JPH05142597A - Organic nonlinear optical thin film and production thereof - Google Patents

Organic nonlinear optical thin film and production thereof

Info

Publication number
JPH05142597A
JPH05142597A JP3301933A JP30193391A JPH05142597A JP H05142597 A JPH05142597 A JP H05142597A JP 3301933 A JP3301933 A JP 3301933A JP 30193391 A JP30193391 A JP 30193391A JP H05142597 A JPH05142597 A JP H05142597A
Authority
JP
Japan
Prior art keywords
thin film
vapor deposition
nonlinear optical
compds
fluorene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3301933A
Other languages
Japanese (ja)
Inventor
Toru Tanaka
融 田中
Toru Maruno
透 丸野
Takayoshi Hayashi
孝好 林
Akira Yamashita
山下  明
Hirohisa Kanbara
浩久 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3301933A priority Critical patent/JPH05142597A/en
Publication of JPH05142597A publication Critical patent/JPH05142597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the org. nonlinear optical thin film which is excellent in both of a nonlinear optical characteristic and laser resistance by using sapphire as a substrate for vapor deposition and depositing fluorene compds. by evaporation on the sapphire substrate, thereby forming thin films CONSTITUTION:The sapphire is used as the substrate for vapor deposition and the fluorene compds. are deposited as an optical medium having a nonlinear refractive index by evaporation alone or in combination with other compds. on the sapphire substrate to form the thin film. A thin film of CaF2 or the like is deposited by evaporation as a 2nd layer on the vapor deposited thin film of the fluorene compd. alone or the mixture composed of the fluorene compd. and the other compds. The structure of the fluorene compds. of C60 and C70 are evidently extremely stable and the vapor deposition operation is possible without thermal decomposition even at a high temp. of 320 deg.C from the results of the direct ionization mass analysis of the mixture composed of the C60 and C70 fluorenes at 320 deg.C. Then, the thin films of the fluorene compds. having the high laser resistance characteristic and the large cubic nonlinear constant are produced by the vapor deposition method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機非線形光学薄膜お
よびその作製方法に関する。
FIELD OF THE INVENTION The present invention relates to an organic nonlinear optical thin film and a method for producing the same.

【0002】[0002]

【従来の技術】オプトエレクトロニクスの分野では三次
の有機非線形光学材料の開発が盛んに行われている。こ
れらの材料のうち、ポリジアセチレン誘導体は最も大き
な三次非線形光学特性を示す材料の一つであり、χ(3)
が10-10 esuを上回る薄膜が得られている(T.K
anetake,K,Ishikawa,T.Hase
gawa,T.Koda,K.Takeda,M.Ha
segawa,K.Kubodera and H.K
obayashi,Appl.Phys.Lett.,
54,2287(1989))。
2. Description of the Related Art In the field of optoelectronics, third-order organic nonlinear optical materials have been actively developed. Of these materials, the polydiacetylene derivative is one of the materials that exhibits the largest third-order nonlinear optical property, and χ (3)
A thin film with a value of more than 10 -10 esu has been obtained (TK
anakete, K, Ishikawa, T .; Hase
Gawa, T .; Koda, K .; Takeda, M .; Ha
segawa, K .; Kubodera and H.M. K
obayashi, Appl. Phys. Lett. ,
54 , 2287 (1989)).

【0003】三次非線形光学材料のデバイス化にあたっ
ては、薄膜作製技術が必要となる。一般に、三次非線形
光学材料の薄膜作製は、ラングミュア−ブロジェット
(LB)膜法,キャスト法,スピンキャスト法,蒸着法
等で行われる。LB膜法は分子内に長鎖置換基を導入す
る必要があり、化合物の合成法から検討を開始する必要
がある。また、置換基導入により非線形性が相対的に低
下することや、成膜に長時間を要するという欠点があ
る。キャスト法やスピンキャスト法では、溶媒として非
線形光学材料が化学反応や分解反応を起こさずに溶解す
る溶媒を使用する必要があるため、適用が制限される。
また、成膜時に残留した溶媒が徐々に揮発してボイドに
なりやすいという欠点があった。
A thin film manufacturing technique is required for making a third-order nonlinear optical material into a device. Generally, a thin film of a third-order nonlinear optical material is produced by a Langmuir-Blodgett (LB) film method, a casting method, a spin casting method, an evaporation method, or the like. In the LB film method, it is necessary to introduce a long chain substituent into the molecule, and it is necessary to start the study from the method of compound synthesis. Further, there are disadvantages that the introduction of substituents causes a relative decrease in non-linearity and that film formation takes a long time. The casting method and the spin casting method are limited in application because it is necessary to use a solvent in which the nonlinear optical material dissolves without causing a chemical reaction or a decomposition reaction as a solvent.
In addition, the solvent remaining during film formation gradually volatilizes and tends to form voids.

【0004】蒸着法は、化合物をそのまま蒸発または昇
華させて成膜するため、非線形光学材料の特性を最大限
に活用できる。ポリジアセチレン系化合物の薄膜を蒸着
法で作製するためには、ジアセチレンモノマーを蒸着法
で成膜後、光または熱で重合させる必要がある(T.K
anetake,K.Ishikawa,T.Kod
a,Y.Tokura and K.Takeda,A
ppl.Phys.Lett.,51,1957(19
87))。この場合、モノマー蒸着中の分解を防止する
ため、蒸着作業を低温で行う必要があり、蒸着速度が2
00Å/時間程度と非常に小さいという欠点がある。ま
た、蒸着後に重合するため、膜質が変化しやすいこと、
膜厚が500nm以上になると重合に伴う多結晶化のた
め膜質が急激に低下するという欠点もあった。
In the vapor deposition method, the compound is evaporated or sublimated as it is to form a film, so that the characteristics of the nonlinear optical material can be utilized to the maximum extent. In order to form a thin film of a polydiacetylene compound by a vapor deposition method, it is necessary to polymerize the diacetylene monomer by light or heat after forming a film by the vapor deposition method (TK
antake, K .; Ishikawa, T .; Kod
a, Y. Tokuura and K.K. Takeda, A
ppl. Phys. Lett. , 51 , 1957 (19
87)). In this case, in order to prevent decomposition during vapor deposition of the monomer, it is necessary to perform the vapor deposition operation at a low temperature, and the vapor deposition rate is 2%.
It has a drawback that it is very small, about 00Å / hour. In addition, since it polymerizes after vapor deposition, the film quality is likely to change,
When the film thickness is 500 nm or more, there is also a drawback that the film quality is sharply deteriorated due to polycrystallization accompanying polymerization.

【0005】三次非線形光学材料のデバイス適用にあた
っては、膜厚が1μm程度以上の薄膜を作製する必要が
あるため、蒸着法で薄膜が作製可能で、かつ蒸着後の重
合反応等を行わずに高いχ(3) を有する薄膜が得られる
有機非線形光学薄膜作製方法の開発が望まれている。
In applying a device of the third-order nonlinear optical material, it is necessary to form a thin film having a film thickness of about 1 μm or more. Therefore, it is possible to form a thin film by a vapor deposition method and it is high without performing a polymerization reaction after vapor deposition. Development of a method for producing an organic nonlinear optical thin film that can obtain a thin film having χ (3) is desired.

【0006】最近、上記目的を達成するため、石英ガラ
ス基板上に蒸着したC60フラーレンの蒸着膜の非線形
光学特性が検討され、Nd:YAGレーザー1.06μ
mの波長について、χ(3) =2×10-10 esuが得ら
れている(H.Hoshi,N.Nakamura,
Y.Maruyama,T.Nakagawa,S.S
uzuki,H.Shiromaruand Y.Ac
hiba,Jpn.J.Appl.Phys.,30
L1397(1991))。この場合、第三高調波発生
(THG)の波長は355nmであり、C60薄膜の吸
収極大波長(350nm)とほぼ一致する共鳴領域での
測定値である。一般に、共鳴条件では非共鳴条件に比べ
て一桁以上も大きなχ(3) 値が観測されることが知られ
ていることから、前記測定値も非共鳴条件に比べて大き
くなっていることが予想される。また、共鳴条件では非
線形効果のメカニズムが吸収に起因するため、応答時間
が通常の電子分極に起因する非線形光学効果に比べて遅
くなることも予想される。部品適用時には0.8〜1.
0μm、1.3μmや1.55μm帯の広い波長範囲で
使用されるため、非線形光学薄膜は非共鳴条件でも大き
なχ(3) 値を有する必要がある。しかし、石英ガラス基
板上に蒸着したC60薄膜は、従来より一般的に測定さ
れている波長1.9μmのレーザー光照射により薄膜中
の分子が蒸発し、レーザー耐性に劣るという欠点があっ
た。また、χ(3) の測定が可能となるレーザ光強度が小
さく、かつ、微弱光でも徐々に蒸発するため測定値が経
時的に変化し、正確な測定が困難であるという欠点があ
った。このため、広い波長範囲でレーザー耐性に優れる
フラーレン薄膜の作製方法の提案が望まれていた。
Recently, in order to achieve the above object, the non-linear optical characteristics of a vapor-deposited film of C60 fullerene vapor-deposited on a quartz glass substrate have been studied, and an Nd: YAG laser 1.06 μm has been studied.
For the wavelength of m, χ (3) = 2 × 10 -10 esu is obtained (H. Hoshi, N. Nakamura,
Y. Maruyama, T .; Nakagawa, S .; S
uzuki, H .; Shiromarunu Y. Ac
hiba, Jpn. J. Appl. Phys. , 30 ,
L1397 (1991)). In this case, the wavelength of the third harmonic generation (THG) is 355 nm, which is a measured value in the resonance region substantially matching the absorption maximum wavelength (350 nm) of the C60 thin film. In general, it is known that a χ (3) value that is one digit or more larger than that in the non-resonance condition is observed under the resonance condition, and thus the measured value may be greater than that in the non-resonance condition. is expected. Further, under the resonance condition, the mechanism of the non-linear effect is caused by absorption, so that it is expected that the response time becomes slower than the non-linear optical effect caused by ordinary electronic polarization. 0.8 to 1.
Since it is used in a wide wavelength range of 0 μm, 1.3 μm and 1.55 μm band, the nonlinear optical thin film needs to have a large χ (3) value even under non-resonant conditions. However, the C60 thin film vapor-deposited on a quartz glass substrate has a drawback that molecules in the thin film evaporate due to irradiation of laser light having a wavelength of 1.9 μm, which is generally measured in the past, and the laser resistance is poor. Further, there is a drawback that the intensity of the laser light that enables the measurement of χ (3) is small, and that even the weak light is gradually evaporated, the measured value changes over time, making accurate measurement difficult. Therefore, it has been desired to propose a method for producing a fullerene thin film having excellent laser resistance in a wide wavelength range.

【0007】[0007]

【発明が解決しようとする課題】本発明は、蒸着法で、
耐レーザ特性を高めた、χ(3) の大きなフラーレン化合
物を使用した有機非線形光学薄膜およびその作製方法を
提供することを目的とする。
The present invention is a vapor deposition method,
It is an object of the present invention to provide an organic nonlinear optical thin film using a fullerene compound having a large χ (3) with improved laser resistance and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、フラーレン化合物を薄膜材料として
光非線形性と耐レーザ特性に優れる素子用材料を見出す
ため、薄膜作製方法について鋭意検討を行った結果、本
発明に達した。
In order to achieve the above object, the inventors of the present invention have been keenly aware of a thin film manufacturing method in order to find a device material having excellent optical nonlinearity and laser resistance using a fullerene compound as a thin film material. As a result of the examination, the present invention has been achieved.

【0009】本発明の有機非線形光学薄膜の作製方法
は、蒸着用基板としてサファイアを用い、非線形屈折率
を有する光学媒質としてフラーレン化合物を、単独で、
もしくは他の化合物と混合して該サファイア基板上に蒸
着して薄膜を形成することを特徴とする。
In the method for producing an organic nonlinear optical thin film of the present invention, sapphire is used as a substrate for vapor deposition, and a fullerene compound is used alone as an optical medium having a nonlinear refractive index.
Alternatively, it is characterized by forming a thin film by mixing with another compound and depositing it on the sapphire substrate.

【0010】また、本発明の有機非線形光学薄膜は、フ
ラーレン化合物単独、もしくは他の化合物との混合物の
蒸着薄膜と、該蒸着薄膜上に設けられた第2層とを備え
たことを特徴とする。
The organic nonlinear optical thin film of the present invention is characterized by comprising a vapor-deposited thin film of a fullerene compound alone or a mixture with another compound, and a second layer provided on the vapor-deposited thin film. ..

【0011】[0011]

【作用】C60、C70フラーレンの混合物の320℃
での直接イオン化質量分析の結果を図1に示す。m/
e:360、420付近にC60およびC70の二価イ
オンが、m/e:720、840付近に一価のイオンが
観測されている。それ以外にフラグメントイオンがほと
んど観測されないことから、C60、C70といったフ
レーレン化合物の構造が極めて安定であり、320℃の
高温でも熱分解なしに蒸着作業が可能なことが分かる。
本発明では、蒸着法により耐レーザー特性が高く、か
つ、χ(3) ≧10-10 esuの大きな三次非線形光学定
数を有するフラーレン化合物の薄膜が作製可能である。
また、フラーレン薄膜の耐レーザー特性と三次非線形光
学特性を向上させるためには、蒸着時の真空装置内圧力
を低くすること、蒸着基板に結晶性でかつ熱伝導率の高
いサファイアを使用すること、蒸着時の基板温度を高く
すること、作製したフラーレン薄膜上に第2の層を設け
ること等の効果がある。さらに、本発明の方法で作製し
たフラーレン化合物の薄膜は、その三次非線形効果が大
きいために非線形屈折率係数が大きな値となる。
Function: Mixture of C60 and C70 fullerene at 320 ℃
The result of the direct ionization mass spectrometry at is shown in FIG. m /
Divalent ions of C60 and C70 are observed around e: 360 and 420, and monovalent ions around m / e: 720 and 840. Since other fragment ions are hardly observed, it is clear that the structures of fullerene compounds such as C60 and C70 are extremely stable, and vapor deposition work can be performed even at a high temperature of 320 ° C. without thermal decomposition.
In the present invention, a thin film of a fullerene compound having high laser resistance and a large third-order nonlinear optical constant of χ (3) ≧ 10 −10 esu can be produced by the vapor deposition method.
Further, in order to improve the laser resistance property and the third-order nonlinear optical property of the fullerene thin film, the pressure inside the vacuum apparatus at the time of vapor deposition should be lowered, and sapphire, which is crystalline and has high thermal conductivity, should be used as the vapor deposition substrate. There are effects such as increasing the substrate temperature during vapor deposition, and providing a second layer on the prepared fullerene thin film. Further, the thin film of the fullerene compound produced by the method of the present invention has a large non-linear refractive index coefficient because of its large third-order nonlinear effect.

【0012】本発明の化合物と混合して使用する化合物
は、必ずしも光非線形性を示す必要はない。しかし、大
きな光非線形性を示す化合物を混合することによりさら
に光非線形性の向上が期待できる。このため、光非線形
性の大きな化合物をフラーレン化合物に混合することが
好ましい。一般に、大きな光非線形性を示す化合物は多
結晶性薄膜となる傾向があるため平滑な薄膜を得ること
が困難であるが、本発明で使用するフラーレン化合物と
混合することにより平滑性も向上させられるという利点
も有する。このような目的で混合する化合物には、例え
ば、フタロシアニン誘導体,ペリレンとテトラシアノキ
ノジメタン(TCNQ)のCT錯体等が挙げられる。
The compound used as a mixture with the compound of the present invention does not necessarily have to exhibit optical nonlinearity. However, it is expected that the optical non-linearity will be further improved by mixing the compound showing the large optical non-linearity. Therefore, it is preferable to mix a compound having large optical non-linearity with the fullerene compound. Generally, it is difficult to obtain a smooth thin film because a compound exhibiting large optical non-linearity tends to be a polycrystalline thin film, but the smoothness can be improved by mixing with a fullerene compound used in the present invention. It also has the advantage. Examples of the compound mixed for such a purpose include a phthalocyanine derivative, a CT complex of perylene and tetracyanoquinodimethane (TCNQ), and the like.

【0013】本発明のフラーレン化合物の蒸着薄膜の上
に作製する第2の層としては、例えば、SiO2 ,Si
O,TiO2 ,CaF2 ,MgO,MgF2 の蒸着膜
や、ポリイミド,ポリアミド,ナイロンのスピンコート
膜、および、シリコン樹脂,エポキシ樹脂,ウレタン樹
脂のキャスト膜等が挙げられる。
Examples of the second layer formed on the vapor-deposited thin film of the fullerene compound of the present invention include SiO 2 and Si.
Examples include vapor-deposited films of O, TiO 2 , CaF 2 , MgO, and MgF 2 , spin-coated films of polyimide, polyamide, and nylon, cast films of silicone resin, epoxy resin, urethane resin, and the like.

【0014】[0014]

【実施例】以下、実施例により本発明の特徴をさらに詳
細に説明する。
EXAMPLES The features of the present invention will be described below in more detail with reference to examples.

【0015】実施例1 真空蒸着装置1内に、フラーレンを加熱して気化させる
ためのK−セル2と、蒸着時の基板温度を制御するため
のヒーターブロック4とを設置する(図2)。K−セル
の石英るつぼ5にC60フラーレンを0.1g装入する
とともに、ヒーターブロック4に単結晶サファイア基板
6を密着させて固定し、装置内圧力を2×10-9tor
r以下の超高真空条件に保つ。K−セル内のフラーレン
を徐々に加熱して325℃に調整し、蒸着を開始して7
00ÅのC60フラーレン薄膜を得た。加熱により装置
内圧力は上昇したが、蒸着作業中は常に約8×10-9
orrの圧力を保っていた。
Example 1 A K-cell 2 for heating and vaporizing fullerene and a heater block 4 for controlling the substrate temperature during vapor deposition are installed in a vacuum vapor deposition apparatus 1 (FIG. 2). Into the quartz crucible 5 of the K-cell, 0.1 g of C60 fullerene was charged, and the single crystal sapphire substrate 6 was closely attached and fixed to the heater block 4, and the internal pressure of the apparatus was 2 × 10 -9 torr.
It is maintained in an ultrahigh vacuum condition of r or less. Gradually heat the fullerene in the K-cell to adjust the temperature to 325 ° C.
A C60 fullerene thin film of 00Å was obtained. Although the pressure inside the equipment increased due to heating, it was always about 8 × 10 -9 t during the evaporation work.
The pressure of orr was kept.

【0016】図3は、作製したC60フラーレン薄膜に
波長1.9μm、パルス幅6ns、繰り返し10Hz、
強度20MW/cm2 のレーザーパルス光を入射し、サ
ンプルをレーザー光の入射方向と垂直な軸の回りに回転
させながら、出てくるTHG光強度を測定した結果であ
る。このパターンはメーカフリンジと呼ばれているもの
である。効率が既知の材料(ここでは石英ガラスを用い
た)を同一の観測系で測定して、THGのピーク強度と
比較すれば、三次効果の効率を測定することができる
(測定原理については、固体物理、vol.24,N
o.11,903(1989)に詳しい)。図3からχ
(3) を求めたところ、χ(3) =1.4×10-10 esu
であった。
FIG. 3 shows the prepared C60 fullerene thin film having a wavelength of 1.9 μm, a pulse width of 6 ns, and a repetition rate of 10 Hz.
This is the result of measuring the THG light intensity that emerges while injecting a laser pulse light with an intensity of 20 MW / cm 2 and rotating the sample around an axis perpendicular to the incident direction of the laser light. This pattern is called maker fringe. The efficiency of the third-order effect can be measured by measuring a material of known efficiency (here, quartz glass was used) with the same observation system and comparing it with the peak intensity of THG (for the measurement principle, solid Physics, vol.24, N
o. 11, 903 (1989)). From Figure 3
When (3) was obtained, χ (3) = 1.4 × 10 -10 esu
Met.

【0017】比較のため、C60フラーレンのベンゼン
溶液を使って、単結晶サファイア基板上にC60フラー
レンのキャスト膜を形成したものを作製し、非線形光学
特性を測定した。蒸着膜の場合と全く同じ条件でキャス
ト膜を測定して得た結果はχ(3) =3.0×10-11
suであり、蒸着膜に比べて低いことが分かった。以上
より、蒸着法で、フラーレン分子の薄膜作製を行うこと
により、非線形光学特性を高めることができることが明
らかになった。
For comparison, a C60 fullerene cast film was formed on a single crystal sapphire substrate using a benzene solution of C60 fullerene, and the nonlinear optical characteristics were measured. The result obtained by measuring the cast film under exactly the same conditions as the vapor-deposited film is χ (3) = 3.0 × 10 -11 e
It was found to be su and lower than that of the vapor deposition film. From the above, it has been clarified that the nonlinear optical characteristics can be enhanced by forming a thin film of fullerene molecules by the vapor deposition method.

【0018】一方、C60フラーレンを石英基板上に蒸
着したものについても非線形光学特性を測定したとこ
ろ、サファイア基板の蒸着膜の測定時と同じポンプ光強
度20MW/cm2 では膜が消失した。ポンプ光強度を
低下して、10MW/cm2 で測定したところ、測定初
期でχ(3) =2.0×10-11 esuであり、その後薄
膜の消失により徐々に減少することが確認できた。
On the other hand, when the non-linear optical characteristics of the C60 fullerene vapor-deposited on a quartz substrate were measured, the film disappeared at the same pump light intensity of 20 MW / cm 2 as when the vapor-deposited film of the sapphire substrate was measured. When the pump light intensity was reduced and the measurement was performed at 10 MW / cm 2 , it was confirmed that χ (3) = 2.0 × 10 -11 esu in the initial measurement and then gradually decreased due to the disappearance of the thin film. ..

【0019】以上のように、基板に単結晶サファイアを
用いた蒸着によるフラーレンの薄膜作製法により、耐レ
ーザー特性を高め、χ(3) の大きな有機非線形光学薄膜
を得ることが可能になった。
As described above, the method for producing a fullerene thin film by vapor deposition using single crystal sapphire as the substrate has made it possible to enhance the laser resistance and obtain an organic nonlinear optical thin film having a large χ (3) .

【0020】実施例2 実施例1と同じ真空装置を使用し、蒸着時の装置内圧力
を変化させて、サファイア基板上、および石英基板上に
それぞれC60フラーレン薄膜を作製した。χ(3) の圧
力依存性を図4に示す。χ(3) の測定条件は実施例1と
同様で、ポンプ光強度は20MW/cm2 である。蒸着
時の装置内圧力を低くするとχ(3) が大きくなる傾向が
あること、およびサファイア基板上に低装置内圧力で蒸
着した場合に最も大きな値が得られることが明らかとな
った。石英基板上に蒸着した薄膜では、低装置内圧力の
条件で蒸着した場合にのみχ(3) が測定可能である。装
置内圧力が高くなると光照射により薄膜が消失すること
から、耐レーザー特性が大きく低下することがわかっ
た。
Example 2 A C60 fullerene thin film was produced on each of a sapphire substrate and a quartz substrate by using the same vacuum device as in Example 1 and changing the internal pressure during vapor deposition. Figure 4 shows the pressure dependence of χ (3) . The measurement conditions for χ (3) are the same as in Example 1, and the pump light intensity is 20 MW / cm 2 . It was clarified that χ (3) tends to increase when the internal pressure of the device during vapor deposition is lowered, and that the maximum value is obtained when the internal pressure of the device is low on the sapphire substrate. For a thin film deposited on a quartz substrate, χ (3) can be measured only when it is deposited under the condition of low equipment pressure. It was found that when the pressure inside the device was increased, the thin film disappeared due to light irradiation, and the laser resistance was greatly reduced.

【0021】実施例3 実施例2と同じ方法で作製したサファイア基板上、およ
び石英基板上のフラーレン薄膜の上に、K−セル3を使
用してCaF2 膜やMgF2 膜を真空蒸着でオーバーコ
ートした2層の薄膜を作製した。厚さ3μmのCaF2
膜をコートした試料について実施例2と同じポンプ光強
度20MW/cm2 のレーザーによるTHG法で非線形
光学特性を求めた結果を図5に示す。サファイア基板上
の薄膜は実施例2と同等のχ(3)を示すことから、オー
バーコートしたCaF2 薄膜がχ(3) 値に影響を与え
ず、かつ、C60フラーレンを保護する薄膜として使用
できることが明らかとなった。さらに、石英基板上の薄
膜では、C60を高い装置内圧力条件下で蒸着した場合
にもχ(3) が測定可能となったことから、CaF2 のオ
ーバーコート薄膜がレーザー光の照射による薄膜の消失
を防止し、耐レーザー特性の向上にも有効であることが
わかった。
Example 3 On a sapphire substrate prepared by the same method as in Example 2 and on a fullerene thin film on a quartz substrate, a CaF 2 film or a MgF 2 film was deposited by vacuum evaporation using a K-cell 3. A coated two layer thin film was prepared. CaF 2 with a thickness of 3 μm
The result of obtaining nonlinear optical properties for the samples coated with films in THG method by laser of Example 2 the same pump power and 20MW / cm 2 shown in FIG. Since the thin film on the sapphire substrate shows χ (3) equivalent to that of Example 2, the overcoated CaF 2 thin film does not affect the χ (3) value and can be used as a thin film for protecting C60 fullerene. Became clear. Furthermore, for thin films on a quartz substrate, χ (3) can be measured even when C60 is vapor-deposited under high equipment pressure conditions. Therefore, the CaF 2 overcoat thin film is a thin film formed by laser irradiation. It was found that it is effective in preventing the loss and improving the laser resistance.

【0022】以上の結果より、蒸着したフラーレン薄膜
の上に第2の層を設ける方法によって、C60フラーレ
ン薄膜を保護し、かつ、薄膜耐レーザー特性を高めた非
線形光学薄膜を得るのが可能なことが確認できた。ただ
し、大きなχ(3) 値を得るためには、蒸着時の装置内圧
力を低くする必要があることはいうまでもない。
From the above results, it is possible to obtain a nonlinear optical thin film which protects the C60 fullerene thin film and enhances the thin film laser resistance by the method of providing the second layer on the vapor deposited fullerene thin film. Was confirmed. However, in order to obtain a large χ (3) value, needless to say, it is necessary to lower the pressure inside the apparatus during vapor deposition.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
非線形光学特性とレーザー耐性の双方に優れる有機非線
形光学薄膜とその作製方法を提供することができる。
As described above, according to the present invention,
It is possible to provide an organic nonlinear optical thin film excellent in both nonlinear optical characteristics and laser resistance and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】C60,C70フラーレン混合物の直接イオン
化質量分析結果を示すチャートである。
FIG. 1 is a chart showing the results of direct ionization mass spectrometry of a mixture of C60 and C70 fullerenes.

【図2】有機非線形光学薄膜の作成方法において使用す
る真空蒸着装置の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a vacuum vapor deposition device used in a method for producing an organic nonlinear optical thin film.

【図3】C60フラーレン蒸着薄膜の三次非線形光学定
数測定時のメーカフリンジパターンを示すグラフであ
る。
FIG. 3 is a graph showing a maker fringe pattern when measuring a third-order nonlinear optical constant of a C60 fullerene vapor-deposited thin film.

【図4】サファイア基板上、および石英基板上にC60
フラーレン薄膜のみを蒸着により設けた場合の、蒸着時
の装置内圧力と薄膜のχ(3) の関係を示すグラフであ
る。
FIG. 4 C60 on a sapphire substrate and a quartz substrate.
6 is a graph showing the relationship between the apparatus internal pressure during vapor deposition and χ (3) of the thin film when only the fullerene thin film is provided by vapor deposition.

【図5】サファイア基板上、および石英基板上にC60
フラーレン薄膜を蒸着により設け、さらに真空蒸着法で
厚さ3μmのCaF2 膜を第2層として設けた場合の、
蒸着時の装置内圧力と薄膜のχ(3) の関係を示すグラフ
である。
FIG. 5 C60 on a sapphire substrate and a quartz substrate.
When a fullerene thin film is provided by vapor deposition and a CaF 2 film having a thickness of 3 μm is provided as the second layer by a vacuum vapor deposition method,
6 is a graph showing the relationship between the internal pressure of a device during vapor deposition and χ (3) of a thin film.

【符号の説明】[Explanation of symbols]

1 真空蒸着装置 2 フラーレン化合物を加熱して気化させるためのK−
セル 3 第2の層を蒸着するための物質を加熱して気化させ
るためのK−セル 4 蒸着時の基板温度を制御するためのヒーターブロッ
ク 5 K−セルの石英るつぼ 6 サファイア基板
1 vacuum deposition apparatus 2 K- for heating and vaporizing fullerene compounds
Cell 3 K-cell for heating and vaporizing the material for vapor deposition of the second layer 4 Heater block for controlling the substrate temperature during vapor deposition 5 K-cell quartz crucible 6 Sapphire substrate

フロントページの続き (72)発明者 山下 明 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 神原 浩久 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内Front page continuation (72) Akira Yamashita Akira Yamashita 1-16 Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph Telephone Co., Ltd. (72) Hirohisa Kambara 1-1-6 Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph Phone Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蒸着用基板としてサファイアを用い、非
線形屈折率を有する光学媒質としてフラーレン化合物
を、単独で、もしくは他の化合物と混合して該サファイ
ア基板上に蒸着して薄膜を形成することを特徴とする有
機非線形光学薄膜の作製方法。
1. A sapphire substrate is used as a vapor deposition substrate, and a fullerene compound is used as an optical medium having a non-linear refractive index, either alone or mixed with another compound, to form a thin film on the sapphire substrate by vapor deposition. A method for producing a characteristic organic nonlinear optical thin film.
【請求項2】 フラーレン化合物単独、もしくは他の化
合物との混合物の蒸着薄膜と、該蒸着薄膜上に設けられ
た第2層とを備えたことを特徴とする有機非線形光学薄
膜。
2. An organic nonlinear optical thin film comprising a vapor-deposited thin film of a fullerene compound alone or a mixture with another compound, and a second layer provided on the vapor-deposited thin film.
JP3301933A 1991-11-18 1991-11-18 Organic nonlinear optical thin film and production thereof Pending JPH05142597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3301933A JPH05142597A (en) 1991-11-18 1991-11-18 Organic nonlinear optical thin film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3301933A JPH05142597A (en) 1991-11-18 1991-11-18 Organic nonlinear optical thin film and production thereof

Publications (1)

Publication Number Publication Date
JPH05142597A true JPH05142597A (en) 1993-06-11

Family

ID=17902858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3301933A Pending JPH05142597A (en) 1991-11-18 1991-11-18 Organic nonlinear optical thin film and production thereof

Country Status (1)

Country Link
JP (1) JPH05142597A (en)

Similar Documents

Publication Publication Date Title
Girling et al. Observation of second-harmonic generation form Langmuir-Blodgett multilayers of a hemicyanine dye
Kanbara et al. Third‐order nonlinear optical properties of phthalocyanine and fullerene
Renge Solvent effects on the absorption maxima of fullerenes C60 and C70
McElvain et al. Linear and nonlinear optical spectra of polyazomethines fabricated by chemical vapor deposition
Nanai et al. Structures of vanadyl phthalocyanine in bilayers of vanadyl phthalocyanine and perylenetetracarboxylic dianhydride
JPH05142597A (en) Organic nonlinear optical thin film and production thereof
US5543945A (en) Method of driving an LCD employing combining two voltages which change polarity at different times in a frame
Kurihara et al. New symmetrical pi‐conjugated molecules having large third‐order optical nonlinearities
JP3105169B2 (en) Organic nonlinear optical material, organic conductive material and method of manufacturing the same
Vannikov et al. Generation of the second harmonic of laser radiation in noncentrosymmetrical polymeric systems
Stanculescu et al. Effect of the morphology on the optical and electrical properties of polycarbonate film doped with aniline derivatives monomers
JPH10333192A (en) Organic and inorganic compound superlattice type optical modulator
JPH0618908A (en) Liquid crystal display device
JP2565964B2 (en) Optical medium for nonlinear optical devices
JPH05113585A (en) Material for organic nonlinear optical element and organic nonlinear optical thin film using the same
JP2755272B2 (en) Organic film fabrication method
SunáPu A new chiral electron acceptor for nonlinear optical materials
JPH0736068A (en) Composition for active optical waveguide, production of active optical waveguide using the composition and active optical waveguide
JPH063714A (en) Nonlinear optical thin film element and its production
Wang et al. Linear and nonlinear optical properties in new cyanine dye Langmuir-Blodgett multilayers
JPH06186601A (en) Organic nonlinear optical material and its production
JPH05297427A (en) Material for organic nonlinear optical element and organic nonlinear optical thin film formed by using this material
JPH02197561A (en) Thin organic film and its production
Ray et al. Second harmonic generation in poled molecularly doped polymer films: Push-pull butadienes in poly (methyl methacrylate) and polystyrene
JP3273476B2 (en) Nonlinear optical device and nonlinear optical waveguide