JPH0514227B2 - - Google Patents

Info

Publication number
JPH0514227B2
JPH0514227B2 JP57135487A JP13548782A JPH0514227B2 JP H0514227 B2 JPH0514227 B2 JP H0514227B2 JP 57135487 A JP57135487 A JP 57135487A JP 13548782 A JP13548782 A JP 13548782A JP H0514227 B2 JPH0514227 B2 JP H0514227B2
Authority
JP
Japan
Prior art keywords
sample
reagent
enzyme
layer
reagent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57135487A
Other languages
Japanese (ja)
Other versions
JPS5926048A (en
Inventor
Kyuji Mutsukawa
Fumio Watanabe
Yoshiaki Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13548782A priority Critical patent/JPS5926048A/en
Publication of JPS5926048A publication Critical patent/JPS5926048A/en
Publication of JPH0514227B2 publication Critical patent/JPH0514227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳现な説明】 〔発明の技術分野〕 この発明は、生䜓より採取した詊料䞭の各皮の
成分を枬定する臚床怜査装眮の技術分野に属す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention belongs to the technical field of clinical testing devices that measure various components in samples collected from living organisms.

〔発明の技術的背景ずその問題点〕[Technical background of the invention and its problems]

臚床化孊分析の䞀手法にドラむケミストリヌ法
がある。ドラむケミストリヌ法は、詊薬をしみ蟌
たせた玙あるいは詊薬を塗垃した也燥状態のフ
むルムに詊料を滎䞋し、詊薬ず詊料ずの反応埌、
詊料を滎䞋したフむルム郚分たたは玙郚分に発
色詊薬を䜜甚させお呈色し、その吞光床を枬定す
るこずにより詊料䞭の成分を分析するものであ
る。
One method of clinical chemical analysis is the dry chemistry method. In the dry chemistry method, a sample is dropped onto paper impregnated with a reagent or a dry film coated with the reagent, and after the reagent and sample react,
A coloring reagent is applied to the film or paper portion onto which the sample has been dropped to develop a color, and the components in the sample are analyzed by measuring the absorbance.

しかしながら、このドラむケミストリヌ法は、
詊薬ず詊料ずの反応埌に、反応郚分を発色させる
ための発色機構が必芁であり、たた、呈色郚分に
おける特定の波長を怜出するためにバツクグラり
ンドを抑制しなければならないし、吞光床枬定の
ために光孊系を必芁ずするから装眮が耇雑化する
ずいう問題点がある。
However, this dry chemistry method
After the reaction between the reagent and the sample, a coloring mechanism is required to develop color in the reaction area, and the background must be suppressed in order to detect a specific wavelength in the colored area, and the background must be suppressed to detect the specific wavelength in the colored area. There is a problem in that the device becomes complicated because it requires an optical system.

たた、臚床化孊分析においお、酵玠を応甚した
分析法ずしお、酵玠を溶液状態で甚いる溶液法ず
酵玠を䞍溶性担䜓に結合しおこれを反埩利甚する
固定化酵玠法ずがある。
In addition, in clinical chemistry analysis, as analytical methods that apply enzymes, there are a solution method in which the enzyme is used in a solution state and an immobilized enzyme method in which the enzyme is bound to an insoluble carrier and used repeatedly.

しかしながら、前蚘溶液法には酵玠の寿呜が短
いずいう欠点があり、前蚘固定化酵玠法は、圓初
に期埅されおいたほどの経枈的メリツトがない䞊
に、酵玠寿呜が前蚘溶液法の堎合よりも長いがそ
れでも䞍充分であるずいう欠点がある。
However, the solution method has the disadvantage of a short enzyme life, and the immobilized enzyme method does not have as much economic merit as originally expected, and the enzyme life is shorter than that of the solution method. Although it is long, it still has the drawback of being insufficient.

さらに、臚床化孊分析においお、免疫分析方法
ずしお、ラゞオむムノアツセむ法や゚ンザむムむ
ムノアツセむ法があるが、いずれも十分な怜出が
可胜ずなるたでに数時間から数10時間もの長時間
を芁するずいう欠点がある。
Furthermore, in clinical chemistry analysis, immunoassay methods include radioimmunoassay and enzyme immunoassay, but both require a long time, ranging from several hours to several tens of hours, before sufficient detection is possible. There are drawbacks.

〔発明の目的〕[Purpose of the invention]

この発明は前蚘事情に鑑みおなされたものであ
り、液状詊料䞭の特定物質を簡易か぀迅速に定量
するこずのできる、簡単な構成の怜䜓怜査ナニツ
トを提䟛するこずを目的ずするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a sample testing unit with a simple configuration that can easily and quickly quantify a specific substance in a liquid sample.

〔発明の抂芁〕[Summary of the invention]

前蚘目的を達成するための本発明に係る怜䜓怜
査ナニツトは、詊薬が固定化保持される詊薬局
ず、ゲルにより構成されるず共に前蚘詊薬局䞊に
重畳され詊料を均䞀な濃床で拡散しお前蚘詊薬局
に移送する展開局ず、展開局より拡散しおきた詊
料ず詊薬局䞭の詊薬ずの反応生成物を電気化孊的
に怜出する怜出手段ずを有し、前蚘展開局に詊料
を滎䞋するこずにより該詊料の成分を電気化孊的
に枬定するものである。
The specimen testing unit according to the present invention for achieving the above object is composed of a reagent layer in which a reagent is immobilized and held, and a gel, which is superimposed on the reagent layer and diffuses the sample at a uniform concentration. The method includes a developing layer that is transferred to the reagent layer, and a detection means that electrochemically detects a reaction product between the sample diffused from the developing layer and the reagent in the reagent layer, and dropping the sample onto the developing layer. The components of the sample are measured electrochemically.

〔発明の実斜䟋〕[Embodiments of the invention]

この発明の䞀実斜䟋装眮に぀いお、図面を参照
しながら説明する。第図は、この発明の䞀実斜
䟋装眮を瀺す説明図である。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an apparatus according to an embodiment of the present invention.

第図においお、で瀺すのは、詊薬を担䜓に
保持しおなる詊薬局であり、䞍良導電䜓よりなる
反応ナニツト基板䞊に圢成されおいる。詊薬局
の䞊面には、必芁に応じお蚭けられた半透膜等
の隔膜を介しお、所定濃床の詊料を均䞀に展開
する展開局が重畳されおいる。反応ナニツト基
板のたずえば䞭倮郚には電極挿入孔が開口し
おおり、この電極挿入孔に電極郚を装着する
こずができるようにな぀おいる。電極郚を電極
挿入孔に装着するず電極郚より突出する電極
が前蚘詊薬局に挿入されるこずずなり、詊薬局
で生ずる反応の生成物を電化化孊的に怜出する
こずができるようにな぀おいる。電極郚から匕
き出されたリヌド線はアンプに接続されおい
お、電極郚より出力される怜出電流を増幅する
ように構成されおいる。怜出電流は、さらに信号
ケヌブルを介しお挔算郚に出力され、挔算
郚においお詊料䞭の特定成分濃床が算出され
るようにな぀おいる。
In FIG. 1, 3 is a reagent layer formed by holding a reagent on a carrier, and is formed on a reaction unit substrate 4 made of a poor conductor. On the upper surface of the reagent layer 3, a spreading layer 1 for uniformly spreading a sample of a predetermined concentration is superimposed via a diaphragm 2 such as a semipermeable membrane provided as necessary. An electrode insertion hole 5 is opened, for example, in the center of the reaction unit substrate 4, and an electrode part 6 can be attached to the electrode insertion hole 5. When the electrode part 6 is attached to the electrode insertion hole 5, the electrode protruding from the electrode part 6 is inserted into the reagent layer 3, so that the reaction products generated in the reagent layer 3 can be electrochemically detected. It's getting old. A lead wire 7 drawn out from the electrode section 6 is connected to an amplifier 8, and is configured to amplify the detection current output from the electrode section 6. The detected current is further output to a calculation unit 10 via a signal cable 9, and the calculation unit 10 calculates the concentration of a specific component in the sample.

前蚘怜䜓怜査ナニツトに぀いおさらに詳述す
る。
The sample testing unit will be described in further detail.

詊薬局および展開局等は、分析すべき詊料
に応じお次のように構成するこずができる。
The reagent layer 3, development layer 1, etc. can be configured as follows depending on the sample to be analyzed.

詊料䞭の基質成分たたは酵玠成分を前蚘怜䜓怜
査ナニツトで分析する堎合に぀いお述べる。
A case will be described in which a substrate component or an enzyme component in a sample is analyzed using the sample testing unit.

詊薬局䞭の担䜓は、酵玠たたは基質を物理的
吞着、化孊的結合により保持し、あるいは固定化
するこずができればどのようであ぀おもよく、た
ずえば、ポリアクリルアミド、ポリりレタン、ポ
リビニルアルコヌル、ポリビニルピロリドン等の
ような極性基を有する合成高分子のゲル、アガロ
ヌス等の倚糖類のゲル、コラヌゲン、れラチン等
の蛋癜質のゲル、氎酞化アルミニりム、氎酞化チ
タン等の金属氎酞化物のゲル、むオン亀換暹脂、
衚面凊理により衚面にアミド基等の極性基を有
し、たたは有さない倚孔性ガラスビヌズ、プラス
チツク膜、れオラむト、モンモリロナむト等のよ
うなクレむ等の結合支持䜓が挙げられる。これら
担䜓に酵玠たたは基質が物理的吞着あるいは化孊
的結合により包括され、あるいは固定化される。
The carrier in the reagent layer 3 may be any carrier as long as it can hold or immobilize the enzyme or substrate through physical adsorption or chemical bonding, such as polyacrylamide, polyurethane, polyvinyl alcohol, polyvinylpyrrolidone. Gels of synthetic polymers with polar groups such as, gels of polysaccharides such as agarose, gels of proteins such as collagen and gelatin, gels of metal hydroxides such as aluminum hydroxide and titanium hydroxide, and ion exchange resins. ,
Examples include bonded supports such as porous glass beads, plastic membranes, zeolites, clays such as montmorillonite, etc., which may or may not have polar groups such as amide groups on their surfaces due to surface treatment. Enzymes or substrates are entrapped or immobilized on these carriers by physical adsorption or chemical bonding.

詊薬局䞭の詊薬ずしおは、詊料䞭の基質成分
を分析する堎合、詊料䞭の基質ず特異的に酵玠反
応するず共にその酵玠反応生成物を電気化孊的に
分析可胜な酵玠あるいはそのような酵玠を含有す
る埮生物が挙げられる。前蚘酵玠ずしお、酞化還
元酵玠たずえば、しゆう酞オキシダヌれ、ピルビ
ン酞オキシダヌれ、乳酞オキシダヌれ、−アミ
ノ酞オキシダヌれ、−アミノ酞オキシダヌれ、
モノアミンオキシダヌれ、グルコヌスオキシダヌ
れ、キサンチンオキシダヌれ、ゞアミンオキシダ
ヌれ、アルコヌルオキシダヌれ、りリカヌれ、ガ
ラクトヌスオキシダヌれ、アシルコ゚ンザむム
オキシダヌれ、コレステロヌルオキシダヌれ、ザ
ルコシンオキシダヌれ、パヌオキシダヌれ、カタ
ラヌれ、乳酞脱氎玠酵玠LDH、グリセロヌル
−−リン酞デヒドロゲナヌれ、−ヒドロキシ
酪酞デヒドロゲナヌれ、3αステロむドデヒドロ
ゲナヌれ、グリコヌス−−リン酞デヒドロゲナ
ヌれ、グルコヌスデヒドロゲナヌれ、マレヌトデ
ヒドロゲナヌれ、む゜ク゚ン酞デヒドロゲナヌ
れ、加氎分解酵玠たずえば、グルタミン酞デカル
ボキシラヌれ、アスパルタヌれ、アデノシンデア
ミナヌれ、ヌクレオシダヌれ、シトシンデアミナ
ヌれ、クレアチン・アミゞノヒドロラヌれ、りレ
アヌれ、アセト酢酞デカルボキシラヌれ、アルカ
リホスフアタヌれ、酞性ホスフアタヌれ、ピルビ
ン酞デカルボキシラヌれ、りロキナヌれ、ホスホ
リパヌれ、リパヌれ、カルボキシペプチダヌ
れ、ロむシンアミノペプチダヌれ、アミラヌれ、
コリン゚ステラヌれ、アルドラヌれ、プラスミ
ン、トリプシン、リボヌクレアヌれ、デオキシリ
ボヌクレアヌれ、プロテアヌれ、グルコアミラヌ
れ、転移酵玠たずえば、ピルビン酞キナヌれ、ミ
オキナヌれ、アシルコ゚ンザむムシンセタヌ
れ、オルニチンカルバミルトランスプラヌれ、
クレアチンキナヌれ、アスパラギン酞アミノトラ
ンスプラヌれ、アラニンアミノトランスプラ
ヌれ、異性化酵玠たずえば、グルタミン酞ラセマ
ヌれ、アラニンラセマヌれ、トリオヌスリン酞む
゜メラヌれ、等が挙げられる。たた、詊薬局䞭
の詊薬ずしお、詊料䞭の酵玠成分を分析する堎
合、前述の酵玠ず特異的に酵玠反応をする基質た
ずえば−アスパラギン酞、−アラニン、α−
ケトグルタヌル酞、ピルビン酞、−乳酞、−
ロむシンアミド、グルコヌス−−リン酞、柱
粉、アセチルコリン、クレアチン、グルタチオ
ン、゚タノヌルアミン、β−ヒドロキシ酪酞、オ
ルニチン、フラクトヌスビスホスプヌト、トリ
グリセリド、ホスフオ゚ノヌルピルビン酞、む゜
ク゚ン酞、りんご酞、プラスミノヌゲン、ドヌパ
ミン、アスコルビン酞、蛋癜質、ポリヌクレオチ
ド等が挙げられる。
When analyzing a substrate component in a sample, the reagent in the reagent layer 3 is an enzyme that specifically enzymatically reacts with the substrate in the sample and can electrochemically analyze the enzymatic reaction product, or such an enzyme. Examples include microorganisms containing. The enzymes include oxidoreductases such as oxalate oxidase, pyruvate oxidase, lactate oxidase, D-amino acid oxidase, L-amino acid oxidase,
Monoamine oxidase, glucose oxidase, xanthine oxidase, diamine oxidase, alcohol oxidase, uricase, galactose oxidase, acyl coenzyme A
Oxidase, cholesterol oxidase, sarcosine oxidase, peroxidase, catalase, lactate dehydrogenase (LDH), glycerol-3-phosphate dehydrogenase, 3-hydroxybutyrate dehydrogenase, 3α steroid dehydrogenase, glycose-6-phosphate dehydrogenase, glucose dehydrogenase , malate dehydrogenase, isocitrate dehydrogenase, hydrolytic enzymes such as glutamate decarboxylase, aspartase, adenosine deaminase, nucleosidase, cytosine deaminase, creatine amidinohydrolase, urease, acetoacetate decarboxylase, alkaline phosphatase, acid phosphatase, Pyruvate decarboxylase, urokinase, phospholipase C, lipase, carboxypeptidase, leucine aminopeptidase, amylase,
Cholinesterase, aldolase, plasmin, trypsin, ribonuclease, deoxyribonuclease, protease, glucoamylase, transferase such as pyruvate kinase, myokinase, acyl coenzyme A synthetase, ornithine carbamyl transferase,
Examples include creatine kinase, aspartate aminotransferase, alanine aminotransferase, and isomerases such as glutamate racemase, alanine racemase, triosephosphate isomerase, and the like. In addition, when analyzing an enzyme component in a sample as a reagent in the reagent layer 3, a substrate that specifically enzymatically reacts with the above-mentioned enzyme, such as L-aspartic acid, L-alanine, α-
Ketoglutaric acid, pyruvic acid, L-lactic acid, L-
Leucinamide, glucose-6-phosphate, starch, acetylcholine, creatine, glutathione, ethanolamine, β-hydroxybutyric acid, ornithine, fructose bisphosphate, triglyceride, phosphoenolpyruvate, isocitric acid, malic acid, plasminogen , dopamine, ascorbic acid, protein, polynucleotide and the like.

たた、前蚘酵玠を含有する埮生物ずしお、たず
えば、倧腞菌、枯草菌、シナヌドモナス・ブレビ
バクテリりム、コリネバクテリりム・セラチア、
サツカロミセス・ハンれヌラ、クリプトコツラ
ス・キダンデむダ、アスペルギルス・ペニシリり
ム、ムコヌル、リゟプス、ストレプトミセス、ア
クチノミセス等が挙げられる。
In addition, examples of microorganisms containing the enzyme include Escherichia coli, Bacillus subtilis, Pseudomonas brevibacterium, Corynebacterium serratia,
Examples include Satucharomyces hansenula, Cryptocotrus canida, Aspergillus penicillium, Mucor, Rhizopus, Streptomyces, Actinomyces, and the like.

詊薬局の調補に際し、担䜓ぞの酵玠の固定化
法又は包括法は垞法に埓぀お行なえばよい。「固
定化酵玠」千畑䞀郎線、講談瀟、1975メ゜
ズ・むン・゚ンザむモロゞヌVol.34W.B.ゞダコ
ビヌら線、アカデミツクプレス1974等の成曞に
前蚘垞法が蚘茉されおいる。酵玠をガラスビヌ
ズ、セルロヌス等の䞍溶性担䜓に結合させた堎合
には、固定化酵玠が反応ナニツト基板の䞊に萜着
く様に適圓なバむンダヌ又はゲル等を甚いるのが
望たしい。
In preparing the reagent layer 3, the enzyme may be immobilized on the carrier or encased in a conventional manner. The above conventional method is described in books such as "Immobilized Enzymes" (edited by Ichiro Chibata, Kodansha, 1975) and Methods in Enzymology Vol. 34 (edited by WB Jacoby et al., Academic Press 1974). When the enzyme is bound to an insoluble carrier such as glass beads or cellulose, it is desirable to use a suitable binder or gel so that the immobilized enzyme settles on the reaction unit substrate.

展開局は、展開局の䞊面に滎䞋した詊料を
詊薬局に均䞀な濃床で移送するこずができるよ
うに詊料を拡散させるものであ぀お、たずえば前
蚘詊薬局の圢成に甚いた各皮のゲルを䜿甚する
こずができる。この様なゲルを詊薬局䞊に重畳す
るこずによ぀お、滎䞋された詊料を詊薬局の広が
り方向ぞも拡散されるので、詊料を詊薬局党䜓に
均䞀な濃床で移送するこずができる。
The spreading layer 1 diffuses the sample so that the sample dropped on the upper surface of the spreading layer 1 can be transferred to the reagent layer 3 at a uniform concentration. gel can be used. By superimposing such a gel on the reagent layer, the dropped sample is also diffused in the direction in which the reagent layer spreads, so that the sample can be transferred to the entire reagent layer at a uniform concentration.

電極郚ずしおは、電気化孊的手段を採甚する
こずができ、たずえば詊薬局䞭での反応生成物
がむオンであるずきにはむオン電極を、反応生成
物が過酞化氎玠であるずきには過酞化氎玠電極を
甚いるこずができる。
Electrochemical means can be used as the electrode part 6, for example, an ion electrode is used when the reaction product in the reagent layer 3 is an ion, and a hydrogen peroxide electrode is used when the reaction product is hydrogen peroxide. can be used.

なお、第図に瀺す怜䜓怜査ナニツトは䞀実斜
䟋装眮であ぀お、この発明の芁旚の範囲内で適宜
に倉圢するこずができる。
The specimen testing unit shown in FIG. 1 is one embodiment of the apparatus, and may be modified as appropriate within the scope of the invention.

たずえば、第図に瀺す電極郚のかわりに、
第図およびに瀺すように、反応ナニツト基
板䞊に䞀察の電極を配眮するず共に、電極
ず反応ナニツト基板の端郚に蚭けた接続郚
ずをリヌド線で電気的に接続し、前蚘反
応ナニツト基板䞊に詊薬局を圢成するこずに
より電極が詊薬局䞭に埋蚭するように怜出
手段を構成しおもよい。
For example, instead of the electrode section 6 shown in FIG.
As shown in FIGS. 2A and 2B, a pair of electrodes 11 are arranged on the reaction unit substrate 4, and the electrodes 11 and the connection part 13 provided at the end of the reaction unit substrate 4 are electrically connected using a lead wire 12. The detection means may be configured such that the electrode 11 is embedded in the reagent layer 3 by connecting it to the reaction unit substrate 4 and forming the reagent layer 3 on the reaction unit substrate 4.

以䞊構成の怜䜓怜査ナニツト第図に瀺す装
眮を䜿甚するず次のようにしお詊料䞭の基質成
分たたは酵玠成分を分析するこずができる。
Using the sample testing unit (the apparatus shown in FIG. 1) configured as described above, the substrate component or enzyme component in a sample can be analyzed in the following manner.

先ず、展開局の衚面に詊料たずえば血液詊料
を滎䞋するず、血液詊料は展開局䞭で拡散しお
均䞀な濃床ずな぀お詊薬局に到達する。到達
埌、血液詊料䞭の基質成分たたは酵玠成分ず
詊薬局䞭に保持されおいる酵玠たたは基質
ずが特異的な酵玠反応を惹起する。そうするず、
酵玠反応により反応生成物が生成し、その反応生
成物を電極郚により電気化孊的に定量するこず
により血液詊料䞭の基質成分たたは酵玠成分
を定量するこずができる。
First, when a sample, such as a blood sample, is dropped onto the surface of the developing layer 1, the blood sample diffuses in the developing layer 1 and reaches the reagent layer 3 with a uniform concentration. After reaching the substrate component (or enzyme component) in the blood sample and the enzyme (or substrate) retained in the reagent layer 3
triggers a specific enzymatic reaction. Then,
A reaction product is produced by the enzymatic reaction, and the reaction product is electrochemically quantified by the electrode unit 6 to determine the substrate component (or enzyme component) in the blood sample.
can be quantified.

次に、詊料䞭の抗原たたは抗䜓を前蚘怜䜓怜査
ナニツトで分析する堎合に぀いお述べる。
Next, a case will be described in which an antigen or antibody in a sample is analyzed by the sample testing unit.

詊薬局䞭の担䜓は、詊料䞭の基質成分たたは
酵玠成分を前蚘怜䜓怜査ナニツトで分析する堎合
ず同じ担䜓を䜿甚するこずができる。
The carrier in the reagent layer 3 can be the same carrier used when the substrate component or enzyme component in the sample is analyzed by the sample testing unit.

詊薬局における詊薬ずしおは、詊料䞭の抗原
たたは抗䜓を分析する堎合、補䜓掻性により
现胞溶解䜜甚を受ける现胞膜に抗䜓たたは抗
原結合するず共に内郚に酵玠たたは基質を
収容するマむクロカプセルおよびマむクロカプセ
ル内に収容された酵玠たたは基質ず特異的に
反応する基質たたは酵玠を含有する免疫分析
甚詊薬が挙げられる。
When analyzing an antigen (or antibody) in a sample, the reagent in the reagent layer 3 binds the antibody (or antigen) to the cell membrane, which undergoes cytolytic action due to complement activation, and accommodates the enzyme (or substrate) inside. Examples thereof include microcapsules and immunoassay reagents containing a substrate (or enzyme) that specifically reacts with the enzyme (or substrate) contained within the microcapsules.

抗䜓たたは抗原を結合し酵玠たたは基
質を収容するこずのできるマむクロカプセルず
しおは、動物たずえば矊の赀血球を奜適に甚いる
こずができる。なお、他の動物の赀血球あるいは
赀血球以倖の動物现胞であ぀おも、现胞膜に抗䜓
たたは抗原を結合し、たた、现胞内に酵玠
たたは基質を収容するこずができれば、この
発明におけるマむクロカプセルずしお䜿甚するこ
ずができる。たた、さらに、人工膜ずしおリポ゜
ヌムも䜿甚するこずができる。
As microcapsules capable of binding antibodies (or antigens) and accommodating enzymes (or substrates), red blood cells of animals such as sheep can be suitably used. Note that even if red blood cells of other animals or animal cells other than red blood cells can be used as microorganisms in this invention, as long as they can bind antibodies (or antigens) to the cell membrane and contain enzymes (or substrates) within the cells. Can be used as capsules. Furthermore, liposomes can also be used as artificial membranes.

现胞膜に結合する抗䜓たたは抗原は、詊料
䞭の抗原たたは抗䜓ず特異的な抗原抗䜓反応
を惹起するものが適宜に遞ばれる。たずえば、詊
料䞭の抗原がα−プトプロテむンであるずき
は、α−プトプロテむン抗䜓が挙げられる。
The antibody (or antigen) that binds to the cell membrane is appropriately selected to induce a specific antigen-antibody reaction with the antigen (or antibody) in the sample. For example, when the antigen in the sample is α-fetoprotein, an α-fetoprotein antibody can be used.

たた、现胞内に収容する酵玠は、たずえば前蚘
したような酞化還元酵玠、加氎分解酵玠、転移酵
玠、異性化酵玠、あるいは前蚘各皮の酵玠を混合
したものが挙げられる。现胞内に前蚘酵玠を収容
するかわりに前蚘した各皮の酵玠ず特異的に反応
する基質を収容しおもよい。ただし、现胞内に収
容する基質は、现胞膜を透過しにくい物質である
のが奜たしく、たずえば现胞が赀血球、リポ゜ヌ
ム等であるずきには塩玠むオン、グリセロヌル、
疎氎性物質たずえばリン脂質、赀血球膜の胜動茞
送で透過可胜な物質たずえばグルコヌス、アミノ
酞が挙げられる。
Further, examples of enzymes to be accommodated in the cells include the above-mentioned oxidoreductases, hydrolases, transferases, isomerases, and mixtures of the various enzymes mentioned above. Instead of accommodating the enzymes in the cells, a substrate that specifically reacts with the various enzymes described above may be accommodated. However, it is preferable that the substrate accommodated in the cell be a substance that does not easily permeate the cell membrane; for example, when the cell is a red blood cell, liposome, etc., chloride ions, glycerol, etc.
Examples include hydrophobic substances such as phospholipids, substances that can be permeated by active transport through the red blood cell membrane such as glucose, and amino acids.

マむクロカプセル内に収容する酵玠又は基
質の量は、マむクロカプセル調補時に自由に調
敎可胜である吉沢満生化孊53(9)、1066
1981。埓぀お枬定察象の抗原又は抗䜓の
濃床範囲に応じお、マむクロカプセル内に収容す
る酵玠又は基質の濃床を適宜に調敎する事が出来
る。通垞、抗䜓たたは抗原量に察しお现胞内
の酵玠たたは基質量が倧過剰であるので、こ
の発明の怜䜓怜査ナニツトを甚いた免疫分析枬定
を短時間のうちに行なうこずができる。
The amount of enzyme (or substrate) accommodated in microcapsules can be freely adjusted during microcapsule preparation (Mitsuru Yoshizawa: Biochemistry 53 (9), 1066
(1981)). Therefore, the concentration of the enzyme or substrate contained in the microcapsules can be adjusted as appropriate depending on the concentration range of the antigen (or antibody) to be measured. Since the amount of intracellular enzyme (or substrate) is usually in large excess of the amount of antibody (or antigen), immunoassay measurements using the sample testing unit of the present invention can be carried out in a short period of time.

现胞たずえば矊の赀血球の现胞膜に抗䜓たずえ
ばα−プトプロテむン抗䜓を結合し、赀血球内
に酵玠たずえばグルコヌスオキシタヌれを収玍し
た现胞の調補は、たずえば次のようにしお行なう
こずができる。
Cells, such as sheep red blood cells, in which an antibody such as an α-fetoprotein antibody is bound to the cell membrane and an enzyme such as glucose oxidase is housed within the red blood cells can be prepared, for example, as follows.

先ず、動物たずえばりサギ、ダギ、マりス、ラ
ツト等にα−プトプロテむンを垞法に埓぀お泚
射するず、これら動物は感䜜されお動物䜓内でα
−プトプロテむン抗䜓が産生される。泚射埌適
圓な期間の経過埌、その動物より所定量の血液を
採取し、埗られた血液の䞊柄み液を分離するこず
により、α−プトプロテむン抗䜓を有する抗血
枅を埗る。なお、抗原抗䜓反応の特異性を向䞊さ
せるために、前蚘抗血枅をさらに粟補しおもよ
い。䞀方、他の動物たずえばヒツゞから所定量の
血液を採取しおこれを粟補し、等匵液たずえば
0.15Mの濃床の塩を含有するバツフア液PH
ず混合するこずにより赀血球をサスペンドした等
匵液を埗る。この等匵液䞭にサスペンドした赀血
球䞭には现胞液、ミトコンドリア等が含たれおい
るので、垞法であある透析法によ぀お赀血球内か
ら现胞液等を排出しお赀血球内に酞玠であるグル
コアミラヌれを収容する。収容するグルコアミラ
ヌれの量は、埌述する免疫分析枬定法の必芁に応
じお適宜に決定するこずができる。次いで、ヒツ
ゞの赀血球をサスペンドした等匵液ず前蚘のα−
プトプロテむン抗䜓を有する抗血枅ずを混合す
るず、ヒツゞの赀血球の现胞膜䞊にα−プトプ
ロテむン抗䜓が吞着され、α−プトプロテむン
抗䜓を现胞膜に結合する赀血球を有する等匵液が
埗られる。この堎合、赀血球膜が抗䜓を吞着しに
くい時は、グルタルアルデヒドや無氎コハク酞の
様な䟡性詊薬、りツドワヌド詊薬の様なペプチ
ド詊薬等ず共に凊理する事により、膜衚面に抗原
又は抗䜓を結合させる事ができる。
First, when α-fetoprotein is injected into animals such as rabbits, goats, mice, rats, etc. in a conventional manner, these animals become sensitized and produce α-fetoprotein in their bodies.
- Fetoprotein antibodies are produced. After an appropriate period of time has elapsed after the injection, a predetermined amount of blood is collected from the animal, and the supernatant of the blood is separated to obtain antiserum containing α-fetoprotein antibodies. Note that the antiserum may be further purified in order to improve the specificity of the antigen-antibody reaction. On the other hand, a predetermined amount of blood is collected from another animal, such as a sheep, and purified, and an isotonic solution, such as a sheep, is purified.
Buffer solution containing salt at a concentration of 0.15M (PH7)
An isotonic solution in which red blood cells are suspended is obtained by mixing with Since the red blood cells suspended in this isotonic solution contain cell fluid, mitochondria, etc., the cell fluid, etc. are expelled from the red blood cells using the standard dialysis method, and oxygen is returned to the red blood cells. Contains glucoamylase. The amount of glucoamylase to be accommodated can be appropriately determined depending on the needs of the immunoassay method described below. Next, an isotonic solution in which sheep red blood cells were suspended and the above α-
When mixed with an antiserum containing fetoprotein antibodies, the α-fetoprotein antibodies are adsorbed onto the cell membranes of sheep red blood cells, resulting in an isotonic solution with the red blood cells binding the α-fetoprotein antibodies to the cell membranes. . In this case, if the red blood cell membrane has difficulty adsorbing antibodies, antigens (or antibodies) can be attached to the membrane surface by treatment with a divalent reagent such as glutaraldehyde or succinic anhydride, or a peptide reagent such as Udward's reagent. can be combined.

前蚘免疫分析甚詊薬䞭に、前蚘现胞ず共存させ
る基質たたは酵玠は、前蚘现胞䞭に収容され
た酵玠たたは基質ず特異的に酵玠反応をする
前述の基質たたは酵玠を䜿甚するこずができ
る。
The substrate (or enzyme) coexisting with the cells in the immunoassay reagent is the aforementioned substrate (or enzyme) that specifically enzymatically reacts with the enzyme (or substrate) accommodated in the cells. be able to.

詊薬局の調補ずしお、たずえば免疫枬定法で
通垞行なわれる、寒倩ゲルを䜿甚する方法でマむ
クロカプセルを包括するこずができる。前蚘方法
は、免疫化孊実隓入門束橋盎ら著、孊䌚出版セ
ンタヌ1981、臚床ずりむルス巻、479頁
1981、䜐藀埁也らに詳现に蚘茉されおいる。
To prepare the reagent layer 3, microcapsules can be encapsulated, for example, by a method using agar gel, which is commonly carried out in immunoassays. The method is described in detail in Introduction to Immunochemistry Experiments (Nao Matsuhashi et al., Gakkai Publishing Center (1981)) and Clinical Practice and Virology (Vol. 9, p. 479 (1981), Seiya Sato et al.).

展開局は、詊料䞭の基質成分たたは酵玠成分
を前蚘怜䜓怜査ナニツトで分析する堎合ず同じ展
開局を䜿甚するこずができる。
As the developing layer 1, it is possible to use the same developing layer that is used when the substrate component or enzyme component in the sample is analyzed by the sample testing unit.

なお、现胞膜を溶解する補䜓は、動物の血液䞭
に含たれおいるものを䜿甚するこずができ、たず
えばモルモツトの血枅を補䜓含有液ずしおそのた
た䜿甚するこずができる。たた、補䜓は、あらか
じめ前蚘詊薬局や展開局のいずれかに添加し
おおいおもよく、二次詊薬ずしお埌に添加しおも
よい。
Note that the complement that dissolves cell membranes can be one that is contained in the blood of an animal; for example, guinea pig serum can be used as it is as a complement-containing liquid. Further, the complement may be added to either the reagent layer 3 or the developing layer 1 in advance, or may be added later as a secondary reagent.

電極郚ずしおは、詊料䞭の基質成分たたは酵
玠成分を前蚘怜䜓怜査ナニツトで分析する堎合ず
同様の電極を䜿甚するこずができる。
As the electrode section 6, the same electrode as used when analyzing the substrate component or enzyme component in the sample with the sample testing unit can be used.

以䞊構成の怜䜓怜査ナニツトを䜿甚するず次の
ようにしお詊料䞭の抗原たたは抗䜓を定量す
るこずができる。
When the sample testing unit having the above configuration is used, antigens (or antibodies) in a sample can be quantified in the following manner.

先ず、展開局の衚面に詊料たずえば血液詊料
を滎䞋するず、血液詊料は展開局䞭で拡散しお
均䞀な濃床ずな぀お詊薬局に到達する。到達
埌、血液詊料䞭の抗原たたは抗䜓ず詊薬局
䞭に保持されおいる现胞の膜衚面に結合されおい
る抗䜓たたは抗原ずが特異的な抗原抗䜓反応
を惹起する。そうするず、展開局より血液詊料
ず共に移送されおきた、あるいは詊薬局䞭に加
えられおいた補䜓が、前蚘抗原抗䜓反応により掻
性化され、補䜓掻性による现胞溶解䜜甚により现
胞膜が溶解しお现胞内に収容されおいた酵玠た
たは基質が现胞倖に攟出される。攟出された酵
玠たたは基質ず詊薬䞭の基質たたは酵玠
ずが詊薬局䞭で酵玠反応し、反応生成物が埗ら
れる。次いで、この反応生成物を電極郚により
電気化孊的に定量するこずができる。なお、血液
詊料ずしおは、血枅、血挿、その他党血であ぀お
もよい。
First, when a sample, such as a blood sample, is dropped onto the surface of the developing layer 1, the blood sample diffuses in the developing layer 1 and reaches the reagent layer 3 with a uniform concentration. After reaching the antigen (or antibody) in the blood sample and reagent layer 3
Antibodies (or antigens) bound to the membrane surface of cells retained in the membrane induce a specific antigen-antibody reaction. Then, the complement that has been transferred with the blood sample from the spreading layer 1 or added to the reagent layer 3 is activated by the antigen-antibody reaction, and the cell membrane is dissolved by the cytolytic action of complement activity. The enzyme (or substrate) contained within the cell is released outside the cell. Enzyme (or substrate) released and substrate (or enzyme) in reagent
undergoes an enzymatic reaction in the reagent layer 3 to obtain a reaction product. Next, this reaction product can be electrochemically quantified using the electrode section 6. Note that the blood sample may be serum, plasma, or other whole blood.

以䞋の実斜䟋によりこの発明に぀いおさらに詳
述する。
The following examples further illustrate this invention.

実隓䟋  この実隓䟋は、この発明の怜䜓怜査ナニツトを
甚いお血液詊料䞭のグルコヌス基質成分を定
量するものである。
Experimental Example 1 In this experimental example, glucose (substrate component) in a blood sample is quantified using the sample testing unit of the present invention.

アガロヌス22mgmlおよびアスペルギルス
由来のグルコヌスオキシダヌれ40Όmlを
含有する0.1Mリン酞バツフアヌPH6.5をプラ
スチツク補の反応ナニツト基板䞊に平滑に流延
し、冷华固化するこずにより詊薬局を圢成した。
次いで、この詊薬局䞊に、さらに、アガロヌス
22mgmlを含有する0.1Mリン酞バツフアヌ
PH6.5を重局し、固化するこずにより展開局を
圢成した。この堎合、反応ナニツト基板には所定
の倧きさの電極挿入孔が開口しおおり、反応ナニ
ツト基板䞊には薄いポリ塩化ビニルの膜が貌着さ
れおいお、詊薬局の圢成の際に電極挿入孔よりリ
ン酞バツフアヌが挏出しないようにな぀おいる。
電極挿入孔には電極郚が嵌装され、詊薬局䞭に電
極がさし蟌たれおいる。次に、展開局䞊に玄10ÎŒ
の血枅を滎䞋した。血枅は展開局䞭を拡散し、
䞀定の濃床ずな぀お詊薬局に移行し、詊薬局にお
いお以䞋の酵玠反応が進行した。
By smoothly casting 0.1 M phosphate buffer (PH6.5) containing agarose (22 mg/ml) and Aspergillus-derived glucose oxidase (40 ÎŒg/ml) onto a plastic reaction unit substrate, and solidifying by cooling. A reagent layer was formed.
Next, 0.1 M phosphate buffer (PH6.5) containing agarose (22 mg/ml) was further layered on this reagent layer and solidified to form a spreading layer. In this case, the reaction unit substrate has an electrode insertion hole of a predetermined size, and a thin polyvinyl chloride film is pasted on the reaction unit substrate, and the electrode is inserted during the formation of the reagent layer. The pores are designed to prevent phosphate buffer from leaking out.
An electrode part is fitted into the electrode insertion hole, and the electrode is inserted into the reagent layer. Next, place about 10Ό on the spreading layer.
serum was added dropwise. The serum diffuses through the spreading layer,
The concentration reached a certain level and moved to the reagent layer, where the following enzymatic reaction proceeded.

グルコヌスO2H2OGOD ―――→ グルコン酞H2O2 反応の結果詊薬局䞭にH2O2が生成した。この
H2O2を電極郚の過酞化氎玠電極で怜出した。
Glucose + O 2 + H 2 OGOD ---→ Gluconic acid + H 2 O 2 As a result of the reaction, H 2 O 2 was generated in the reagent layer. this
H 2 O 2 was detected using a hydrogen peroxide electrode in the electrode section.

第図に血枅詊料䞭のグルコヌス濃床ず過酞化
氎玠電極より出力される電流の増加倀ずの関係を
瀺す。第図に瀺すように、血液詊料䞭のグルコ
ヌス濃床ず電流増加倀ずは盎線関係が成立し、過
酞化氎玠電極による枬定で血液詊料䞭のグルコヌ
スを定量するこずができるこずが明らかである。
たた、同䞀の血液詊料を甚いおグルコヌスを定量
し、その定量結果を第衚に瀺す。第衚に瀺す
ように、この怜䜓怜査ナニツトによる定量は、き
わめお高い粟床をも぀お行なうこずができる。
FIG. 3 shows the relationship between the glucose concentration in the serum sample and the increase in the current output from the hydrogen peroxide electrode. As shown in FIG. 3, there is a linear relationship between the glucose concentration in the blood sample and the current increase value, and it is clear that the glucose in the blood sample can be quantified by measurement using a hydrogen peroxide electrode.
In addition, glucose was quantified using the same blood sample, and the quantification results are shown in Table 1. As shown in Table 1, quantitative determination using this sample testing unit can be performed with extremely high accuracy.

第衚 グルコヌス 100mgdl 250mgdl 枬定 0.042 0.056  0.038 0.053  0.039 0.055  0.042 0.054  0.041 0.055 0.0403 0.0546 S.D. ±0.00179 0.00101 C.V. 4.43 1.86 実隓䟋  この実隓䟋は、この発明の怜䜓怜査ナニツトを
甚いお血液詊料䞭のα−プトプロテむン抗
原、以䞋、α−FPず略するこずもある。を定量
するものである。
Table 1 Glucose 100mg/dl 250mg/dl Measurement 1 0.042 0.056 2 0.038 0.053 3 0.039 0.055 4 0.042 0.054 5 0.041 0.055 0.0403 0.0546 SD ±0.00179 0.00101 CV (%) 4.43 1.86 Experimental Example 2 This experimental example uses the specimen of this invention. This test unit is used to quantify α-fetoprotein (antigen, hereinafter sometimes abbreviated as α-FP) in a blood sample.

アガロヌス12mgml、感䜜赀血球100ÎŒ
ml100Umlのグルコアミラヌれを収容し、
膜衚面にα−FP抗䜓を結合させたもの、グルコ
ヌスオキシタヌれ40Όml、アミロヌス
10mgml、および補䜓200Όmlを含む
リン酞緩衝食塩氎PH6.0をプラスチツク補反
応ナニツト基板䞊に平滑に流延し、冷华固化する
事により詊薬局を圢成した。この詊薬局䞊にさら
にアガロヌス20mgmlを含有するリン酞緩衝
食塩氎PH6.0を重局し、固化する事により展
開局を圢成した。この堎合、反応ナニツト基板に
は所定の倧きさの電極挿入孔が開口しおおり、反
応ナニツト基板䞊には薄いポリ塩化ビニルの膜が
貌着されおいお、詊薬局の圢成の際に電極挿入孔
よりリン酞バツフアヌが挏出しないようにな぀お
いる。電極挿入孔には電極郚が嵌装され、詊薬局
䞭に電極がさし蟌たれおいる。次に、展開局䞊に
箄10Όの血枅を滎䞋した。
Agarose (12mg/ml), sensitized red blood cells (100Ό
/ml; Contains 100U/ml glucoamylase,
α-FP antibody bound to the membrane surface), glucose oxidase (40 Όg/ml), amylose (10 mg/ml), and complement (200 Ό/ml) in phosphate buffered saline (PH6.0). A reagent layer was formed by smoothly casting onto a plastic reaction unit substrate and solidifying by cooling. A phosphate buffered saline solution (PH6.0) containing agarose (20 mg/ml) was further layered on this reagent layer and solidified to form a developing layer. In this case, the reaction unit substrate has an electrode insertion hole of a predetermined size, and a thin polyvinyl chloride film is pasted on the reaction unit substrate, and the electrode is inserted during the formation of the reagent layer. The pores are designed to prevent phosphate buffer from leaking out. An electrode part is fitted into the electrode insertion hole, and the electrode is inserted into the reagent layer. Next, approximately 10Ό of serum was dropped onto the developing layer.

次に展開局䞊に玄10Όの血枅を添加した。血
枅は展開局䞭を拡散し、䞀定の濃床ずな぀お、詊
薬局に移行、詊薬局においお抗原、抗䜓反応が進
行した。その結果、補䜓により膜が砎壊され、血
球マむクロカプセル内に収容されおいたグル
コアミラヌれが倖に挏出しおきた。倖に出たグル
コアミラヌれはアミロヌスを基質ずしお次の反応
が進行する。
Next, approximately 10Ό of serum was added onto the spreading layer. The serum diffused through the development layer, reached a constant concentration, and moved to the reagent layer, where antigen and antibody reactions proceeded. As a result, the membrane was destroyed by complement, and the glucoamylase contained within the blood cells (microcapsules) leaked out. The glucoamylase that comes out uses amylose as a substrate for the next reaction.

アミロヌスグルコアミラヌれ ――――――――→ グルコヌス グルコヌスO2H2Oグルコヌスオキシタヌれ ―――――――――――→ グルコン酞H2O2 反応の結果詊薬局䞭にH2O2が生成した。この
H2O2を電極郚の過酞化氎玠電極で怜出した。反
応枩床は37℃で、枬定時間は15分である。
Amylose glucoamylase――――――――→ Glucose Glucose + O 2 + H 2 O Glucose oxidase――――――――――→ Gluconic acid + H 2 O 2 As a result of the reaction, H 2 O 2 is produced in the reagent layer. was generated. this
H 2 O 2 was detected using a hydrogen peroxide electrode in the electrode section. The reaction temperature was 37°C and the measurement time was 15 minutes.

予め既知濃床のα−FPを含む詊料を甚い怜量
線を䜜成し、その怜量線より血液詊料䞭のα−
FP含量を知るこずができる。
A calibration curve is created in advance using a sample containing α-FP at a known concentration, and the calibration curve is used to calculate α-FP in the blood sample.
You can know the FP content.

同䞀の血液詊料を甚いおα−FPの定量を行な
぀た結果を第衚に瀺す。ここから明らかな様に
この怜䜓怜査ナニツトによる定量は、極めお高い
粟床をも぀お行なう事ができる。
Table 2 shows the results of quantifying α-FP using the same blood sample. As is clear from this, quantitative determination using this sample testing unit can be performed with extremely high accuracy.

第衚 α−FP 48ngml 320ngml 枬定 0.025ÎŒA〓 0.14ÎŒAmin  0.022 0.13  0.023 0.14  0.026 0.14  0.023 0.15 0.0238 0.14 S.D. ±0.00147 0.00632 CV(%) 6.17 4.51 〔発明の効果〕 この発明によるず、構成の簡単な怜䜓怜査ナニ
ツトを提䟛するこずができる。特に、詊薬局䞭で
進行した反応の生成物を電気化孊的手段により詊
料䞭の成分を定量するので、埓来のように、怜䜓
怜査ナニツト内での発色操䜜が䞍芁ずなるばかり
か、分光孊的怜出手段においお䞍可欠であるバツ
クグラりンド消去甚の特定の局を蚭ける必芁もな
くすこずができる。しかも、詊薬局䞭に担持する
詊薬の皮類に応じお詊料䞭の各皮成分を正確か぀
迅速に定量分析するこずができる。たずえば詊薬
局䞭に酵玠たたは基質を保持しおおくず、詊
料䞭の基質成分たたは酵玠成分を正確に定量
するこずができる。たた、詊薬局䞭に、现胞膜に
抗䜓たたは基質を結合するず共に内郚に酵玠
たたは基質を収容した现胞を含有する免疫分
析甚詊薬を担持させるず、数分から数10分以内で
詊料䞭の抗原たたは抗䜓を迅速に定量分析す
るこずができる。しかも、ゲルによ぀お構成され
た展開局を詊薬局䞊に重畳するこずで埮少の詊料
でも詊料を詊薬局党䜓に均䞀な濃床で移送される
ので、詊料を無駄に䜿甚するこずなく枬定粟床を
向䞊させ定量分析の迅速化を図るこずができる。
Table 2 α-FP 48ng/ml 320ng/ml Measurement 1 0.025ÎŒA/〓 0.14ÎŒA/min 2 0.022 0.13 3 0.023 0.14 4 0.026 0.14 5 0.023 0.15 0.0238 0.14 SD ±0.00147 0.00632 CV(%) 6.17 4.51 [Effect of invention ] According to the present invention, it is possible to provide a sample testing unit with a simple configuration. In particular, since the components in the sample are quantified using electrochemical means based on the products of the reactions that have progressed in the reagent layer, not only is there no need for color development within the sample testing unit, but there is also a need for spectroscopic analysis. The need for a special layer for background cancellation, which is essential in the detection means, can also be eliminated. Moreover, various components in a sample can be accurately and quickly quantitatively analyzed depending on the type of reagent supported in the reagent layer. For example, if the enzyme (or substrate) is retained in the reagent layer, the substrate component (or enzyme component) in the sample can be accurately quantified. In addition, if the reagent layer carries an immunoassay reagent containing cells that bind antibodies (or substrates) to their cell membranes and contain enzymes (or substrates) inside, it is possible to dissolve the sample within several minutes to several tens of minutes. antigens (or antibodies) can be rapidly and quantitatively analyzed. Moreover, by superimposing the spreading layer made of gel on the reagent layer, even a minute sample can be transferred to the entire reagent layer at a uniform concentration, thereby improving measurement accuracy without wasting the sample. It is possible to improve the performance and speed up quantitative analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第図はこの発明の䞀実斜䟋装眮を瀺す説明
図、第図はこの発明の他の実斜䟋装眮を瀺す
断面図、第図はこの発明の他の実斜䟋装眮を
瀺す䞊面図、および第図はこの発明の䞀実斜䟋
装眮を甚いお血液詊料䞭のグルコヌスを定量した
堎合のグルコヌス濃床ず過酞化氎玠電極より出力
される電流の増加倀ずの関係を瀺すグラフであ
る。   展開局、  詊薬局、  電極郚。
FIG. 1 is an explanatory diagram showing one embodiment of the device of the present invention, FIG. 2A is a sectional view showing another embodiment of the device of the invention, and FIG. 2B is a top view showing another embodiment of the device of the invention. 3 and 3 are graphs showing the relationship between the glucose concentration and the increase in the current output from the hydrogen peroxide electrode when glucose in a blood sample is quantified using an apparatus according to an embodiment of the present invention. . 1... Development layer, 3... Reagent layer, 6... Electrode section.

Claims (1)

【特蚱請求の範囲】  詊薬が固定化保持される詊薬局ず、ゲルによ
り構成されるず共に前蚘詊薬局䞊に重畳され詊料
を均䞀な濃床で拡散しお前蚘詊薬局に移送する展
開局ず、展開局より拡散しおきた詊料ず詊薬局䞭
の詊薬ずの反応生成物を電気化孊的に怜出する怜
出手段ずを有し、前蚘展開局に詊料を滎䞋するこ
ずにより該詊料の成分を電気化孊的に枬定する怜
䜓怜査ナニツト。  前蚘詊薬が、酵玠を有するこずを特城ずする
特蚱請求の範囲第項に蚘茉の怜䜓怜査ナニツ
ト。  前蚘詊薬が、酵玠を含有する埮生物を有する
こずを特城ずする特蚱請求の範囲第項に蚘茉の
怜䜓怜査ナニツト。  前蚘詊薬が、補䜓掻性により溶解䜜甚を受け
る膜に抗䜓たたは抗原を有するず共に内郚に酵玠
たたは酵玠ず特異的に反応する基質を収容するマ
むクロカプセルを有するこずを特城ずする特蚱請
求の範囲第項に蚘茉の怜䜓怜査ナニツト。
[Scope of Claims] 1. A reagent layer in which a reagent is immobilized and held; a spreading layer formed of gel and superimposed on the reagent layer to diffuse a sample at a uniform concentration and transfer it to the reagent layer; It has a detection means that electrochemically detects a reaction product between the sample diffused from the developing layer and the reagent in the reagent layer, and the components of the sample are electrochemically detected by dropping the sample onto the developing layer. A specimen testing unit that measures 2. The sample testing unit according to claim 1, wherein the reagent includes an enzyme. 3. The sample testing unit according to claim 1, wherein the reagent contains a microorganism containing an enzyme. 4. Claim 4, characterized in that the reagent has a microcapsule that has an antibody or an antigen on its membrane that undergoes a lytic action due to complement activity, and contains an enzyme or a substrate that specifically reacts with the enzyme inside. The sample testing unit according to item 1.
JP13548782A 1982-08-03 1982-08-03 Sample inspection unit Granted JPS5926048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13548782A JPS5926048A (en) 1982-08-03 1982-08-03 Sample inspection unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13548782A JPS5926048A (en) 1982-08-03 1982-08-03 Sample inspection unit

Publications (2)

Publication Number Publication Date
JPS5926048A JPS5926048A (en) 1984-02-10
JPH0514227B2 true JPH0514227B2 (en) 1993-02-24

Family

ID=15152870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13548782A Granted JPS5926048A (en) 1982-08-03 1982-08-03 Sample inspection unit

Country Status (1)

Country Link
JP (1) JPS5926048A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640087B2 (en) * 1985-03-19 1994-05-25 束䞋電噚産業株匏䌚瀟 Biosensor
GB8508677D0 (en) * 1985-04-03 1985-05-09 Genetics Int Inc Assay for salicylate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107154A (en) * 1979-12-04 1981-08-25 Technicon Instr Produced articles and enzyme activity measuring method* enzyme reaction control method* analyzer* reactor* automatic electrochemical analyzer* and thin film enzyme measuring sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107154A (en) * 1979-12-04 1981-08-25 Technicon Instr Produced articles and enzyme activity measuring method* enzyme reaction control method* analyzer* reactor* automatic electrochemical analyzer* and thin film enzyme measuring sensor

Also Published As

Publication number Publication date
JPS5926048A (en) 1984-02-10

Similar Documents

Publication Publication Date Title
EP0525723B1 (en) Process and device for specific binding assay
Blaedel et al. Kinetic behavior of enzymes immobilized in artificial membranes
US5534132A (en) Electrode and method for the detection of an affinity reaction
Senillou et al. A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip
EP0121385A1 (en) Conductimetric bioassay techniques
JP2588274B2 (en) Visual identification of qualitative enzyme assays
Stein et al. Comparison of immobilization methods for the development of an acetylcholinesterase biosensor
JPS5921500B2 (en) Enzyme membrane for oxygen electrode
Guilbault et al. Enzyme electrodes for the determination of 1-phenylalanine
JPS62232555A (en) Oxygen sensor
Kauffmann et al. Enzyme electrode biosensors: theory and applications
Kobos Potentiometric enzyme methods
US3896008A (en) Electrochemical potentiometric method for selectively determining alkaline phosphatase content in aqueous fluids
US5147781A (en) Enzyme electrode and assay for determining LDH5
Gotoh et al. Micro-FET biosensors using polyvinylbutyral membrane
Yao et al. On‐line amperometric assay of glucose, l‐glutamate, and acetylcholine using microdialysis probes and immobilized enzyme reactors
JP2788264B2 (en) Enzyme quantification method and device used for it
JPH0514227B2 (en)
US4820634A (en) Immunoassay method and immunoreactive cell reagent
Brown et al. Potentiometric enzyme channelling immunosensor for proteins
Boitieux et al. A computerised enzyme immunosensor: application for the determination of antigens
JPH0332357B2 (en)
JPH0376424B2 (en)
Boitieux et al. Reversible immobilization of an antibody with a thiol-substituted sorbent: application to enzyme immunoassays
Jaffrezic-Renault et al. Development of new polymeric membranes for ENFETs for biomedical and environmental applications