JPH05142115A - Insulating device for deep sea bottom sample sampling container - Google Patents

Insulating device for deep sea bottom sample sampling container

Info

Publication number
JPH05142115A
JPH05142115A JP3301869A JP30186991A JPH05142115A JP H05142115 A JPH05142115 A JP H05142115A JP 3301869 A JP3301869 A JP 3301869A JP 30186991 A JP30186991 A JP 30186991A JP H05142115 A JPH05142115 A JP H05142115A
Authority
JP
Japan
Prior art keywords
air
pressure
sea
air bag
sea bottom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3301869A
Other languages
Japanese (ja)
Other versions
JP2594481B2 (en
Inventor
Yoshito Tsuji
義人 辻
Masanori Kyo
正憲 許
Hideaki Yuki
英昭 結城
Shigeru Nagai
茂 長井
Shigetoshi Ishibashi
繁利 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIYO KAGAKU GIJUTSU CENTER
JFE Engineering Corp
Original Assignee
KAIYO KAGAKU GIJUTSU CENTER
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIYO KAGAKU GIJUTSU CENTER, NKK Corp, Nippon Kokan Ltd filed Critical KAIYO KAGAKU GIJUTSU CENTER
Priority to JP3301869A priority Critical patent/JP2594481B2/en
Publication of JPH05142115A publication Critical patent/JPH05142115A/en
Application granted granted Critical
Publication of JP2594481B2 publication Critical patent/JP2594481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To enable a device to be light by creating a high-voltage air source by utilizing a water pressure of a sea bottom and then enclosing a mud sampler by forming a multiple air layer by introducing the compressed air to an air bag for insulation. CONSTITUTION:When a submarine reaches a specified sea bottom, a check valve 3 is opened due to the sea water pressure and sea water at the bottom of the sea flows into an air source tank 1. When the submarine rises to some extent after sampling a sample, a pressure of a surrounding sea water is reduced, thus enabling the check valve 3 to be closed, a high-pressure sea-water pressure of the sea bottom to be enclosed into the tank 1, and then air within an air bag 2 to be a high-pressure compressed air. The compressed air is allowed to flow to an air bag 9 for insulation through pressure-control valves 81-8n, thus enabling a mud sampler 10 to be enclosed with a multiple air layers for insulation. At this time, a setting pressure of the control valves 81-8n is set so that the air layer may be inflated from inside successively for reduction in pressure due to surfacing of the submarine, thus enabling each air layer to be uniform in thickness corresponding to a sea-water depth and an insulation effect to be improved. The tank 1, the air bag 2, etc., can be made of plastic, thus enabling the device to be light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、深海底の泥試料を採集
する採泥器を地上に引き上げるときに使用する保冷装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooler used when a mud collector for collecting mud samples on the deep sea floor is pulled up to the ground.

【0002】[0002]

【従来の技術】海底の微生物を探査研究するため、潜水
船を利用して海底の泥試料を採集し培養することが計画
されている。この場合、採泥器内に採集された泥試料は
地上の培養装置へ搬入するまでの間、採取海域の圧力及
び温度に保つ必要がある。このうち圧力のほうは採泥器
の内部を高圧に保つことで採取海域の圧力を維持する構
造となっている。温度のほうは採泥器を一般には保冷箱
に入れて保つ。保冷箱を形成する断熱材料には、深海の
高圧に耐える保冷効果のある材料として、例えばシンタ
ティックフォーム(商品名で、マイクロ中空ガラスボー
ルを合成樹脂で固めたものである)が開発されている
が、かかる耐圧保冷材は比重が大であるため、所要の保
冷能力を得るには重量が潜水船の搭載能力を超え、実用
的な保冷箱の設計が困難であった。また、氷、化学反応
を利用した吸熱材等も考えられるが、いずれの場合も単
位重量当りの吸熱容量の不足から全体重量が大となり実
用的でない。
2. Description of the Related Art In order to investigate and research microorganisms on the seabed, it is planned to collect and culture mud samples on the seabed using a submersible. In this case, the mud sample collected in the mud sampler must be kept at the pressure and temperature of the sampling sea area until it is carried into the culture device on the ground. Of these, the pressure is structured so that the pressure in the sampling area is maintained by keeping the inside of the mud collector at a high pressure. For temperature, the mud collector is generally kept in a cool box. As a heat insulating material forming a cool box, for example, syntactic foam (a product name is a micro hollow glass ball cemented with a synthetic resin) has been developed as a material with a cool effect that can withstand high pressure in the deep sea. However, since the pressure-resistant cold insulating material has a large specific gravity, the weight exceeds the loading capacity of the submarine to obtain the required cold insulating capacity, and it is difficult to design a practical cold insulating box. In addition, ice, an endothermic material utilizing a chemical reaction, and the like are conceivable, but in any case, the total weight is large due to the lack of the endothermic capacity per unit weight, which is not practical.

【0003】[0003]

【発明が解決しようとする課題】潜水船の搭載能力は現
在のところ空中重量で50kgであり、採泥器の設計総
重量は約30kgが限界となっている。したがって、保
冷箱の設計重量は20kg以内におさえなければならな
いが、上記のシンタティックフォームを使用するもので
は設計重量が約50kgとなって要求を満足させること
ができない。そこで、より軽量な構造の保冷装置の開発
が要求されていた。
At present, the loading capacity of a submersible is 50 kg in air weight, and the total design weight of the mud collector is limited to about 30 kg. Therefore, the design weight of the cold insulation box must be kept within 20 kg, but the design weight of the above-mentioned syntactic foam is about 50 kg, which cannot satisfy the requirement. Therefore, it has been required to develop a cooler device having a lighter structure.

【0004】本発明は、上記要求に応えるためになされ
たもので、海底の水圧を利用して高圧の空気源をつく
り、この圧縮空気を保冷用空気袋に導入し多層の空気層
を形成させて採泥器を包み込むことにより軽量化を計っ
た深海底試料採集容器用保冷装置を提供することを目的
とする。
The present invention has been made in order to meet the above-mentioned requirements, and creates a high-pressure air source by utilizing the water pressure of the seabed, and introduces this compressed air into a cooling air bag to form a multi-layered air layer. An object of the present invention is to provide a cold storage device for deep sea bottom sample collection containers, which is lightened by enclosing a mud collector.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る深海底試料採集容器用保冷装置は、空
気源タンクと、これに接続された保冷用空気袋とから構
成され、空気源タンクは海底の水圧を導入し封じ込める
逆止弁を備え、これによって内部の空気を圧縮し蓄圧す
る機能を有し、好ましくは内部に空気袋を備えている。
また、保冷用空気袋は圧力調整弁を介して空気源タンク
に接続され、採泥器の全面を覆うように薄膜で形成され
る多層の空気層を有することを特徴とするものである。
In order to achieve the above object, a cold storage device for a deep sea bottom sample collection container according to the present invention comprises an air source tank and a cold air bag connected to the tank. The air source tank is provided with a check valve for introducing and containing water pressure on the seabed, thereby having a function of compressing and accumulating internal air, and preferably having an air bag inside.
Further, the cool air bag is characterized in that it is connected to the air source tank via a pressure control valve and has a multi-layered air layer formed of a thin film so as to cover the entire surface of the mud collector.

【0006】また、保冷用空気袋の多層の空気層はそれ
ぞれ圧力調整弁を介して空気源タンクに接続され、内側
から順次膨脹するように各圧力調整弁の開弁圧力が設定
されており、この開弁圧力は潜水船の浮上に伴う減圧に
対応するようになっていることを特徴とする。
Further, the multi-layered air layers of the cold air bladder are connected to the air source tanks via the pressure regulating valves, respectively, and the opening pressure of each pressure regulating valve is set so as to sequentially expand from the inside, This valve opening pressure is characterized in that it corresponds to the decompression caused by the floating of the submarine.

【0007】なお、保冷用空気袋は採泥器を円筒状に、
あるいは球状に包み込む一対の対向配置されたものから
なり、もしくは直接採泥器の各面に袋体を取り付ける構
成としたものである。
The air bag for cold insulation has a cylindrical mud collector,
Alternatively, it is composed of a pair of sphere-shaped wrapping members arranged opposite to each other, or the bag body is directly attached to each surface of the mud collector.

【0008】[0008]

【作用】本発明の保冷装置は潜水船の外壁に装備されて
おり、潜水船が所定の海底に達したとき、その海水圧で
逆止弁が開き、海底の海水が空気源タンク内に流入す
る。試料採取後、潜水船がある程度上昇すると、周囲海
水の圧力が減圧するため、これにより逆止弁が閉じ、空
気源タンク内に海底の高圧の海水圧が封じ込められので
空気袋内の空気は高圧の圧縮空気となる。この圧縮空気
を圧力調整弁を介して保冷用空気袋に流入させ、多層の
空気層で採泥器を包み込み保冷する。またこのとき、圧
力調整弁の設定圧を空気層が内側から順に膨脹するよう
に設定しておき、さらに潜水船の浮上に伴う減圧に対応
させて設定することにより、各空気層は海水深度に対応
した略均等の厚さになる。このため単層の空気袋と異な
り空気溜りの偏りが生じないので保冷効果が向上する。
また、空気袋内の自然循環を各層ごとに独立にできるの
で保冷効果が上がる。以上の空気源タンク、保冷用空気
袋等はプラスチック製にできるので、本保冷装置は軽量
なものになる。
The cold storage device of the present invention is mounted on the outer wall of a submersible, and when the submersible reaches a predetermined seabed, the check valve opens due to the seawater pressure, and seawater on the seabed flows into the air source tank. To do. When the submarine rises to a certain extent after sampling, the pressure of the surrounding seawater is reduced, which closes the check valve and traps the high-seawater pressure of the seabed in the air source tank. It becomes compressed air. This compressed air is made to flow into a cold air bladder via a pressure control valve, and a mud collector is wrapped in a multi-layered air layer to keep cold. At this time, the set pressure of the pressure control valve is set so that the air layer expands in order from the inside, and by setting it so as to correspond to the decompression due to the rising of the submarine, each air layer is set to the seawater depth. Corresponding substantially uniform thickness. For this reason, unlike the single-layer air bag, the unevenness of the air pool does not occur, so that the cold insulation effect is improved.
In addition, the natural circulation in the air bag can be made independent for each layer, which improves the cold insulation effect. Since the air source tank, the cooling air bag, and the like described above can be made of plastic, the cooling device is lightweight.

【0009】[0009]

【実施例】図1は本発明の一実施例を示す斜視図であ
る。図において、1は空気源タンクで、内部に空気袋2
を、外面に逆止弁3,ベント弁4及びドレン弁5を備え
ている。空気袋2は配管6で接続されており、その他端
は止め弁7,圧力調整弁81 ,82 ,…8n を介して一
対の保冷用空気袋9にそれぞれ接続されている。保冷用
空気袋9は支持フレーム11の両側に対向して折り畳ま
れており、保冷時には円筒状に膨脹して支持フレーム1
1上に取り付けられた採泥器10を包囲するようになっ
ている。各々の保冷用空気袋9は円筒部分91と円板部
分92とからなり、各部分91,92は多層の空気層を
形成するように薄膜で区画されている。そして、それぞ
れの空気層に内側から順に空気を送るように圧力調整弁
1 ,82 ,…8nが取り付けられている(これについ
てはさらに後述する)。圧力調整弁81 ,82 ,…8n
は図1では簡明のため円板部分92に取り付けたものを
示しており、円筒部分91のものは省略されている。以
上の空気源タンク1,保冷用空気袋9等からなる本保冷
装置は潜水船の外壁に取り付けられるものである。
FIG. 1 is a perspective view showing an embodiment of the present invention. In the figure, 1 is an air source tank, and an air bag 2 is provided inside.
Is provided with a check valve 3, a vent valve 4 and a drain valve 5 on the outer surface. The air bag 2 is connected by a pipe 6, and the other end thereof is connected to a pair of cold air bags 9 via a stop valve 7 and pressure control valves 8 1 , 8 2 , ... 8 n . The cooling air bag 9 is folded so as to face both sides of the support frame 11, and expands into a cylindrical shape during cooling to support the support frame 1.
It is designed to surround the mud collector 10 mounted on the top 1. Each cold air bladder 9 is composed of a cylindrical portion 91 and a disc portion 92, and each portion 91, 92 is divided into thin films so as to form a multi-layered air layer. Further, pressure adjusting valves 8 1 , 8 2 , ... 8 n are attached so as to sequentially send air to the respective air layers (this will be described later). Pressure control valves 8 1 , 8 2 , ... 8 n
In FIG. 1, the one attached to the disc portion 92 is shown for the sake of simplicity, and the cylindrical portion 91 is omitted. The cold insulation device including the air source tank 1, the cold air bladder 9 and the like is mounted on the outer wall of the submersible.

【0010】次に、この実施例の動作を説明する。図2
はこの保冷装置の潜水前の状態を示す側面図である。す
なわち、空気源タンク1は空気袋2内の空気で満たされ
ており、保冷用空気袋9は両側に開かれている。図3は
所定の深海に達したときの状態図であり、このとき海水
の圧力で逆止弁3が開き、空気源タンク1内に海水が流
入し、その圧力で空気袋2を圧縮する。空気袋2は潜水
深度に逆比例した容積となり、高圧の圧縮空気が得られ
る。また、採泥器10内には潜水船に装備されたマニピ
ュレータを使用して海底の泥試料が採集され、かつ高圧
に保持される。
Next, the operation of this embodiment will be described. Figure 2
[Fig. 3] is a side view showing a state of the cold insulating device before diving. That is, the air source tank 1 is filled with the air in the air bag 2, and the cooling air bag 9 is opened on both sides. FIG. 3 is a state diagram when reaching a predetermined deep sea. At this time, the check valve 3 is opened by the pressure of the seawater, the seawater flows into the air source tank 1, and the air bag 2 is compressed by the pressure. The air bag 2 has a volume inversely proportional to the diving depth, and high-pressure compressed air can be obtained. In addition, a mud sample on the seabed is collected in the mud collector 10 by using a manipulator equipped on the submersible vessel, and is maintained at a high pressure.

【0011】図4は試料採取後、潜水船が上昇を開始
し、途中のある深さに達したときの状態を示す。このと
き周囲海水の圧力は低下するが、逆止弁3が閉じるた
め、流入海水は流出できず空気源タンク1内に圧力が封
じ込められる。その結果、空気袋2内の空気は膨脹でき
ず空気源タンク1内には封入海水圧力による空気圧が蓄
圧されることになる。この空気圧は、配管6の止め弁7
を開くと、まず保冷用空気袋9の第1空気層91 の圧力
調整弁81 に対し周囲海水圧力との間で差圧を生じさせ
る。そして、所定の差圧に達すると、弁膜が破れて圧力
調整弁81 が開き、空気袋2内の圧縮空気が保冷用空気
袋9の第1の空気層91 に流れ込んで周囲海水の圧力と
つり合うまでこれを膨脹させる。これにより保冷用空気
袋9の折り畳まれた円筒部分91は互いに対向方向に伸
び、開口端どうしが突き当たり、その中に採泥器10を
包み込む。
FIG. 4 shows a state in which the submersible has started to ascend after the sampling and reaches a certain depth on the way. At this time, the pressure of the surrounding seawater decreases, but since the check valve 3 closes, the inflowing seawater cannot flow out and the pressure is confined in the air source tank 1. As a result, the air in the air bag 2 cannot be expanded, and the air pressure due to the enclosed seawater pressure is accumulated in the air source tank 1. This air pressure is applied to the stop valve 7 of the pipe 6.
When opened, first, a pressure difference is generated between the pressure regulating valve 8 1 of the first air layer 9 1 of the cold air bladder 9 and the ambient seawater pressure. Then, when a predetermined differential pressure is reached, the valve membrane is broken and the pressure adjusting valve 8 1 is opened, and the compressed air in the air bag 2 flows into the first air layer 9 1 of the cold air bag 9 to cause the pressure of the surrounding seawater. Inflate this until it is balanced. As a result, the folded cylindrical portions 91 of the cooling air bag 9 extend in the directions opposite to each other, the open ends abut, and the mud collector 10 is wrapped therein.

【0012】さらに浅い深度に達すると、図5に示すよ
うに保冷用空気袋9の第1の空気層91 が膨脹限界に達
し、そのときの空気圧がある設定圧を超えると、上と同
様に第2の空気層92 の圧力調整弁82 の弁膜が破れ、
圧力調整弁82 が開き、第2の空気層92 に空気が流れ
込んで周囲海水の圧力とつり合うまでこれを膨脹させ
る。以後同様に、潜水船が上昇するにつれて次々に圧力
調整弁83 ,84 ,…が開いていき、第3の空気層
3 ,第4の空気層94 ,…の順に空気が流れ込んで膨
脹する。そして、潜水船が海面上に浮上するまでの間に
は図6に示すように最後の空気層9n が膨脹しており、
採泥器10は完全に多層の空気層91 ,92 ,…9n
包み込まれ保冷される。
At a shallower depth, as shown in FIG. 5, the first air layer 9 1 of the cooling bladder 9 reaches the expansion limit, and when the air pressure at that time exceeds a certain set pressure, the same as above. The valve membrane of the pressure regulating valve 8 2 of the second air layer 9 2 ruptures,
The pressure regulating valve 8 2 opens and air flows into the second air layer 9 2 to inflate it until it balances the pressure of the surrounding seawater. After that, similarly, as the submersible ascends, the pressure regulating valves 8 3 , 8 4 , ... Open one after another, and the air flows in the order of the third air layer 9 3 , the fourth air layer 9 4 ,. Inflate. The last air layer 9 n is inflated as shown in FIG. 6 until the submarine floats above the sea surface.
The mud collector 10 is completely wrapped in a plurality of air layers 9 1 , 9 2 , ... 9 n and kept cool.

【0013】このように空気層を多層にする理由は次の
とおりである。 (1)各層ごとに深度に対応した略均等な厚さの空気層
を形成させるためである。単一層の空気袋では空気量が
袋の容量近くに達するまでの間に空気溜りの偏りが生じ
保冷効果が落ちるからである。 (2)空気袋内の自然循環が各層ごとに独立に行われる
ので保冷効果が上がる。
The reason why the air layer is multi-layered in this way is as follows. (1) This is to form an air layer having a substantially uniform thickness corresponding to the depth for each layer. This is because in a single-layer air bag, the air pool is biased until the amount of air reaches near the capacity of the bag, and the cold insulation effect drops. (2) Since the natural circulation in the air bag is performed independently for each layer, the cooling effect is improved.

【0014】次に、各空気層と圧力調整弁との接続方法
を図7,図8に示す。図7は直列接続方式の例であり、
各調整弁81 ,82 ,…8n と接続配管の抵抗があるの
で、各調整弁の開弁差圧ΔP1 ,ΔP2 ,…ΔPn を等
しくとっても各空気層91,92 ,…9n は内側から順
次膨脹していくことになる。図8は並列接続方式の例で
あり、各空気層91 ,92 ,…9n を内側から順に膨脹
させるには各調整弁81 ,82 ,…8n の開弁差圧をΔ
1 <ΔP2 <…<ΔPn と外側にいくにつれ順に大き
く設定する必要がある。
Next, FIGS. 7 and 8 show how to connect each air layer to the pressure regulating valve. FIG. 7 shows an example of the serial connection method,
Since there is resistance between each regulating valve 8 1 , 8 2 , ... 8 n and the connecting pipe, even if the opening differential pressure ΔP 1 , ΔP 2 , ... ΔP n of each regulating valve is made equal, each air layer 9 1 , 9 2 , ... 9 n will expand sequentially from the inside. Figure 8 is an example of parallel connection type, each of the air layer 9 1, 9 2, ... 9 each control valve 8 1 to n from the inner inflate sequentially, 8 2, the valve opening differential pressure ... 8 n delta
It is necessary to set P 1 <ΔP 2 <... <ΔP n in order toward the outer side.

【0015】図9は保冷用空気袋を球形と仮定した場合
の海水深度(圧力)と空気層の厚さをグラフに示したも
のである。また海水温度の実測値も記入してある。空気
層の内径は1m,封入される空気量は1Nm3 とした。
海水温度θは1000m位までは1〜2℃で略一定であ
るが、それより浅くなるにつれ温度が上昇し、空気層の
厚さT(mm)の変化に似た傾向を示す。したがって、本
実施例においても圧力調整弁81 ,82 ,…8n により
海水深度に対応して図9に示すように空気層の厚さが変
化し、保冷効果が上がる。
FIG. 9 is a graph showing the seawater depth (pressure) and the thickness of the air layer when the cold air bag is assumed to be spherical. In addition, the measured value of seawater temperature is also entered. The inner diameter of the air layer was 1 m, and the amount of enclosed air was 1 Nm 3 .
The seawater temperature θ is approximately 1 to 2 ° C. up to about 1000 m, but the temperature rises as it becomes shallower and shows a tendency similar to the change in the thickness T (mm) of the air layer. Therefore, also in this embodiment, the pressure regulating valves 8 1 , 8 2 , ... 8 n change the thickness of the air layer in accordance with the depth of seawater as shown in FIG.

【0016】次に、図10は本発明の他の実施例を示す
もので、保冷用空気袋9を極く薄い軟らかい膜でつくっ
た場合である。この実施例では、保冷用空気袋9を寝か
せた状態で折り畳むことができるので、試料採取時の作
業性が向上する。この場合、図11に示すように初層の
空気層91 は採泥器10に引掛からないようにガイドリ
ングに形成し、次層以降で採泥器10を覆うようにする
(図12参照)。
Next, FIG. 10 shows another embodiment of the present invention, in which the cooling air bag 9 is made of an extremely thin soft film. In this embodiment, since the cold air bag 9 can be folded while lying down, the workability at the time of sampling is improved. In this case, an air layer 9 first root pass, as shown in FIG. 11 is formed on the guide ring so as not from hooking on bottom sampler 10, to cover the bottom sampler 10 in the next layer after (see FIG. 12 ).

【0017】図13は本発明のさらに他の実施例を示す
もので、保冷用空気袋9を採泥器10の横方向から開閉
させるようにしたものである。図13は折畳時、図14
は保冷完了時の状態を示す。この実施例では保冷用空気
袋9が両端を共通の軸受14に軸支された球殻状の袋か
らなり、空気を送り込むことによって膨脹し横方向から
回動して閉じるようになっている。また、図15に示す
ように軸受14に内蔵したバネ(図示せず)によりこの
保冷用空気袋9を常に閉じる方向に付勢しておくことも
できる。これは試料採取後直ちに、つまり深海から保冷
したい場合に有効である。この場合は弓状の骨格部材1
5を複数本保冷用空気袋9の中に入れ、折畳時には図1
5,図16に示すようにレバー16でロックしておく。
17はレバー16のバネである。そしてレバー16のロ
ックを外せば、軸受14に内蔵されている捩じりバネに
より保冷用空気袋9は直ちに閉じ(図17参照)、その
後保冷用空気袋9内に空気を送り込む。
FIG. 13 shows still another embodiment of the present invention, in which the cooling air bag 9 is opened and closed from the lateral direction of the mud collector 10. FIG. 13 shows the state when folded.
Indicates the state when the cold insulation is completed. In this embodiment, the cooling air bladder 9 is a spherical shell-shaped bag whose both ends are pivotally supported by a common bearing 14, and is inflated by feeding air and pivoted in the lateral direction to be closed. Further, as shown in FIG. 15, a spring (not shown) built in the bearing 14 can always urge the cooling air bag 9 in the closing direction. This is effective immediately after sampling, that is, when it is desired to keep cold from the deep sea. In this case, a bow-shaped skeleton member 1
Put a plurality of 5 in the cooling air bag 9, and when folding,
5, It locks with the lever 16 as shown in FIG.
Reference numeral 17 is a spring of the lever 16. When the lever 16 is unlocked, the torsion bladder built into the bearing 14 immediately closes the cooling air bag 9 (see FIG. 17), and then air is sent into the cooling air bag 9.

【0018】図18は本発明のさらに他の実施例を示す
もので、保冷用空気袋9を直接採泥器10の各面に取り
付けたものである。図19は保冷完了状態を示す。
FIG. 18 shows still another embodiment of the present invention, in which the cooling air bag 9 is directly attached to each surface of the mud collector 10. FIG. 19 shows a cold insulation completed state.

【0019】[0019]

【発明の効果】以上のように本発明によれば、海底の海
水圧を利用して空気源をつくり、この高圧の圧縮空気を
保冷用空気袋に送り多層の空気層で採泥器を保圧するも
のであるから、プラスチック製にて構成することがで
き、保圧装置を著しく軽量にできる。また、保冷用空気
袋は海水深度に対応して内側から順次膨脹するとともに
自動的に採泥器を覆うようになっているから保冷効果が
良いものである。
As described above, according to the present invention, an air source is created by utilizing the seawater pressure of the seabed, and this high-pressure compressed air is sent to the cooling air bag to keep the mud collector in a multi-layered air layer. Since it is pressed, it can be made of plastic and the pressure-holding device can be remarkably lightweight. In addition, the air bag for cold insulation is inflated sequentially from the inside according to the depth of seawater and automatically covers the mud collector, so that the cold insulation effect is good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】上記実施例の潜水前の状態図である。FIG. 2 is a state diagram of the above embodiment before diving.

【図3】上記実施例の海底到達時の状態図である。FIG. 3 is a state diagram of the above-described embodiment when reaching the seabed.

【図4】上記実施例の第1の空気層膨脹時の状態図であ
る。
FIG. 4 is a state diagram when the first air layer is expanded in the above embodiment.

【図5】上記実施例の第2の空気層膨脹時の状態図であ
る。
FIG. 5 is a state diagram when the second air layer is expanded in the above embodiment.

【図6】上記実施例の保圧完了状態図である。FIG. 6 is a diagram of a pressure holding completion state of the above embodiment.

【図7】各空気層の圧力調整弁の直列接続方式を示す説
明図である。
FIG. 7 is an explanatory diagram showing a series connection method of pressure regulating valves for each air layer.

【図8】各空気層の圧力調整弁の並列接続方式を示す説
明図である。
FIG. 8 is an explanatory diagram showing a parallel connection system of pressure regulating valves for each air layer.

【図9】海水深度と空気層の厚さを示す線図である。FIG. 9 is a diagram showing seawater depth and air layer thickness.

【図10】本発明の他の実施例を示す斜視図である。FIG. 10 is a perspective view showing another embodiment of the present invention.

【図11】図19の実施例の第1空気層膨脹時の状態図
である。
FIG. 11 is a state diagram of the embodiment of FIG. 19 when the first air layer is expanded.

【図12】図19の実施例の次層膨脹時の状態図であ
る。
FIG. 12 is a state diagram of the embodiment of FIG. 19 when the next layer is expanded.

【図13】本発明のさらに他の実施例を示す斜視図であ
る。
FIG. 13 is a perspective view showing still another embodiment of the present invention.

【図14】図13の実施例の保圧完了状態図である。FIG. 14 is a diagram of a pressure holding completion state of the embodiment of FIG.

【図15】本発明のさらに他の実施例を示す斜視図であ
る。
FIG. 15 is a perspective view showing still another embodiment of the present invention.

【図16】図15の実施例のロック装置の説明図であ
る。
16 is an explanatory diagram of a lock device according to the embodiment of FIG.

【図17】図15の実施例の保圧完了状態図である。FIG. 17 is a diagram of a pressure holding completion state of the embodiment of FIG. 15.

【図18】本発明のさらに他の実施例を示す斜視図であ
る。
FIG. 18 is a perspective view showing still another embodiment of the present invention.

【図19】図18の実施例の保圧完了状態図である。FIG. 19 is a pressure-holding completed state diagram of the embodiment of FIG. 18.

【符号の説明】[Explanation of symbols]

1 空気源タンク 2 空気袋 3 逆止弁 6 配管 7 止め弁 81 ,82 ,…8n 圧力調整弁 9 保圧用空気袋 91 ,92 ,…9n 空気層 10 採泥器1 Air source tank 2 Air bag 3 Check valve 6 Piping 7 Stop valve 8 1 , 8 2 , ... 8 n Pressure adjusting valve 9 Pressure-holding air bag 9 1 , 9 2 , ... 9 n Air layer 10 Mud sampler

───────────────────────────────────────────────────── フロントページの続き (72)発明者 結城 英昭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 長井 茂 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 石橋 繁利 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Yuki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Day Steel Pipe Co., Ltd. (72) Shigeru Nagai 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Date (72) Inventor Shigetoshi Ishibashi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 海底の水圧を導入し封じ込める逆止弁を
備え、これによって内部の空気を圧縮し蓄圧する空気源
タンクと、 前記空気源タンクに圧力調整弁を介して接続され、採泥
器の全面を覆うように薄膜で形成される多層の空気層を
有する保冷用空気袋とを具備する深海底試料採集容器用
保冷装置。
1. A mud sampler, which is provided with a check valve for introducing and confining water pressure on the seabed, by which an air source tank for compressing and accumulating internal air and a pressure regulating valve are connected to the air source tank. A cold storage device for a deep sea bottom sample collection container, comprising a cold air bag having a multi-layered air layer formed of a thin film so as to cover the entire surface of the cold storage device.
【請求項2】 前記空気源タンクが前記保冷用空気袋に
接続された空気袋を内蔵していることを特徴とする請求
項1記載の深海底試料採集容器用保冷装置。
2. The cold storage device for a deep sea bottom sample collection container according to claim 1, wherein the air source tank has a built-in air bag connected to the cold storage air bag.
【請求項3】 前記圧力調整弁が前記保冷用空気袋の空
気層ごとに設けられ、該空気層を内側から順次膨脹させ
るように各圧力調整弁の開弁圧力を設定したことを特徴
とする請求項1記載の深海底試料採集容器用保冷装置。
3. The pressure control valve is provided for each air layer of the cold air bladder, and the opening pressure of each pressure control valve is set so as to sequentially expand the air layer from the inside. The cold storage device for a deep sea bottom sample collection container according to claim 1.
【請求項4】 前記圧力調整弁の開弁圧力が潜水船の浮
上に伴う減圧に対応することを特徴とする請求項3記載
の深海底試料採集容器用保冷装置。
4. The cold storage device for a deep sea bottom sample collection container according to claim 3, wherein the valve opening pressure of the pressure control valve corresponds to the pressure reduction associated with the floating of the submersible.
JP3301869A 1991-11-18 1991-11-18 Cooler for deep-sea bottom sample collection containers Expired - Fee Related JP2594481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3301869A JP2594481B2 (en) 1991-11-18 1991-11-18 Cooler for deep-sea bottom sample collection containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3301869A JP2594481B2 (en) 1991-11-18 1991-11-18 Cooler for deep-sea bottom sample collection containers

Publications (2)

Publication Number Publication Date
JPH05142115A true JPH05142115A (en) 1993-06-08
JP2594481B2 JP2594481B2 (en) 1997-03-26

Family

ID=17902135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3301869A Expired - Fee Related JP2594481B2 (en) 1991-11-18 1991-11-18 Cooler for deep-sea bottom sample collection containers

Country Status (1)

Country Link
JP (1) JP2594481B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403007C (en) * 2004-12-09 2008-07-16 中南大学 Concentration fidility sampler for deep sea suspended granule and suspended bios
CN102839642A (en) * 2012-08-23 2012-12-26 河海大学 Soil sampler for opening on closing/opening side of tubular airbag and soil sampling method thereof
CN110132664A (en) * 2019-06-24 2019-08-16 自然资源部第二海洋研究所 A kind of deep seafloor hydrothermal vent pressure maintaining collector
CN112326343A (en) * 2020-09-23 2021-02-05 国家深海基地管理中心 Deep sea cold spring fluid heat-insulation pressure-maintaining sampler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985919B (en) * 2021-05-07 2021-07-27 广东华赛能源有限公司 Layered collecting and storing device for deep lake water sample

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124751U (en) * 1981-01-28 1982-08-03
JPS6151568A (en) * 1984-08-21 1986-03-14 Sumitomo Rubber Ind Ltd Portable container for cold reserving sample
JPS63109635U (en) * 1987-01-06 1988-07-14

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124751U (en) * 1981-01-28 1982-08-03
JPS6151568A (en) * 1984-08-21 1986-03-14 Sumitomo Rubber Ind Ltd Portable container for cold reserving sample
JPS63109635U (en) * 1987-01-06 1988-07-14

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403007C (en) * 2004-12-09 2008-07-16 中南大学 Concentration fidility sampler for deep sea suspended granule and suspended bios
CN102839642A (en) * 2012-08-23 2012-12-26 河海大学 Soil sampler for opening on closing/opening side of tubular airbag and soil sampling method thereof
CN110132664A (en) * 2019-06-24 2019-08-16 自然资源部第二海洋研究所 A kind of deep seafloor hydrothermal vent pressure maintaining collector
CN112326343A (en) * 2020-09-23 2021-02-05 国家深海基地管理中心 Deep sea cold spring fluid heat-insulation pressure-maintaining sampler
CN112326343B (en) * 2020-09-23 2024-05-07 国家深海基地管理中心 Deep sea cold spring fluid heat preservation pressurize sampler

Also Published As

Publication number Publication date
JP2594481B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
US3435793A (en) Portable submarine tanks
US3630161A (en) Multiple purpose floating concrete ring
US4771299A (en) Method and apparatus for underwater operation of non-waterproof equipment
US5839383A (en) Ship based gas transport system
AU656560B2 (en) Missile canister and method of fabrication
US11738849B1 (en) Inflatable structure deployment
FR2478260A1 (en) UNDERWATER FACILITY FOR WIDE-RANGE STORAGE FOR HIGHLY COOLED LIQUEFIED GASES
US3706433A (en) Airship with internal transfer of lifting gas
US4055632A (en) Controllable gas generator
WO2021235940A1 (en) Underwater vehicle for transporting cargo
JPH08230772A (en) Carbon dioxide dumping system in the sea bottom
JPH05142115A (en) Insulating device for deep sea bottom sample sampling container
US3851487A (en) Buoyant underwater structures
US5827555A (en) Foaming insert for a beverage container
EP3337964B1 (en) Thermal device for a fluid, with baffles, and associated circuits
CN109916653A (en) A kind of Deep-Sea Microorganisms sampling apparatus based on foldable filter element structure
US3593533A (en) Underwater collecting and lifting device
US3657752A (en) Locator devices
KR20150067314A (en) Sealed and insulating reservoir to contain a pressurized cold fluid
US7841917B2 (en) Floatation device
US3379156A (en) Automatic buoyancy compensation system
US4278105A (en) Spherical accumulator with buoyant float
CN112793749B (en) Submersible buoyancy device and using method thereof
US4504739A (en) Methods of filling and emptying radiation shields
JPS5813430B2 (en) oil storage device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees