 98950 · V 2. This means that movement due to tidal current can be prevented. Mathematical Expression 9 is shown in a graph in FIG.
become that way. The shaded area in FIG. 4 is the ratio (Wc / D) of the outer diameter of the cable to the underwater weight that is not affected by the tidal current.

【0033】[0033]

【実施例】潮流速度2ノット(1ノット=0.5144m/
秒)の海底にケーブルを敷設することを考える。潮流速
度2×0.5144m/秒のとき数式9の右辺の値は104.7 ×
103 となり、この値より(Wc /D)の値が大きくなる
ようにケーブルを設計すれば潮流による移動をなくすこ
とができる。
[Example] Tidal velocity 2 knots (1 knot = 0.5144 m /
Consider laying a cable on the seabed for a second. When the tidal current velocity is 2 × 0.5144 m / sec, the value on the right side of Equation 9 is 104.7 ×
10 becomes 3, it is possible to eliminate the movement by trends by designing the cable so that the value of than this value (Wc / D) increases.

【0034】このためケーブル設計に際しては、伝送信
号線群を集合したケーブルコア上に、重量を大きくする
ため5mm厚の鉛シースを施し(目付け6640g/m)、さ
らに内部シース、鉄線鎧装、外部シースを施して、外径
を72mmとした。このケーブルの空中重量は13900 g/
m、水中重量は9685g/mとなった。その結果、このケ
ーブルの外径と水中重量との比(Wc /D)は134.5 ×
103 となり、数式9を満足するものである。このように
して潮流の影響を受けないケーブルを得ることができ
る。
For this reason, when designing the cable, a 5 mm thick lead sheath (weight per unit area 6640 g / m) is applied to the cable core, which is a group of transmission signal lines, in order to increase the weight. A sheath was applied to make the outer diameter 72 mm. The aerial weight of this cable is 13900 g /
m, and the weight in water was 9685 g / m. As a result, the ratio of the outer diameter of this cable to the underwater weight (Wc / D) is 134.5 ×
This is 10 3 , which satisfies the formula 9. In this way, a cable that is not affected by tidal current can be obtained.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、海
底に埋設することなく敷設しても、潮流によって移動す
ることのない抗潮流性海底ケーブルを得ることができ、
海底ケーブルの信頼性を高め、保守点検を容易にするの
に顕著な効果がある。
As described above, according to the present invention, it is possible to obtain an anti-tide current submarine cable that does not move due to tidal current even if it is laid without being buried in the seabed.
It has a remarkable effect on enhancing the reliability of the submarine cable and facilitating maintenance and inspection.

【図面の簡単な説明】[Brief description of drawings]

【図1】 海底ケーブルと潮流の関係を示す説明図。FIG. 1 is an explanatory diagram showing the relationship between a submarine cable and tidal current.

【図2】 ケーブル模型を回流水槽に設置したときのレ
イノルズ数Re と抗力係数Cx との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between Reynolds number Re and drag coefficient Cx when a cable model is installed in a circulating water tank.

【図3】 ケーブル模型を回流水槽に設置したときのレ
イノルズ数Re と揚力係数Cz との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between Reynolds number Re and lift coefficient Cz when a cable model is installed in a circulating water tank.

【図4】 潮流に影響されない海底ケーブルの外径と水
中重量の比(斜線領域)を示すグラフ。
FIG. 4 is a graph showing the ratio of the outer diameter of a submarine cable that is not affected by tidal current to the underwater weight (hatched area).

【符号の説明】[Explanation of symbols]

1:海底ケーブル 2:海底 1: Undersea cable 2: Undersea

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】海底に埋設されることなく敷設されるケー
ブルであって、その外径をD(m)、水中重量をWc
(g/m)とし、敷設場所の潮流の速度をV(m/秒)
としたとき、(Wc /D)> 98950・V2 なる関係にあ
ることを特徴とする抗潮流性海底ケーブル。
Claim: What is claimed is: 1. A cable that is laid without being buried in the seabed, the outer diameter of which is D (m) and the weight of water is Wc
(G / m), and the velocity of the tidal current at the installation site is V (m / sec)
Then, the anti-current submarine cable is characterized in that (Wc / D)> 98950 · V 2 .
JP33290891A 1991-11-22 1991-11-22 Tidal current resistive submarine cable Pending JPH05144327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33290891A JPH05144327A (en) 1991-11-22 1991-11-22 Tidal current resistive submarine cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33290891A JPH05144327A (en) 1991-11-22 1991-11-22 Tidal current resistive submarine cable

Publications (1)

Publication Number Publication Date
JPH05144327A true JPH05144327A (en) 1993-06-11

Family

ID=18260151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33290891A Pending JPH05144327A (en) 1991-11-22 1991-11-22 Tidal current resistive submarine cable

Country Status (1)

Country Link
JP (1) JPH05144327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2439101A (en) * 2006-06-13 2007-12-19 Westerngeco Seismic Holdings Stabilizing seabed seismic cables when exposed to currents
US7590028B2 (en) 2005-05-12 2009-09-15 Westerngeco L.L.C. Seabed seismic cables and methods of stabilizing same when deployed on a seabed
GB2526702A (en) * 2014-05-28 2015-12-02 Nexans Subsea umbilical

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590028B2 (en) 2005-05-12 2009-09-15 Westerngeco L.L.C. Seabed seismic cables and methods of stabilizing same when deployed on a seabed
GB2439101A (en) * 2006-06-13 2007-12-19 Westerngeco Seismic Holdings Stabilizing seabed seismic cables when exposed to currents
GB2439101B (en) * 2006-06-13 2010-12-29 Westerngeco Seismic Holdings Seabed seismic cables and methods of stabilizing same when deployed on a seabed
GB2526702A (en) * 2014-05-28 2015-12-02 Nexans Subsea umbilical
US10864550B2 (en) 2014-05-28 2020-12-15 Nexans Subsea umbilical
GB2526702B (en) * 2014-05-28 2021-03-24 Nexans Subsea umbilical

Similar Documents

Publication Publication Date Title
US3355899A (en) Offshore operations
Lau et al. Slowly varying Stokes waves and submarine longshore bars
JPH05144327A (en) Tidal current resistive submarine cable
Pattiaratchi et al. Sand transport under the combined influence of waves and tidal currents: an assessment of available formulae
Schumann The bottom boundary layer inshore of the Agulhas Current off Natal in August 1975
Bea et al. Design of pipelines in mudslide areas
Hay et al. Submarine channels in rupert inlet, British Columbia: I. Morphology
Matishov et al. Ecological and geographical analysis of the sea coast of the Rostov region
Dengler Jr et al. Turbidity currents on steep slopes: application of an avalanche-type numeric model for ocean thermal energy conversion design
Griffiths et al. Exploring the bifurcation between sedimentation versus scour onset below pipelines in unidirectional currents
Ward et al. Sedimentary processes and the Pandora wreck, Great Barrier Reef, Australia
Nath et al. Wave forces on pipes near the ocean bottom
Vasilescu et al. INSTALLATION OF SUBMARINE CABLES IN THE OFFSHORE WIND INDUSTRY AND THEIR IMPACT ON THE MARINE ENVIRONMENT.
GB2221276A (en) Towing and installing prefabricated submarine pipelines
Gokce et al. Self burial and stimulated self burial of pipelines by waves
Grace Near-bottom water motion under ocean waves
Tanaka et al. An estimation method of gorge section at a small river mouth
Wright Long term changes to the positions and heights of sandwaves in the southern North Sea
Niedoroda et al. Subsea trench infill
Mousselli Pipe stresses at the seabed during installation and trenching operations
Langhorne The Stability of the Top Metre of the Sea Bed—Its Importance to Engineering and Navigational Projects
Pu et al. Self-burial and potential hazards of a submarine pipeline in the sand wave area in the South China Sea
Lewis et al. The loop current experience-ewing bank 871
Niedoroda et al. GGG 0000 SubSea Trench Infi||
Niedoroda et al. Measured and computed coastal ocean bedload transport