JPH05142195A - Method for measuring charge control agent dispersed state in developer - Google Patents

Method for measuring charge control agent dispersed state in developer

Info

Publication number
JPH05142195A
JPH05142195A JP3307988A JP30798891A JPH05142195A JP H05142195 A JPH05142195 A JP H05142195A JP 3307988 A JP3307988 A JP 3307988A JP 30798891 A JP30798891 A JP 30798891A JP H05142195 A JPH05142195 A JP H05142195A
Authority
JP
Japan
Prior art keywords
control agent
charge control
toner
dissolution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3307988A
Other languages
Japanese (ja)
Inventor
Seijirou Ishimaru
聖次郎 石丸
Katsumi Okamoto
克己 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP3307988A priority Critical patent/JPH05142195A/en
Publication of JPH05142195A publication Critical patent/JPH05142195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To accurately measure not only the concn. of the charge control agent present on the surface of toner but also the surface area of the charge control agent, that is, the dispersed particle size thereof in the dispersed state of said agent as numerical data. CONSTITUTION:In measuring the surface dispersion state of a charge control agent in a developer, toners or carriers 6 whose surfaces are constituted of a resin composition containing the charge control agent are dispersed in a water-containing water miscible org. solvent 2 dissolving the charge control agent but not a resin to measure the potential difference accompanied by the dissolution of the charge control agent and, from the obtained dissolution curve, the surface concn. and surface area of the charge control agent are evaluated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、現像剤中の電荷制御剤
分散状態の測定方法に関するもので、より詳細には、現
像剤等の表面に存在する電荷制御剤の濃度や表面積を精
度よく測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a dispersed state of a charge control agent in a developer. More specifically, the concentration and surface area of the charge control agent present on the surface of the developer can be accurately measured. Regarding how to measure.

【0002】[0002]

【従来の技術】電子写真法における静電潜像の現像は、
静電潜像とは逆極性に帯電したトナーを用いて行ってい
る。このトナーの帯電極性や帯電量を制御する目的で、
トナー中に金属錯塩染料等の電荷制御剤を配合すること
が広く行われている。電荷制御剤のトナー中での分散状
態、特に表面での分散状態は、トナーの特性に大きな影
響を与えることも知られている。
2. Description of the Related Art Development of an electrostatic latent image in electrophotography is
The toner is charged with a polarity opposite to that of the electrostatic latent image. In order to control the charge polarity and charge amount of this toner,
It is widely practiced to blend a charge control agent such as a metal complex salt dye into a toner. It is also known that the state of dispersion of the charge control agent in the toner, particularly the state of dispersion on the surface, has a great influence on the characteristics of the toner.

【0003】従来、トナー中の電荷制御剤の分布状態の
測定法としては、トナー表面の電荷制御剤(染料)をメ
タノールで溶解させて、その吸光度を測定する表面染料
濃度法がある。
Conventionally, as a method for measuring the distribution state of the charge control agent in the toner, there is a surface dye concentration method in which the charge control agent (dye) on the toner surface is dissolved in methanol and the absorbance is measured.

【0004】[0004]

【発明が解決しようとする問題点】上記測定法によれ
ば、トナー中に含有される電荷制御剤の内、トナー表面
に存在するものの濃度、即ち表面染料濃度を知ることが
できる。しかしながら、表面染料濃度法の値が同一であ
っても、トナーの帯電性能が異なり、キャリア汚染を引
き起こしたり、帯電不足を引き起こしたりするという事
態が発生した。
According to the above measuring method, it is possible to know the concentration of the charge control agent contained in the toner, which is present on the toner surface, that is, the surface dye concentration. However, even if the values of the surface dye concentration method are the same, the charging performance of the toner is different, which causes carrier contamination or insufficient charging.

【0005】これは、トナー表面の電荷制御剤の濃度が
同じであっても、電荷制御剤の表面積が相違することが
あり、この相違によりトナーの帯電特性等が変化するた
めと認められる。かくして、トナーの研究、開発や、実
際の製造においても、トナー中の電荷制御剤分散状態を
正確に把握するためには、表面の電荷制御剤の濃度のみ
ならず、その分散粒径乃至表面積を正確に数値化された
状態で測定することが必要となる。
It is considered that this is because the surface area of the charge control agent may be different even if the concentration of the charge control agent on the toner surface is the same, and the charging characteristics of the toner are changed due to this difference. Thus, not only in the concentration of the charge control agent on the surface but also in the dispersed particle size or surface area thereof, in order to accurately grasp the state of dispersion of the charge control agent in the toner, in the research and development of the toner and in the actual manufacturing thereof. It is necessary to measure in an accurately digitized state.

【0006】本発明者らは、トナー表面の電荷制御剤の
分散粒径を直接観察する方法を検討したが、現状の分析
装置、例えば走査型電子顕微鏡(SEM)、透過型電子
顕微鏡(TEM)、X線分析(EPMA)等では分析精
度が未だ電荷制御剤の分散粒径をトナー表面で特定する
レベルには至っておらず、困難であることがわかった。
The present inventors have studied a method of directly observing the dispersed particle size of the charge control agent on the surface of the toner. However, the present analyzers, for example, a scanning electron microscope (SEM) and a transmission electron microscope (TEM) are used. , X-ray analysis (EPMA) and the like have revealed that the accuracy of analysis has not reached the level of identifying the dispersed particle size of the charge control agent on the surface of the toner, which is difficult.

【0007】従って、本発明の目的は、トナー等の表面
に存在する電荷制御剤の濃度のみならず、その分散状態
での表面積、即ち分散粒径をも、精度よく、しかも数値
化されたデータとして測定し得る方法を提供するにあ
る。
Therefore, the object of the present invention is to obtain not only the concentration of the charge control agent present on the surface of the toner or the like, but also the surface area in the dispersed state, that is, the dispersed particle size, with high precision and numerical data. Is to provide a method that can be measured as.

【0008】[0008]

【問題点を解決するための手段】本発明によれば、電荷
制御剤を含有する樹脂組成物で少なくとも表面が構成さ
れたトナー或いはキャリヤを、樹脂を溶解しないが電荷
制御剤を溶解する水含有水混和性有機溶媒に分散させ
て、電荷制御剤の溶解に伴う電位差測定を行い、得られ
る溶解曲線から電荷制御剤の表面濃度と電荷制御剤の表
面積とを評価することを特徴とする現像剤中の電荷制御
剤表面分散状態の測定方法が提供される。
According to the present invention, a toner or carrier at least the surface of which is composed of a resin composition containing a charge control agent is contained in water containing a charge control agent which does not dissolve the resin. A developer characterized by being dispersed in a water-miscible organic solvent, measuring the potential difference associated with the dissolution of the charge control agent, and evaluating the surface concentration of the charge control agent and the surface area of the charge control agent from the resulting dissolution curve. A method for measuring the surface dispersion state of a charge control agent therein is provided.

【0009】本発明においては、溶解したトナー表面の
電荷制御剤の全濃度に関する式が 「数1」Emax.=E0 −B*log(C0 ) 式中 C0 :トナー表面の電荷制御剤全量が溶解した時
の濃度(mol/l) Emax.:溶解飽和電位(mV) E0 :ガラス電極のpH1の基準電位(mV) B :電位勾配(mV/pH) また、E0 、Bはガラス電極装置の定数で表されるもの
であり、Emax.に基づいて電荷制御剤の表面濃度C0
評価することができる。
In the present invention, the formula relating to the total concentration of the charge control agent on the dissolved toner surface is "Equation 1" E max. = E 0 -B * log (C 0 ) where C 0 : charge control on the toner surface Concentration when the total amount of the agent is dissolved (mol / l) E max . : Dissolution saturation potential (mV) E 0 : Reference potential of pH 1 of glass electrode (mV) B: Potential gradient (mV / pH) Also, E 0 , B is represented by the constant of the glass electrode device, and the surface concentration C 0 of the charge control agent can be evaluated based on E max .

【0010】さらに、本発明においては、溶解したトナ
ー表面の電荷制御剤の表面積に関する式が 「数2」t∞=3C0 /KS0 式中 S0 :トナー表面の電荷制御剤の全表面積
(m2 ) K :溶解速度定数 t∞:溶解飽和時間(min.) で表されるものであり、t∞、K、C0 に基づいてトナ
ー表面に存在する電荷制御剤の表面積S0 を評価するこ
とができる。
Further, in the present invention, the equation relating to the surface area of the charge control agent on the surface of the dissolved toner is "Equation 2" t∞ = 3C 0 / KS 0 where S 0 is the total surface area of the charge control agent on the toner surface ( m 2 ) K: dissolution rate constant t ∞: dissolution saturation time (min.), and the surface area S 0 of the charge control agent present on the toner surface is evaluated based on t ∞, K and C 0. can do.

【0011】[0011]

【作用】本発明は、電荷制御剤が本質的に電解質であ
り、その溶解過程で解離してイオンを発生するという現
象を利用するものである。例えば、代表的な負電荷制御
剤である金属錯塩染料は、これをメタノール等の水含有
水混和性有機溶媒に溶解すると、下記式
The present invention utilizes the phenomenon that the charge control agent is essentially an electrolyte, and dissociates to generate ions during the dissolution process. For example, a metal complex salt dye, which is a typical negative charge control agent, has the following formula when dissolved in a water-containing water-miscible organic solvent such as methanol.

【化1】 式中、A及びBはオルソ位にフェノール性水酸基を有す
るジアゾ成分及びカップリング成分の残基を夫々表し、
Mはクロム、鉄或いはコバルト等の多価金属を表す、で
表されるように、イオンに解離する。イオンに解離する
と、この溶液から電気的な測定が可能となる。即ち、解
離するイオンの内、[H+]に着目すると、[H+]の測
定は、従来pHメーター等で既に行われている方法であ
り、電位差測定が可能であることがわかる。尚、上記
「化1」の含金属染料において、水素イオンの代わりに
無機または有機のカチオンが含まれている場合もある
が、この場合にも水分子の解離が誘起されて、水素イオ
ンが発生する。
[Chemical 1] In the formula, A and B represent the residues of the diazo component and the coupling component each having a phenolic hydroxyl group at the ortho position,
M represents a polyvalent metal such as chromium, iron or cobalt, and dissociates into ions. When dissociated into ions, an electrical measurement can be made from this solution. That is, when focusing on [H +] among the dissociated ions, it is understood that the measurement of [H +] is a method that has been already performed using a pH meter or the like, and potential difference measurement is possible. In the metal-containing dye of the above “Chemical formula 1”, an inorganic or organic cation may be contained in place of the hydrogen ion, but in this case also, dissociation of water molecules is induced to generate hydrogen ion. To do.

【0012】一方、前述した表面染料濃度法では、得ら
れる電荷制御剤の分布についての情報が少ないという理
由は、電荷制御剤の飽和溶解量は測定されるが、飽和溶
解量に達するまでの過程、即ち溶解の仕方、つまり速度
の面からの情報が全く得られないことによる。ところ
が、電荷制御剤の表面積は電荷制御剤の溶解速度に当然
影響するのである。トナーからの電荷制御剤の溶解過程
を電気的に測定できれば、溶解の経時的変化、つまり速
度的な測定を精度よく行うことが可能となる。
On the other hand, in the above-mentioned surface dye concentration method, the reason why there is little information about the distribution of the charge control agent obtained is that the saturated dissolution amount of the charge control agent is measured, but the process until the saturated dissolution amount is reached is measured. That is, no information is obtained from the aspect of dissolution, that is, speed. However, the surface area of the charge control agent naturally affects the dissolution rate of the charge control agent. If the dissolution process of the charge control agent from the toner can be electrically measured, it becomes possible to accurately measure the change with time of dissolution, that is, the speed measurement.

【0013】本発明によれば、電荷制御剤を含有する樹
脂組成物で少なくとも表面が構成されたトナー或いはキ
ャリヤを、樹脂を溶解しないが電荷制御剤を溶解する有
機溶媒に分散させて、電荷制御剤の溶解に伴う電位差測
定を行う。即ち、トナー或いはキャリアの表面を構成す
る樹脂組成物中の電荷制御剤のみが溶剤中に選択的に溶
解し、溶液中の電荷制御剤のイオンが電位差滴定によ
り、経時的に精度よく検出されることになる。
According to the present invention, a toner or a carrier, at least the surface of which is composed of a resin composition containing a charge control agent, is dispersed in an organic solvent which does not dissolve the resin but does dissolve the charge control agent, thereby controlling the charge. The potential difference is measured as the agent dissolves. That is, only the charge control agent in the resin composition constituting the surface of the toner or carrier is selectively dissolved in the solvent, and the ions of the charge control agent in the solution are accurately detected with time by potentiometric titration. It will be.

【0014】本発明による電位差滴定を説明するための
図1において、測定用容器1内に、樹脂を溶解しないが
電荷制御剤を溶解する有機溶媒2を充填し、この溶媒中
にガラス電極3及び参照電極4を浸漬する。これらの電
極を電位差計5に接続する。測定に際して、測定すべき
トナー或いはキャリア6を分散させる。トナー或いはキ
ャリア6表面の電荷制御剤を溶剤中に溶出し、同時に溶
剤中でイオンに解離し、このイオンはガラス電極3によ
り検出され、電位差計5により電位差として表示され
る。
In FIG. 1 for explaining the potentiometric titration according to the present invention, an organic solvent 2 which does not dissolve a resin but dissolves a charge control agent is filled in a measuring container 1, and a glass electrode 3 and The reference electrode 4 is immersed. These electrodes are connected to the potentiometer 5. At the time of measurement, the toner or carrier 6 to be measured is dispersed. The charge control agent on the surface of the toner or the carrier 6 is eluted into the solvent and at the same time dissociated into ions in the solvent, which ions are detected by the glass electrode 3 and displayed as a potential difference by the potentiometer 5.

【0015】ここで、電荷制御剤が溶媒に溶解する場合
の濃度の時間的変化についての式は、
Here, the formula for the time change of the concentration when the charge control agent is dissolved in a solvent is as follows:

【数3】C=C0 {1−(1−KS0 t/3C0 3 } 式中 C :溶媒に溶解した電荷制御剤の濃度(mol
/l) t :時間(min.) C0 :トナー表面の電荷制御剤全量が溶解した時の濃度
(mol/l) S0 :トナー表面の電荷制御剤の全表面積(m2 ) K :溶解速度定数 で表されるものであり、濃度CはC0 、K、S0 及びt
の関数系である。
## EQU3 ## C = C 0 {1- (1-KS 0 t / 3C 0 ) 3 } In the formula, C: concentration of the charge control agent dissolved in the solvent (mol
/ L) t: time (min.) C 0 : concentration when the total amount of the charge control agent on the toner surface is dissolved (mol / l) S 0 : total surface area (m 2 ) of the charge control agent on the toner surface K: dissolution It is represented by a rate constant, and the concentration C is C 0 , K, S 0 and t
Is a functional system of.

【0016】ここで、「数3」式中 1−KS0 t/3
0 =O の時Cは飽和濃度C0 に達するため、その溶
解飽和時間をt∞で表すと式は 「数2」t∞=3C0 /KS0 式中 S0 :トナー表面の電荷制御剤の全表面積
(m2 ) K :溶解速度定数 t∞:溶解飽和時間(min.) で表されるものであり、溶解飽和時間t∞はK、C0
0 の関数系となる。
Here, 1-KS 0 t / 3 in the equation (3)
When C 0 = 0 , C reaches the saturation concentration C 0 , so when the dissolution saturation time is represented by t ∞, the formula is “Equation 2” t ∞ = 3C 0 / KS 0 In the formula, S 0 : charge control of toner surface The total surface area (m 2 ) of the agent is expressed by K: dissolution rate constant t ∞: dissolution saturation time (min.), And the dissolution saturation time t ∞ is K, C 0 ,
It becomes a functional system of S 0 .

【0017】「数2」式より次式From the equation (2), the following equation

【数4】t∞=3/(K・M・V・SS ) M :電荷制御剤の分子量 V :溶媒体積(l) SS :電荷制御剤の比表面積(m2 /g) が表されt∞はSS で表すことができる。[Mathematical formula-see original document] t ∞ = 3 / (K · M · V · S S ) M: Molecular weight of charge control agent V: Solvent volume (l) S S : Specific surface area (m 2 / g) of charge control agent And t ∞ can be represented by S S.

【0018】「数2」を用いて「数3」を表すと式Expression of "Equation 3" using "Equation 2" is an equation.

【数5】C=C0 {1−(1−t/t∞)3 } で表されるものであり、濃度CはC0 とt∞との関数系
となる。
## EQU5 ## It is expressed by C = C 0 {1- (1-t / t∞) 3 }, and the concentration C is a functional system of C 0 and t ∞.

【0019】次にトナー表面に存在する電荷制御剤の濃
度をガラス電極を用いて電位差として表す式は
Next, the expression expressing the concentration of the charge control agent present on the toner surface as a potential difference using a glass electrode is

【数6】E=E0 −B*log{[H+ C=0 +C} 式中 E:電荷制御剤の溶解に伴う電位差(m
V) [H+ C=0 :C=0の時の水素イオン濃度 で表される。
[Equation 6] E = E 0 −B * log {[H + ] C = 0 + C} In the formula, E: potential difference (m in association with dissolution of charge control agent)
V) [H + ] C = 0 : It is represented by the hydrogen ion concentration when C = 0.

【0020】実際に電位差滴定を行った結果を示す図2
において、横軸は時間を表し、縦軸は電位差を表す。ま
た図中のプロットAは電荷制御剤未配合のトナーについ
ての電位差測定結果であり、一方プロットBは電荷制御
剤配合のトナーについての電位差測定結果である。この
結果から、電荷制御剤の溶出過程の電位差滴定曲線は
「数1」の関数系となることが推定される。
FIG. 2 showing the result of actual potentiometric titration.
In, the horizontal axis represents time and the vertical axis represents potential difference. Plot A in the figure is the potential difference measurement result for the toner containing no charge control agent, while plot B is the potential difference measurement result for the toner containing the charge control agent. From this result, it is estimated that the potentiometric titration curve in the elution process of the charge control agent is a functional system of "Equation 1".

【0021】「数6」の濃度Cが飽和濃度C0 に達した
とき次式 「数1」Emax.=E0 −B*log(C0 ) で表されるものであり、Emax.はC0 の関数として表す
ことができる。
When the concentration C of "Equation 6" reaches the saturation concentration C 0 , it is represented by the following equation "Equation 1" E max. = E 0 -B * log (C 0 ) and E max. Can be expressed as a function of C 0 .

【0022】実際に同一の電荷制御剤を0.001〜
0.04g取り、150mlのメタノール中に全量溶解
させ、該濃度が既知の電荷制御剤について、ガラス電極
の溶解飽和電位Emax.(縦軸)と濃度C0 の対数(横
軸)との関係をプロットしたのが図3である。この図3
から、Emax.とC0 の対数との関係が「数1」の関数系
である事が確認される。
In practice, the same charge control agent is added in an amount of 0.001 to
A total of 0.04 g of the charge control agent was dissolved in 150 ml of methanol, and the relationship between the solution saturation potential E max. (Vertical axis) of the glass electrode and the logarithm of the concentration C 0 (horizontal axis) of the charge control agent having a known concentration . Is plotted in FIG. This Figure 3
From this, it is confirmed that the relationship between E max. And the logarithm of C 0 is a functional system of “Equation 1”.

【0023】次に電荷制御剤の表面積及びKの関係につ
いて考察する。溶媒に電荷制御剤を溶解させる場合、電
荷制御剤重量が同一であれば溶解速度は表面積に比例し
次式
Next, the relationship between the surface area and K of the charge control agent will be considered. When the charge control agent is dissolved in a solvent, if the weight of the charge control agent is the same, the dissolution rate is proportional to the surface area

【数7】dC/dt=K*S S:時刻tにおける電荷制御剤の表面積(m2 ) で表されるものである。この式は「数3」を導く微分方
程式である。従って、Kは電荷制御剤が溶媒に接してい
る1m2 当たり単位時間に溶出する電荷制御剤の量を表
す値であり、溶媒に対する電荷制御剤の溶解速度の固有
値である事が了解される。
## EQU7 ## dC / dt = K * S S: It is represented by the surface area (m 2 ) of the charge control agent at time t. This equation is a differential equation that leads to "Equation 3". Therefore, it is understood that K is a value representing the amount of the charge control agent that elutes in a unit time per 1 m 2 of the charge control agent in contact with the solvent, and is a characteristic value of the dissolution rate of the charge control agent in the solvent.

【0024】実際に同重量(0.005g)の同一電荷
制御剤(分子量M=670)において、その粒径のみを
変えたもの、即ち平均粒径が4μmの電荷制御剤(CC
A−A)と平均粒径が7μm(CCA−B)について溶
媒体積V=0.15(l)で電位差測定を行った結果は
図4のとうりであり、表面積により電位差測定曲線の勾
配が変化する事が了解される。
Actually, the same charge control agent (molecular weight M = 670) having the same weight (0.005 g) but different particle size, that is, the charge control agent (CC having an average particle size of 4 μm)
AA) and the average particle size of 7 μm (CCA-B) were measured with a solvent volume V = 0.15 (l), and the result is as shown in FIG. 4, and the gradient of the potential difference measurement curve depends on the surface area. It is understood that it will change.

【0025】また、CCA−A、CCA−BをBET比
表面積測定により比表面積を求め、電位差測定により溶
解飽和時間t∞を求め、溶解曲線の式K=3/(t∞・
M・V・SS )よりKを求めた。
The specific surface area of CCA-A and CCA-B is determined by BET specific surface area measurement, and the dissolution saturation time t ∞ is determined by potential difference measurement, and the dissolution curve formula K = 3 / (t ∞ ·
K was calculated from M · V · S S ).

【0026】[0026]

【表1】 ──────────────────────────────────── サンプル 平均粒径(μm) 比表面積SS (m2/g) t∞ K ──────────────────────────────────── CCA−A 4 11.582 9.3 2.78 ×10-4 CCA−B 7 7.432 14.9 2.71 ×10-4 ────────────────────────────────────[Table 1] ──────────────────────────────────── Sample average particle size (μm) Specific surface area S S (m 2 / g) t ∞ K ──────────────────────────────────── CCA-A 4 11.582 9.3 2.78 × 10 -4 CCA-B 7 7.432 14.9 2.71 × 10 -4 ───────────────────────────────── ────

【0027】結果より各サンプル(CCA−AおよびC
CA−B)のKは同一値を示し、Kは電荷制御剤の溶解
速度の固有値である事が明らかである。これにより、 t∞=3C0 /KS0 =3/(K・M・V・SS ) の関係がBET法により証明された。従って、溶解飽和
電位Emax.と溶解飽和時間t∞を求める事により、電荷
制御剤の濃度C0 と電荷制御剤の表面積S0 を求める事
ができる。
From the results, each sample (CCA-A and C
It is clear that K of CA-B) shows the same value, and K is a specific value of the dissolution rate of the charge control agent. Thereby, the relationship of t∞ = 3C 0 / KS 0 = 3 / (K · M · V · S S ) was proved by the BET method. Therefore, by obtaining the dissolution saturation potential E max. And the dissolution saturation time t ∞, the concentration C 0 of the charge control agent and the surface area S 0 of the charge control agent can be obtained.

【0028】[0028]

【実施例】【Example】

(測定条件)本発明において、溶剤としては、樹脂を溶
解しないが電荷制御剤を溶解する任意の水含有水混和性
有機溶媒を使用する。用いる溶剤は、トナー或いは被覆
キャリアを構成する樹脂と電荷制御剤との組み合わせに
応じて、アルコール系、エーテル系、ケトン系、エステ
ル系、アミド系、或いはこれらの組み合わせ等の水混和
性溶媒が使用されるが、電荷制御剤を良く溶解し、一方
樹脂を溶解しにくいという点では、炭素数7以下のアル
コール系溶媒、特にメタノールが好ましい。これらの有
機溶媒は、水との親和性が大きく、通常除去不能の量の
水を含有している。この水分を、イオンへの解離に利用
してもよいし、積極的に水を添加してもよい。
(Measurement conditions) In the present invention, as the solvent, any water-containing water-miscible organic solvent that does not dissolve the resin but does dissolve the charge control agent is used. As the solvent to be used, a water-miscible solvent such as an alcohol type, an ether type, a ketone type, an ester type, an amide type, or a combination thereof is used depending on the combination of the resin constituting the toner or the coated carrier and the charge control agent. However, alcohol solvents having 7 or less carbon atoms, particularly methanol, are preferable in that they can dissolve the charge control agent well and hardly dissolve the resin. These organic solvents have a high affinity for water and usually contain a non-removable amount of water. This water may be used for dissociation into ions, or water may be positively added.

【0029】溶剤中に分散させるトナー或いは被覆キャ
リアの濃度は、含有される電荷制御剤の濃度や、測定時
間によっても相違するが、一般的に言って、1.33乃
至33.3g/l、特に3.33乃至13.33g/l
の範囲にあるのがよい。また、測定時間は、最終的に経
時による電位差がある値に飽和するようなものである
が、一般には、5乃至30分間程度の測定で十分であ
る。
The concentration of the toner or coated carrier dispersed in the solvent varies depending on the concentration of the charge control agent contained and the measuring time, but generally speaking, 1.33 to 33.3 g / l, Especially 3.33 to 13.33 g / l
It should be in the range of. Further, the measurement time is such that the potential difference over time eventually saturates at a certain value, but generally, a measurement of about 5 to 30 minutes is sufficient.

【0030】電位差滴定は、従来この用途に使用されて
いる任意の電極を使用して行われるが、ガラス電極を使
用して行うのが好ましい。滴定装置も、任意の装置でよ
いが、本実施例では、京都電子工業社製の電位差滴定装
置を使用した。
The potentiometric titration is performed using any of the electrodes conventionally used for this application, but is preferably performed using a glass electrode. The titration device may be any device, but in this example, a potentiometric titration device manufactured by Kyoto Electronics Manufacturing Co., Ltd. was used.

【0031】(測定試料)本発明で測定すべき試料は、
少なくとも表面が電荷制御剤を含有する樹脂組成物で形
成されている限り、任意のトナー或いはキャリアであっ
てよい。電荷制御剤は、金属錯塩染料からなる負電荷制
御剤である場合に、本発明は特に有用であるが、本発明
はこの場合に限定されず、他の負電荷制御剤や、正の電
荷制御剤の場合にも有利に適用できる。このことは、p
H測定において、酸の測定のみならず、アルカリの測定
も可能なことから容易に了解されよう。
(Measurement Sample) The sample to be measured in the present invention is
Any toner or carrier may be used as long as at least the surface thereof is formed of a resin composition containing a charge control agent. The present invention is particularly useful when the charge control agent is a negative charge control agent composed of a metal complex salt dye, but the present invention is not limited to this case, and other negative charge control agents and positive charge control agents can be used. It can also be advantageously applied to agents. This is p
It can be easily understood that the H measurement can measure not only acid but also alkali.

【0032】(表面濃度及び表面積の算出)電位差法で
得られる溶解曲線から表面濃度及び表面積を算出するに
は、表面濃度については、飽和電位を求める事により溶
解曲線の式から表面濃度が算出できる。表面積について
は、表面濃度と物質固有定数Kと溶解飽和時間より、算
出できる。
(Calculation of Surface Concentration and Surface Area) In order to calculate the surface concentration and surface area from the dissolution curve obtained by the potentiometric method, the surface concentration can be calculated from the equation of the dissolution curve by determining the saturation potential. .. The surface area can be calculated from the surface concentration, the substance specific constant K, and the dissolution saturation time.

【0033】(実施例)本発明を次の実施例で更に具体
的に説明する。「図1」の装置を用いて、サンプルは下
記に示す吸光度法による表面染料濃度が同一のトナー
(電荷制御剤の分子量M=670、電荷制御剤の溶解速
度定数K=2.75×10-4)を用いて電位差測定(溶
媒量V=0.15(l))を行った結果を図5に示す。
(Examples) The present invention will be described in more detail by the following examples. Using the apparatus shown in FIG. 1, the sample is a toner having the same surface dye concentration by the absorbance method shown below (charge control agent molecular weight M = 670, charge control agent dissolution rate constant K = 2.75 × 10 FIG. 5 shows the result of the potentiometric measurement (solvent amount V = 0.15 (l)) using 4 ).

【0034】[0034]

【表2】 ──────────────────── サンプル 表面染料濃度(absorbance) ──────────────────── トナーA 0.1262 トナーB 0.1257 ────────────────────[Table 2] ──────────────────── Sample surface dye concentration (absorbance) ──────────────────── Toner A 0.1262 Toner B 0.1257 ─────────────────────

【0035】図5の溶解曲線より、E0 =−491(m
V)、B=52(mV/pH)、E max.=−277(m
V)であり、「数1」式より、表面濃度C0 を求めた。
また、図5の溶解曲線より溶解飽和時間を求め、「数
2」式より表面積S0 を求めた。その結果を下記表に示
す。
From the dissolution curve of FIG. 5, E0= -491 (m
V), B = 52 (mV / pH), E max.= -277 (m
V), and the surface concentration C0I asked.
Further, the dissolution saturation time was calculated from the dissolution curve in FIG.
2 ”formula, surface area S0I asked. The results are shown in the table below.
You

【0036】[0036]

【表3】 ──────────────────────────────────── サンプル t∞(min.) C0(mol/l) K S0 ──────────────────────────────────── トナーA 10.0 7.7 ×10-5 2.75×10-4 8.4×10-2 トナーB 15.9 7.7 ×10-5 2.75×10-4 5.3×10-2 ────────────────────────────────────[Table 3] ──────────────────────────────────── Sample t ∞ (min.) C 0 ( mol / l) K S 0 ──────────────────────────────────── toner A 10.0 7.7 × 10 - 5 2.75 × 10 -4 8.4 × 10 -2 Toner B 15.9 7.7 × 10 -5 2.75 × 10 -4 5.3 × 10 -2 ────────────────────── ───────────────

【0037】以上より、本発明により電荷制御剤の表面
濃度及び表面積が求まる事が了解される。また、吸光度
法による表面染料濃度が同じサンプル(トナーA,トナ
ーB)においても電荷制御剤の表面積は異なっているこ
とが了解される。
From the above, it is understood that the surface concentration and surface area of the charge control agent can be determined by the present invention. It is also understood that the surface area of the charge control agent is different even in the samples (toner A and toner B) having the same surface dye concentration by the absorbance method.

【0038】[0038]

【発明の効果】本発明によれば、電荷制御剤を含有する
樹脂組成物で少なくとも表面が構成されたトナー或いは
キャリヤを、樹脂を溶解しないが電荷制御剤を溶解する
有機溶媒に分散させて、電荷制御剤の溶解に伴う電位差
測定を行うことにより、得られる溶解曲線から、トナー
等の表面に存在する電荷制御剤の濃度のみならず、その
分散状態での表面積を、精度よく、しかも数値化された
データとして測定する事が可能となり、これにより、ト
ナー等の製造及び研究開発に際して、トナー帯電特性等
と、製造条件等との関連をより詳細に検討し得るように
なる。
According to the present invention, a toner or carrier at least the surface of which is composed of a resin composition containing a charge control agent is dispersed in an organic solvent which does not dissolve the resin but dissolves the charge control agent, By measuring the potential difference associated with the dissolution of the charge control agent, not only the concentration of the charge control agent present on the surface of the toner, etc., but also the surface area in the dispersed state can be accurately and numerically analyzed from the obtained dissolution curve. As a result, it becomes possible to measure in more detail the relationship between the toner charging characteristics and the manufacturing conditions when manufacturing and researching and developing the toner and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による電位差滴定を説明するための配
置図である。
FIG. 1 is a layout diagram for explaining potentiometric titration according to the present invention.

【図2】 電荷制御剤配合トナー及び未配合トナーにつ
いて、電位差滴定を行った結果を示すグラフであって、
横軸は時間を表し、縦軸は電位差を表す。
FIG. 2 is a graph showing the results of potentiometric titration of a toner containing a charge control agent and a toner containing no charge control agent.
The horizontal axis represents time and the vertical axis represents the potential difference.

【図3】 電荷制御剤の重量を変更して電位差測定の最
終電位(縦軸)と電荷制御剤の濃度の対数(横軸)との
関係をプロットしたグラフである。
FIG. 3 is a graph plotting the relationship between the final potential (vertical axis) and the logarithm of the concentration of the charge control agent (horizontal axis) when the weight of the charge control agent is changed.

【図4】 同一電荷制御剤の粒径を変えたもの、即ち平
均粒径が4μmの電荷制御剤(CCA−A)と平均粒径
が7μm(CCA−B)について、電位差滴定を行った
結果を示すグラフである。
FIG. 4 shows the results of potentiometric titration of the same charge control agent having different particle sizes, that is, a charge control agent (CCA-A) having an average particle size of 4 μm and an average particle size of 7 μm (CCA-B). It is a graph which shows.

【図5】 実験例の結果の溶解曲線である。FIG. 5 is a dissolution curve as a result of an experimental example.

【記号の説明】 1は測定用容器、2は有機溶媒、3は
ガラス電極、4は参照電極、5は電位差計、6は測定す
べきトナー或いはキャリアである。
[Explanation of Symbols] 1 is a measuring container, 2 is an organic solvent, 3 is a glass electrode, 4 is a reference electrode, 5 is a potentiometer, and 6 is a toner or carrier to be measured.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電荷制御剤を含有する樹脂組成物で少な
くとも表面が構成されたトナー或いはキャリヤを、樹脂
を溶解しないが電荷制御剤を溶解する水含有水混和性有
機溶媒に分散させて、電荷制御剤の溶解に伴う電位差測
定を行い、得られる溶解曲線から電荷制御剤の表面濃度
と電荷制御剤の表面積とを評価することを特徴とする現
像剤中の電荷制御剤表面分散状態の測定方法。
1. A toner or carrier, at least the surface of which is composed of a resin composition containing a charge control agent, is dispersed in a water-containing water-miscible organic solvent which does not dissolve the resin but does dissolve the charge control agent. A method for measuring the surface dispersion state of a charge control agent in a developer, which comprises measuring the potential difference associated with dissolution of the control agent, and evaluating the surface concentration of the charge control agent and the surface area of the charge control agent from the resulting dissolution curve. ..
【請求項2】 溶解したトナー表面の電荷制御剤の全濃
度に関する式が 【数1】Emax.=E0 −B*log(C0 ) 式中 C0 :トナー表面の電荷制御剤全量が溶解した時
の濃度(mol/l) Emax.:溶解飽和電位(mV) E0 :ガラス電極のpH1の基準電位(mV) B :電位勾配(mV/pH) また、E0 、Bはガラス電極装置の定数で表されるもの
であり、Emax.に基づいて電荷制御剤の表面濃度C0
評価する請求項1記載の測定方法。
2. An equation relating to the total concentration of the charge control agent on the dissolved toner surface is represented by the following formula: E max. = E 0 −B * log (C 0 ) where C 0 : the total amount of the charge control agent on the toner surface is Concentration when dissolved (mol / l) E max . : Dissolution saturation potential (mV) E 0 : Reference potential (mV) of pH 1 of glass electrode B: Potential gradient (mV / pH) Further, E 0 and B are glass The measurement method according to claim 1, wherein the surface concentration C 0 of the charge control agent is evaluated based on E max .
【請求項3】 溶解したトナー表面の電荷制御剤の表面
積に関する式が 【数2】t∞=3C0 /KS0 式中 S0 :トナー表面の電荷制御剤の全表面積
(m2 ) K :溶解速度定数 t∞:溶解飽和時間(min.) で表されるものであり、t∞、K、C0 に基づいてトナ
ー表面に存在する電荷制御剤の表面積S0 を評価する請
求項1記載の測定方法。
3. An equation relating to the surface area of the charge control agent on the surface of the dissolved toner is as follows: t ∞ = 3C 0 / KS 0 where S 0 : total surface area (m 2 ) K of the charge control agent on the toner surface: The dissolution rate constant t ∞ is represented by a dissolution saturation time (min.), And the surface area S 0 of the charge control agent present on the toner surface is evaluated based on t ∞, K, and C 0. Measuring method.
【請求項4】 電荷制御剤が金属錯塩染料である請求項
1記載の測定方法。
4. The measuring method according to claim 1, wherein the charge control agent is a metal complex salt dye.
【請求項5】 有機溶媒が炭素数7以下のアルコールで
ある請求項1記載の測定方法。
5. The measuring method according to claim 1, wherein the organic solvent is an alcohol having 7 or less carbon atoms.
【請求項6】 電位差測定をガラス電極で行う請求項1
記載の測定方法。
6. A glass electrode for measuring the potential difference.
The measurement method described.
JP3307988A 1991-11-22 1991-11-22 Method for measuring charge control agent dispersed state in developer Pending JPH05142195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3307988A JPH05142195A (en) 1991-11-22 1991-11-22 Method for measuring charge control agent dispersed state in developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3307988A JPH05142195A (en) 1991-11-22 1991-11-22 Method for measuring charge control agent dispersed state in developer

Publications (1)

Publication Number Publication Date
JPH05142195A true JPH05142195A (en) 1993-06-08

Family

ID=17975556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3307988A Pending JPH05142195A (en) 1991-11-22 1991-11-22 Method for measuring charge control agent dispersed state in developer

Country Status (1)

Country Link
JP (1) JPH05142195A (en)

Similar Documents

Publication Publication Date Title
Heyrovský et al. Practical polarography: an introduction for chemistry students
Zhang et al. Variation of the heterogeneous electron-transfer rate constant with solution viscosity: reduction of aqueous solutions of [(EDTA) chromium (III)]-at a mercury electrode
Klusmann et al. pH-microscopy—theoretical and experimental investigations
Izquierdo et al. Scanning electrochemical microscopy for the investigation of corrosion processes: measurement of Zn2+ spatial distribution with ion selective microelectrodes
Lomako et al. Sulfate-selective electrode and its application for sulfate determination in aqueous solutions
Ugo et al. Trace iron determination by cyclic and multiple square‐wave voltammetry at nafion coated electrodes. applicationto pore‐water analysis
Denuault et al. Potentiometric probes
Pei et al. A comparative study of electroanalytical methods for detecting manganese in drinking water distribution systems
Palmqvist et al. In SituVoltammetric Determinations of Metal Ions in Goethite Suspensions: Single Metal Ion Systems
Lee Electrochemical phenomena at a rotating mercury electrode. I. Reduction of metal ions
Ni et al. Simultaneous determination of mixtures of metal ions by complexometric titration and multivariate calibration
JPH05142195A (en) Method for measuring charge control agent dispersed state in developer
Booman et al. Measurement of Diffusion Currents at Clindrical Electrodes Using a Current Integrator
Scholz et al. The anodic dissolution of dental amalgams studied with abrasive stripping voltammetry
Labuda et al. Theory and application of chemically modified carbon paste electrode to copper speciation determination
Cheng Recent development of non-faradaic potentiometry
Dos Santos et al. Interaction of lead (II) with sediment particles: a mercury microelectrode study
Elving et al. Polarographic behavior of organic compounds
JP3084109B2 (en) Measuring device for surface area or concentration of electrolyte present on solid surface
JPH06347444A (en) Method and device for determining ph of liquid
US3438871A (en) Method and apparatus for titrations
Heinze Determination of Diffusion Coefficients by Electrochemical Current‐Time Measurements
Tutunji Determination of formation constants of metal complexes by potentiometric stripping analysis
Kahlert Potentiometry
CN111965322A (en) Data processing method, device and equipment for water quality monitoring and readable storage medium