JPH05142537A - Illuminating device for liquid crystal - Google Patents

Illuminating device for liquid crystal

Info

Publication number
JPH05142537A
JPH05142537A JP3303106A JP30310691A JPH05142537A JP H05142537 A JPH05142537 A JP H05142537A JP 3303106 A JP3303106 A JP 3303106A JP 30310691 A JP30310691 A JP 30310691A JP H05142537 A JPH05142537 A JP H05142537A
Authority
JP
Japan
Prior art keywords
light source
liquid crystal
plate
light
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3303106A
Other languages
Japanese (ja)
Inventor
Masao Obata
雅夫 小羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3303106A priority Critical patent/JPH05142537A/en
Publication of JPH05142537A publication Critical patent/JPH05142537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To make the luminance on a diffusion plate uniform by forming a reflecting plate for reflecting light from the tubular light source in a circular arc shape protruded in the rear, and placing the tubular light source in the vicinity of an extension of the circular arc of the reflecting plate. CONSTITUTION:The subject device is provided with a tubular light source 11 for illuminating a liquid crystal display plate 10 from the rear, and a reflecting plate 12 for reflecting an irradiating light to the rear fro the tubular light source 11 to the liquid crystal display plate 10 side, the tubular light source 11 is placed in the outside of an effective display area S of the liquid crystal display plate 10, and the reflecting plate 12 is curved satisfying a relation shown by an expression, wherein a distance between each reflecting point thereof and the tubular axis center of the tubular light source 11, and angle formed between a line connecting the tubular axis center of the light source 11 and each reflecting point and the vertical direction, constants are denoted as L1, theta1, and C1, C2, respectively. Therefore, light from the tubular light source 11 is limited in its directional angle by a reflecting film 13, all thereof is radiated to the reflecting plate 12, and the light is reflected forward by the reflecting plate 12, and radiated to the rear of the liquid crystal display plate 10. Accordingly illuminance of all the reflecting points on the reflecting plate 122 becomes equal, and luminance of the illumination surface in an effective display area becomes uniform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、受光型液晶表示装置の
背面照明(バツクライト)に用いられる照明装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lighting device used for back lighting of a light receiving type liquid crystal display device.

【0002】[0002]

【従来の技術】従来より、ラツプトツプ型パソコン等の
液晶表示装置の照明装置(バツクライトシステム)に
は、直下型方式と、導光板を用いたライトガイド方式と
に大別される。
2. Description of the Related Art Conventionally, illumination devices (backlight systems) for liquid crystal display devices such as laptop computers are roughly classified into a direct type and a light guide type using a light guide plate.

【0003】 (1)直下型の液晶用照明装置は、図5の如く、液晶表
示板1の直下に、複数個の冷陰極管や熱陰極管等の管状
光源2を配し、管状光源2から発して背面に向かう光を
反射させて前方へ導くための反射板3と、管状光源2と
液晶表示板1との間で照明面の輝度を面前体にわたつて
均一にさせるため光散乱効果を有する乳白色の合成樹脂
板からなる拡散板4とを設けたものである。
(1) In a direct type liquid crystal lighting device, as shown in FIG. 5, a tubular light source 2 such as a plurality of cold cathode tubes or hot cathode tubes is arranged directly below a liquid crystal display panel 1, and a tubular light source 2 is provided. A light scattering effect for uniformizing the brightness of the illumination surface between the tubular light source 2 and the liquid crystal display panel 1 across the front surface of the reflector 3 for reflecting the light emitted from the rear surface and guiding it to the front. And a diffusion plate 4 made of a milky white synthetic resin plate having

【0004】 (2)ライトガイド方式の液晶用照明装置は、図6,7
の如く、上記の反射板3および拡散板4に加えて、光透
過性に優れたポリメチルメタアクリレート(PMMA)
等のアクリル系樹脂からなる導光板5を設け、導光板5
の両側あるいは片側に管状光源2を配し、面全体の輝度
むらを低減して表示品位を向上するものである。なお、
図6中、6は管状光源2の導光板への指向角を高めるリ
フレクタ、図7中、7は管状光源2の導光板への指向角
を高める管状光源反射膜である。
(2) The light guide type liquid crystal lighting device is shown in FIGS.
As described above, in addition to the reflection plate 3 and the diffusion plate 4 described above, polymethylmethacrylate (PMMA) excellent in light transmittance is used.
The light guide plate 5 made of acrylic resin such as
The tubular light sources 2 are arranged on both sides or one side of the display to reduce the unevenness of brightness on the entire surface and improve the display quality. In addition,
In FIG. 6, 6 is a reflector for increasing the directivity angle of the tubular light source 2 to the light guide plate, and 7 in FIG. 7 is a tubular light source reflection film for increasing the directivity angle of the tubular light source 2 to the light guide plate.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来の直下
型の液晶用照明装置では、拡散板4上の輝度均一化を達
成するために、管状光源2から発する光を反射板3にて
反射させ、さらにアルミニウムのドツトパターンをPE
Tフイルムに印刷したライテイングカーテン(図示せ
ず)を使用することで、ある程度拡散板4上の面輝度を
均一化をさせることができる。しかし、管状光源2の筋
が拡散板4上で目視で確認され、管状光源2の直下でど
うしてもランプむらが発生し、照明装置の表示特性の低
下につながつていた。
However, in the conventional direct type liquid crystal lighting device, in order to achieve uniform brightness on the diffusion plate 4, the light emitted from the tubular light source 2 is reflected by the reflection plate 3. , PE with aluminum dot pattern
By using a writing curtain (not shown) printed on the T film, the surface brightness on the diffusion plate 4 can be made uniform to some extent. However, the streaks of the tubular light source 2 were visually confirmed on the diffuser plate 4, and the lamp unevenness inevitably occurred immediately below the tubular light source 2, leading to deterioration of display characteristics of the lighting device.

【0006】また、ライトガイド方式の液晶用照明装置
では、導光板5の下面や上面に光散乱用の白色系インク
等の印刷パターンを施すことによつて、拡散板4上の輝
度均一化を行つているが、印刷パターンのドツトのばら
つき等により拡散板4上の輝度均一化(例えば、均整度
90%)は高輝度バツクライトになるにつれて困難であ
つた。
In the light guide type liquid crystal illuminator, the brightness on the diffuser plate 4 is made uniform by applying a print pattern such as white ink for light scattering to the lower and upper surfaces of the light guide plate 5. However, it has been difficult to uniformize the brightness on the diffuser plate 4 (for example, the uniformity of 90%) due to variations in the dots of the printing pattern as the brightness of the backlight becomes higher.

【0007】以上のことから、拡散板上の輝度均一化を
望まれ、特に、複雑な構造をとらず、反射板の形状を工
夫することにより輝度を均一化する方式が望まれてい
た。
From the above, it has been desired to make the brightness uniform on the diffusion plate, and in particular, to make the brightness uniform by devising the shape of the reflector without taking a complicated structure.

【0008】本発明は、上記課題に鑑み、反射板の形状
のみで拡散板上の輝度均一化を実現し得る液晶用照明装
置の提供を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a liquid crystal lighting device which can realize uniform brightness on the diffuser plate only by the shape of the reflector plate.

【0009】[0009]

【課題を解決するための手段】本発明請求項1による課
題解決手段は、図1,2の如く、液晶表示板10を後方
から照明する管状光源11と、該管状光源11からの後
方への照射光を液晶表示板10側へ反射させる反射板1
2とを備え、前記管状光源11は液晶表示板10の有効
表示領域S外に配され、前記反射板12は、その各反射
点と管状光源11の管軸中心との距離をL1、光源11
の管軸中心および各反射点を結ぶ線と鉛直方向とのなす
角をθ1、定数をC,Cとして、次式の関係を有し
て湾曲されたものである。
As shown in FIGS. 1 and 2, the means for solving the problems according to the first aspect of the present invention is to provide a tubular light source 11 for illuminating the liquid crystal display panel 10 from the rear side, and a rear side from the tubular light source 11. Reflection plate 1 for reflecting irradiation light to the liquid crystal display plate 10 side
2, the tubular light source 11 is disposed outside the effective display area S of the liquid crystal display panel 10, and the reflector 12 has a distance L1 between each reflection point and the tube axis center of the tubular light source 11, and the light source 11
The tube axis center and the angle between the line and the vertical direction connecting the reflection point .theta.1, a constant as C 1, C 2, is one that is curved with a relation of the following equation.

【0010】L1=(1/C1)・cos(θ1+C2) 本発明請求項2による課題解決手段は、請求項1記載の
管状光源11の管内周面に、反射板12に向けて光の指
向角を制限する反射膜13が形成されたものである。
L1 = (1 / C 1 ) · cos (θ 1 + C 2 ). The means for solving the problems according to claim 2 of the present invention is to use the inner surface of the tubular light source 11 according to claim 1 so as to face the reflection plate 12. The reflection film 13 that limits the directivity angle of light is formed.

【0011】本発明請求項3による課題解決手段は、図
3,4の如く、液晶表示板10を後方から照明するもの
であつて、管状光源11と、管状光源11からの光を液
晶表示板10に導くよう液晶表示板10に平行に配され
る導光板21とを備え、前記管状光源11は導光板21
の光入射端面21aに配され、前記導光板21の後面
は、導光板21内で後方へ進む光を前方へ反射する反射
面21bとされた液晶用照明装置において、各照射光線
につき光入射端面21aの入射点から反射面21bの反
射点までの距離をL2、各照射光線の光入射端面での屈
折角を90°−θ2、定数をC,Cとすると、前記
導光板21の反射面21bは、次式の関係を有して湾曲
されたものである。
The means for solving the problem according to the third aspect of the present invention is to illuminate the liquid crystal display panel 10 from the rear side as shown in FIGS. 3 and 4, wherein the tubular light source 11 and the light from the tubular light source 11 are lit. A light guide plate 21 arranged in parallel with the liquid crystal display plate 10 so as to be guided to the light guide plate 10.
In the liquid crystal lighting device, the rear surface of the light guide plate 21 is a reflection surface 21b that reflects backward light that travels backward in the light guide plate 21. If the distance from the incident point of 21a to the reflecting point of the reflecting surface 21b is L2, the refraction angle of each irradiation ray at the light incident end face is 90 ° -θ2, and the constants are C 1 and C 2 , the reflection of the light guide plate 21 is described. The surface 21b is curved with the relationship of the following equation.

【0012】L2=(1/C1)・cos(θ2+C2) 本発明請求項4による課題解決手段は、請求項3記載の
管状光源11の管内周面に、導光板21の光入射端面2
1aに向けて光の指向角を制限する反射膜13が形成さ
れたものである。
L2 = (1 / C 1 ) · cos (θ 2 + C 2 ). The means for solving the problem according to claim 4 of the present invention is that the light incident on the light guide plate 21 is incident on the inner peripheral surface of the tubular light source 11 according to claim 3. End face 2
A reflection film 13 that limits the directivity angle of light toward 1a is formed.

【0013】[0013]

【作用】上記請求項1,2による課題解決手段におい
て、管状光源11からの光は、反射膜13にて指向角を
制限され、そのすべてが反射板12に照射される。そし
て、光は反射板12により前方へ反射され、液晶表示板
10の裏面に照射される。
In the means for solving the problems according to claims 1 and 2, the light from the tubular light source 11 has its directivity angle limited by the reflecting film 13, and all of the light is applied to the reflecting plate 12. Then, the light is reflected forward by the reflection plate 12 and applied to the back surface of the liquid crystal display plate 10.

【0014】このとき、反射板12上のすべての反射点
の照度は等しくなり、有効表示領域S内での照明面の輝
度が均一となる。
At this time, the illuminances of all the reflection points on the reflection plate 12 become equal, and the luminance of the illumination surface in the effective display area S becomes uniform.

【0015】請求項3,4による課題解決手段におい
て、管状光源11からの光は、反射膜13にて指向角を
制限され、そのすべてが導光板21の光入射端面21a
に照射される。そして、光は光入射端面21aから導光
板21の内部へ進入し、その後、反射面21bで前方へ
反射し、液晶表示板10の裏面に照射される。
In the means for solving the problems according to the third and fourth aspects, the directivity angle of the light from the tubular light source 11 is limited by the reflecting film 13, and all of the light is incident on the light incident end face 21a of the light guide plate 21.
Is irradiated. Then, the light enters the inside of the light guide plate 21 from the light incident end face 21a, is then reflected forward by the reflection face 21b, and is irradiated to the back face of the liquid crystal display plate 10.

【0016】このとき、反射面21b上のすべての反射
点の照度は等しくなり、有効表示領域S内での照明面の
輝度が均一となる。
At this time, the illuminances of all the reflection points on the reflection surface 21b become equal, and the brightness of the illumination surface in the effective display area S becomes uniform.

【0017】[0017]

【実施例】【Example】

(第一実施例)図1は本発明の第一実施例を示す液晶用
照明装置の断面図、図2は同じく光路を示す図である。
(First Embodiment) FIG. 1 is a sectional view of a liquid crystal lighting device showing a first embodiment of the present invention, and FIG. 2 is a view showing the same optical path.

【0018】図示の如く、本実施例の液晶表示装置は、
導光板を用いない直下型のものであり、液晶表示板10
を後方から照明する一対の管状光源11と、該管状光源
11からの光を液晶表示板10側へ反射させる反射板1
2とを備えたものである。
As shown in the figure, the liquid crystal display device of this embodiment is
The liquid crystal display panel 10 is a direct type that does not use a light guide plate.
Of a pair of tubular light sources 11 for illuminating the light from the rear, and a reflector 1 for reflecting the light from the tubular light sources 11 to the liquid crystal display panel 10 side.
2 and.

【0019】前記各管状光源11は線管状光源としての
直管型の冷陰極管や熱陰極管が使用されている。該管状
光源11の管内周面には、前記反射板12に向けて光の
指向角を制限する反射膜13が形成されてアパーチヤ管
とされている。該反射膜13は、既存の蛍光材を管内周
面の全領域に塗布した後、管軸中心から反射板12に指
向する領域を除去して形成される。該管状光源11は液
晶表示板10の有効表示領域S外に配される。
As each of the tubular light sources 11, a straight tube type cold cathode tube or a hot cathode tube as a linear tubular light source is used. On the inner peripheral surface of the tube of the tubular light source 11, a reflecting film 13 for limiting the directivity angle of light toward the reflecting plate 12 is formed to form an aperture tube. The reflection film 13 is formed by applying the existing fluorescent material to the entire area of the inner peripheral surface of the tube, and then removing the area directed to the reflection plate 12 from the center of the tube axis. The tubular light source 11 is arranged outside the effective display area S of the liquid crystal display panel 10.

【0020】前記反射板12は、反射率が約90%の金
属板等が使用される。該反射板12の断面形状は、すべ
ての反射点の照度を等しくするため、後方へ突出した円
弧状に湾曲されており、その各反射点と管状光源11の
管軸中心との距離をL1、各反射点と管状光源11の鉛
直方向とのなす角をθ1、任意の定数をC,Cとし
て、常に次式の関係を有している。
The reflection plate 12 is a metal plate having a reflectance of about 90%. The cross-sectional shape of the reflection plate 12 is curved in an arc shape protruding rearward in order to equalize the illuminance at all reflection points, and the distance between each reflection point and the tube axis center of the tubular light source 11 is L1, When the angle between each reflection point and the vertical direction of the tubular light source 11 is θ1, and arbitrary constants are C 1 and C 2 , the following relationship is always established.

【0021】L1=(1/C1)・cos(θ1+C2) …(1) ここで、(1)式の考え方を説明する。まず、すべての
反射点の照度を等しくするための条件として、次の
(a),(b)を設定する。
L1 = (1 / C 1 ) · cos (θ1 + C 2 ) ... (1) Here, the concept of the equation (1) will be described. First, the following (a) and (b) are set as conditions for equalizing the illuminance of all the reflection points.

【0022】(a)管状光源11が線管状であることか
ら、光束密度は管状光源からの距離Lに反比例する。
(A) Since the tubular light source 11 is linear, the luminous flux density is inversely proportional to the distance L from the tubular light source.

【0023】(b)反射板12の反射面の照度はその輝
度に比例することから、どの方向から見ても同一輝度を
示す面(以下、完全拡散面という)とする。
(B) Since the illuminance of the reflecting surface of the reflecting plate 12 is proportional to the brightness thereof, the surface having the same brightness when viewed from any direction (hereinafter referred to as a perfect diffusion surface) is used.

【0024】また、完全拡散面での反射において、光の
減衰がない理想形を想定するとして、上記(a),
(b)に基づいて完全拡散面の輝度が均一になるための
条件を求める。図2の如く、鉛直方向からθだけ位相す
る方向への光線G1について、管状光源11の管軸中心
から完全拡散面までの距離をL、光線G1と完全拡散面
とのなす角をαとすると、照度はcosα/Lに比例す
る。ここで、角度θから微小角度dθだけ位相して照射
される光線G2を考えると、管状光源11の管軸中心か
ら完全拡散面までの距離は(L+dL)となる。また、
光線G1の完全拡散面での反射点P1と光線G2との距
離はL・dθとなる。故に、(2)式のような微分方程
式が成立する。
Assuming an ideal shape in which light is not attenuated in reflection on a perfect diffusing surface, the above (a),
Based on (b), the conditions for making the brightness of the perfect diffusion surface uniform are obtained. As shown in FIG. 2, with respect to the light ray G1 in the direction that is in phase with the vertical direction by θ, the distance from the tube axis center of the tubular light source 11 to the perfect diffusion surface is L, and the angle between the light ray G1 and the perfect diffusion surface is α. , Illuminance is proportional to cos α / L. Here, considering the light beam G2 that is emitted with a phase angle of a small angle dθ from the angle θ, the distance from the tube axis center of the tubular light source 11 to the perfect diffusion surface is (L + dL). Also,
The distance between the reflection point P1 on the perfect diffusion surface of the light ray G1 and the light ray G2 is L · dθ. Therefore, a differential equation such as equation (2) holds.

【0025】[0025]

【数1】 [Equation 1]

【0026】(2)式を解くと、(1)式のようにな
る。これは、管状光源の位置を原点とし、原点を通る円
を表すものである。この解を実際に照明装置に適用した
例が図1に示すものである。このような構成とすれば、
完全拡散面としての反射板13は管状光源11からの距
離Lに依存することなく常に同一輝度となり、完全拡散
反射面13の傾きによらず均一な照度を得られることに
なる。よつて、前面方向から液晶表示面を見た場合、均
一輝度の面管状光源で照射した場合と同等の輝度の均一
な表示が達成できることになる。
When equation (2) is solved, equation (1) is obtained. This represents a circle passing through the origin with the position of the tubular light source as the origin. An example in which this solution is actually applied to a lighting device is shown in FIG. With this configuration,
The reflecting plate 13 as a perfect diffusing surface always has the same brightness regardless of the distance L from the tubular light source 11, and uniform illuminance can be obtained regardless of the inclination of the perfect diffusing reflecting surface 13. Therefore, when the liquid crystal display surface is viewed from the front side, it is possible to achieve uniform display with the same brightness as when illuminated with a planar tubular light source with uniform brightness.

【0027】(第二実施例)図3は本発明の第二実施例
を示す液晶用照明装置の断面図、図4は同じく導光板の
光入射端面およびその内部での光路を示す図である。
(Second Embodiment) FIG. 3 is a sectional view of a liquid crystal lighting device showing a second embodiment of the present invention, and FIG. 4 is a view showing a light incident end face of a light guide plate and an optical path inside the same. ..

【0028】図示の如く、本実施例の液晶用照明装置
は、液晶表示板10を後方から照明するものであつて、
管状光源11と、管状光源11からの光を液晶表示板1
0に導くよう液晶表示板10に平行に配される導光板2
1とを備えたものである。
As shown in the figure, the liquid crystal lighting device of this embodiment illuminates the liquid crystal display panel 10 from the rear side.
The tubular light source 11 and the liquid crystal display panel 1 that emits light from the tubular light source 11
The light guide plate 2 arranged in parallel with the liquid crystal display plate 10 so as to lead to 0.
1 and 1.

【0029】前記各管状光源11は、第一実施例と同様
のアパーチヤ型の線管状光源が用いられ、液晶表示板1
0の有効表示領域S外で、導光板21の光入射端面21
a付近に配される。該管状光源11の管内周面には、前
記導光板21の光入射端面21aに向けて光の指向角を
制限する第一実施例と同様の反射膜13が形成されてい
る。該反射膜13の開口角φ(アパーチヤ角)は、管状
光源11の半径をr、管状光源11と導光板12の光入
射端面21aとの距離をd、導光板21の厚さ寸法をt
として、(3)式のようになる。
As each of the tubular light sources 11, an aperture type linear tubular light source similar to that of the first embodiment is used, and the liquid crystal display panel 1 is used.
Outside the effective display area S of 0, the light incident end face 21 of the light guide plate 21
It is placed near a. On the inner peripheral surface of the tube of the tubular light source 11, there is formed a reflective film 13 that limits the directivity angle of light toward the light incident end surface 21 a of the light guide plate 21. The aperture angle φ (aperture angle) of the reflection film 13 is r, the distance between the tubular light source 11 and the light incident end face 21a of the light guide plate 12 is d, and the thickness of the light guide plate 21 is t.
Then, it becomes like the formula (3).

【0030】φ=tan-1{t/(r+d)} …(3) 前記導光板21は、透光性のアクリル樹脂等が使用され
ている。前記導光板21の後面は、導光板21内で後方
へ進む光を前方へ反射する反射面21bとされている。
該反射面21bの全反射点は、常に(4)式の関係を有
して湾曲されている。
Φ = tan −1 {t / (r + d)} (3) The light guide plate 21 is made of a translucent acrylic resin or the like. The rear surface of the light guide plate 21 is a reflection surface 21b that reflects light traveling backward in the light guide plate 21 to the front.
The total reflection point of the reflecting surface 21b is always curved with the relationship of the expression (4).

【0031】L2=(1/C1)・cos(θ2+C2) …(4) ただし、L2は各照射光線につき光入射端面21aの入
射点から反射面21bの反射点までの距離、C,C
は任意の定数を示しており、また各照射光線の光入射端
面での屈折角を90°−θ2としている。
L2 = (1 / C 1 ) · cos (θ2 + C 2 ) ... (4) where L2 is the distance from the incident point of the light incident end face 21a to the reflecting point of the reflecting surface 21b for each irradiation ray, C 1 , C 2
Indicates an arbitrary constant, and the refraction angle of each irradiation light ray at the light incident end face is 90 ° −θ2.

【0032】ここで、(4)式の考え方を説明する。管
状光源11の半径をr,管状光源11と導光板21の光
入射端面21aまでの距離をd,導光板21の厚さ寸法
をtとして、管状光源12の管軸中心を原点とした場合
の完全拡散面としての反射面12bの形状方程式を求め
ると次のようになる。
Here, the concept of equation (4) will be described. When the radius of the tubular light source 11 is r, the distance between the tubular light source 11 and the light incident end face 21a of the light guide plate 21 is d, and the thickness dimension of the light guide plate 21 is t, the center of the tube axis of the tubular light source 12 is taken as the origin. The shape equation of the reflecting surface 12b as the perfect diffusing surface is obtained as follows.

【0033】図4の如く、左側の管状光源11を原点に
選んで行つた。鉛直方向とθiのなす角度の光線の進路
は管状光源11の管軸中心を原点(0,0)として、導
光板21の光入射端面21aで衝突する位置、すなわち
導光板21中に光線が入射する位置の座標は、 (r+d,-(r+d)・tan(90°-θi)) となる。次に導光板21中に光線が入射する位置座標
で、導光板21の屈折率をn(例えば、PMMA樹脂で
はn=1.49)として、スネルの法則により、導光板
21中に光は屈折して入射し、入射角(90°−θi)
に対応する屈折角(すなわち90°−θ2)の間には次
式が成立する。
As shown in FIG. 4, the left tubular light source 11 was selected as the origin. The path of the light ray at an angle between the vertical direction and θi is the position where the light incident end surface 21a of the light guide plate 21 collides, that is, the light ray enters the light guide plate 21 with the tube axis center of the tubular light source 11 as the origin (0, 0). The position coordinates are (r + d,-(r + d) ・ tan (90 ° -θi)). Next, at the position coordinates where a light ray enters the light guide plate 21, the refractive index of the light guide plate 21 is n (for example, n = 1.49 in PMMA resin), and light is refracted in the light guide plate 21 according to Snell's law. Incident, then the incident angle (90 ° -θi)
The following formula is established between the refraction angles (that is, 90 ° −θ2) corresponding to

【0034】[0034]

【数2】 [Equation 2]

【0035】そこで、各θi(管状光源ランプから放射
される光)に対して各θ2(導光体中を進行する光)が
(5)式に従つて対応することになり、その場合の導光
板21中を進行する光の光路長がLとなる様に反射面2
1bの形状を設定すればよいことになる。(1)式から
類推して、
Therefore, each θ2 (light radiated from the tubular light source lamp) corresponds to each θ2 (light traveling in the light guide) according to the equation (5). The reflecting surface 2 so that the optical path length of the light traveling through the optical plate 21 becomes L
It is sufficient to set the shape of 1b. By analogy with equation (1),

【0036】[0036]

【数3】 [Equation 3]

【0037】となる。また、反射面の21bの各θ2に
対応する座標(x,y)は次式で求められることにな
る。
[0037] Further, the coordinates (x, y) corresponding to each θ2 on the reflecting surface 21b are obtained by the following equation.

【0038】[0038]

【数4】 [Equation 4]

【0039】(6),(7)の式を整理すると、When the equations (6) and (7) are arranged,

【0040】[0040]

【数5】 [Equation 5]

【0041】(8)式は各θi,θ2に対して座標 (r+d,-(r+d)tan[sin-1{n・sin(90°-θ2)}]) を中心として {1/C1・cos(θ2+C2)} を半径とする円弧を連ねた形状が完全拡散面となること
を示している(図4中の21b)。
The equation (8) is based on the coordinates (r + d,-(r + d) tan [sin -1 {n · sin (90 ° -θ2)}]) for each θi and θ2. It is shown that a shape in which circular arcs having a radius of / C 1 · cos (θ 2 + C 2 )} are connected forms a perfect diffusion surface (21b in FIG. 4).

【0042】図3中に示した右例の管状光源11を原点
として選んで行つても同様の式となる。
Even if the tubular light source 11 in the right example shown in FIG. 3 is selected as the origin, the same formula is obtained.

【0043】以上のように、第一、第二実施例とも、拡
散板、ライテイングカーテン、あるいはTiO,Ba
SO等の白色インク等の光散乱手段を用いなくても、
反射板12もしくは導光板21の反射面21bの形状の
みで液晶表示板10の照明面の輝度を均一化できる。
As described above, in both the first and second embodiments, the diffusion plate, the lighting curtain, TiO 2 , and Ba are used.
Even without using a light scattering means such as white ink such as SO 4 ,
The brightness of the illumination surface of the liquid crystal display plate 10 can be made uniform only by the shape of the reflection plate 12 or the reflection surface 21b of the light guide plate 21.

【0044】なお、本発明は、上記実施例に限定される
ものではなく、本発明の範囲内で上記実施例に多くの修
正および変更を加え得ることは勿論である。
The present invention is not limited to the above embodiments, and it goes without saying that many modifications and changes can be made to the above embodiments within the scope of the present invention.

【0045】例えば、上記各実施例では、管状光源11
は2本としたが、片側の側端縁辺に1本の管状光源を受
けた構成としても良い。また表示パネルは液晶表示パネ
ルの他、エレクトロクロミツク表示パネル、その他の表
示パネル、一般に広く利用できることが可能である。
For example, in the above embodiments, the tubular light source 11 is used.
However, it is also possible to adopt a configuration in which one tubular light source is received on the side edge of one side. In addition to the liquid crystal display panel, the display panel can be widely used in general, such as an electrochromic display panel and other display panels.

【0046】[0046]

【発明の効果】本発明請求項1,3によると、反射板あ
るいは導光板の反射面上のすべての反射点の照度が等し
くなり、拡散板やライテイングカーテン等の光散乱手段
を用いなくても、照明面の輝度の均一化を図り得る。し
たがつて、部品点数を削減でき、加工工程を簡素化で
き、量産に適したものとなる。
According to the first and third aspects of the present invention, the illuminances of all the reflection points on the reflection surface of the reflection plate or the light guide plate become equal, and the light scattering means such as the diffusion plate or the lighting curtain is not used. Therefore, the brightness of the illumination surface can be made uniform. Therefore, the number of parts can be reduced, the processing process can be simplified, and the device is suitable for mass production.

【0047】請求項2,4によると、管状光源の光を、
反射板もしくは導光板に有効に照射でき、照明面の輝度
を向上させ得るといつた優れた効果がある。
According to claims 2 and 4, the light from the tubular light source is
If the reflector or the light guide plate can be effectively irradiated and the brightness of the illumination surface can be improved, there is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第一実施例を示す液晶用照明装
置の断面図である。
FIG. 1 is a sectional view of a liquid crystal lighting device showing a first embodiment of the present invention.

【図2】図2は同じく光路を示す図である。FIG. 2 is a diagram similarly showing an optical path.

【図3】図3は本発明の第二実施例を示す液晶用照明装
置の断面図である。
FIG. 3 is a cross-sectional view of a liquid crystal lighting device showing a second embodiment of the present invention.

【図4】図4は同じく導光板の光入射端面およびその内
部での光路を示す図である。
FIG. 4 is a view showing a light incident end face of the light guide plate and an optical path inside the same.

【図5】図5は従来の直下型液晶用照明装置の断面図で
ある。
FIG. 5 is a cross-sectional view of a conventional direct type liquid crystal lighting device.

【図6】図6は従来のライトガイド方式の液晶用照明装
置の一例を示す断面図である。
FIG. 6 is a sectional view showing an example of a conventional light guide type liquid crystal illumination device.

【図7】図7は従来のライトガイド方式の液晶用照明装
置の他の例を示す断面図である。
FIG. 7 is a cross-sectional view showing another example of a conventional light guide type liquid crystal lighting device.

【符号の説明】[Explanation of symbols]

10 液晶表示板 11 管状光源 12 反射板 13 反射膜 21 導光板 21a 光入射端面 21b 反射面 10 Liquid Crystal Display Plate 11 Tubular Light Source 12 Reflector 13 Reflective Film 21 Light Guide Plate 21a Light Incident End Face 21b Reflective Surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液晶表示板を後方から照明する管状光源
と、該管状光源からの後方への照射光を液晶表示板側へ
反射させる反射板とを備え、前記管状光源は液晶表示板
の有効表示領域外に配され、前記反射板は、その各反射
点と管状光源の管軸中心との距離をL1、光源の管軸中
心および各反射点を結ぶ線と鉛直方向とのなす角をθ
1、定数をC,Cとして、次式の関係を有して湾曲
されたことを特徴とする液晶用照明装置。 L1=(1/C1)・cos(θ1+C2)
1. A tubular light source for illuminating a liquid crystal display plate from the rear, and a reflecting plate for reflecting backward light emitted from the tubular light source to the liquid crystal display plate side, the tubular light source being an effective liquid crystal display plate. The reflector is arranged outside the display area, and the distance between each reflection point and the tube axis center of the tubular light source is L1, and the angle between the line connecting the tube axis center of the light source and each reflection point and the vertical direction is θ.
1. A lighting device for a liquid crystal, wherein the lighting device for a liquid crystal has a relationship of the following equation, where C 1 and C 2 are constants. L1 = (1 / C 1 ) ・ cos (θ1 + C 2 )
【請求項2】 請求項1記載の管状光源の管内周面に、
反射板に向けて光の指向角を制限する反射膜が形成され
たことを特徴とする液晶用照明装置。
2. The inner peripheral surface of the tube of the tubular light source according to claim 1,
An illumination device for liquid crystal, comprising a reflective film formed on the reflective plate for limiting a directivity angle of light.
【請求項3】 本発明請求項3による課題解決手段は、
液晶表示板を後方から照明するものであつて、管状光源
と、管状光源からの光を液晶表示板に導くよう液晶表示
板に平行に配される導光板とを備え、前記管状光源は導
光板の光入射端面に配され、前記導光板の後面は、導光
板内で後方へ進む光を前方へ反射する反射面とされた液
晶用照明装置において、各照射光線につき光入射端面の
入射点から反射面の反射点までの距離をL2、各照射光
線の光入射端面での屈折角を90°−θ2、定数を
,Cとすると、前記導光板の反射面は、次式の関
係を有して湾曲されたことを特徴とする液晶用照明装
置。 L2=(1/C1)・cos(θ2+C2)
3. The problem solving means according to claim 3 of the present invention comprises:
A method for illuminating a liquid crystal display plate from the rear, comprising a tubular light source and a light guide plate arranged parallel to the liquid crystal display plate so as to guide light from the tubular light source to the liquid crystal display plate, the tubular light source being a light guide plate. In the liquid crystal lighting device, the rear surface of the light guide plate is a reflecting surface that reflects forward light that travels backward in the light guide plate, from the incident point of the light incident end surface for each irradiation ray. Assuming that the distance to the reflection point of the reflection surface is L2, the refraction angle at the light incident end surface of each irradiation light ray is 90 ° -θ2, and the constants are C 1 and C 2 , the reflection surface of the light guide plate has the following relationship. A lighting device for a liquid crystal having a curved shape. L2 = (1 / C 1 ) ・ cos (θ2 + C 2 )
【請求項4】 請求項3記載の管状光源の管内周面に、
導光板の光入射端面に向けて光の指向角を制限する反射
膜が形成されたことを特徴とする液晶用照明装置。
4. The inner peripheral surface of the tube of the tubular light source according to claim 3,
An illumination device for liquid crystal, comprising: a reflection film, which limits a directivity angle of light toward a light incident end surface of a light guide plate.
JP3303106A 1991-11-19 1991-11-19 Illuminating device for liquid crystal Pending JPH05142537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3303106A JPH05142537A (en) 1991-11-19 1991-11-19 Illuminating device for liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3303106A JPH05142537A (en) 1991-11-19 1991-11-19 Illuminating device for liquid crystal

Publications (1)

Publication Number Publication Date
JPH05142537A true JPH05142537A (en) 1993-06-11

Family

ID=17916964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3303106A Pending JPH05142537A (en) 1991-11-19 1991-11-19 Illuminating device for liquid crystal

Country Status (1)

Country Link
JP (1) JPH05142537A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287710A (en) * 1995-04-07 1996-11-01 Hikari Energ Oyo Kenkyusho:Kk Planar lighting apparatus
JP2010528444A (en) * 2007-05-29 2010-08-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system, lighting fixture and backlighting unit
WO2011102033A1 (en) * 2010-02-18 2011-08-25 シャープ株式会社 Surface light source device and liquid crystal display device equipped with same
US8921509B2 (en) 2005-06-13 2014-12-30 Grupo Petrotemex, S.A. De C.V. Process for removing metal species in the presence of hydrogen and a porous material and polyester polymer containing reduced amounts of metal species

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287710A (en) * 1995-04-07 1996-11-01 Hikari Energ Oyo Kenkyusho:Kk Planar lighting apparatus
US8921509B2 (en) 2005-06-13 2014-12-30 Grupo Petrotemex, S.A. De C.V. Process for removing metal species in the presence of hydrogen and a porous material and polyester polymer containing reduced amounts of metal species
JP2010528444A (en) * 2007-05-29 2010-08-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system, lighting fixture and backlighting unit
WO2011102033A1 (en) * 2010-02-18 2011-08-25 シャープ株式会社 Surface light source device and liquid crystal display device equipped with same
JP5373180B2 (en) * 2010-02-18 2013-12-18 シャープ株式会社 Surface light source device and liquid crystal display device including the surface light source device

Similar Documents

Publication Publication Date Title
JP2692025B2 (en) Planar light emitter device
JP5130434B2 (en) Light guide plate and display device using the same
JP3994190B2 (en) Backlight
US9046630B2 (en) Optical sheet and backlight assembly having the same
US7794100B2 (en) Planar light source apparatus, display apparatus and planar illumination method
JP4580805B2 (en) Light converging sheet, surface light source device, transmissive display device
JP4421583B2 (en) Light guide plate and surface light emitting device
JPH0915426A (en) Light guiding plate and surface type lighting body using the light guiding plate
TW201426125A (en) Light guide plate and backlight module
JP3064006B2 (en) Surface emitting device
JP4848511B2 (en) Backlight unit for LCD
JPH05142537A (en) Illuminating device for liquid crystal
JP2000214460A (en) Back light device
JP4360701B2 (en) Flat lighting device
JPH0772477A (en) Illumination device
JPH08220344A (en) Planar light source and non-light-emitting display device
JPH05313164A (en) Illuminator for liquid crystal device
JPH10133200A (en) Liquid crystal display device
JPH0593911A (en) Illuminating device for liquid crystal
JPH08201809A (en) Lighting system
JPH0527237A (en) Liquid crystal illuminator
JP3160594B2 (en) Light guide plate and flat lighting device
JPH0676935U (en) Backlight device
JPH08292324A (en) Light transmission body
JP4118043B2 (en) Light source device