JPH05141515A - Controller of continuously variable transmission for vehicle - Google Patents

Controller of continuously variable transmission for vehicle

Info

Publication number
JPH05141515A
JPH05141515A JP30467691A JP30467691A JPH05141515A JP H05141515 A JPH05141515 A JP H05141515A JP 30467691 A JP30467691 A JP 30467691A JP 30467691 A JP30467691 A JP 30467691A JP H05141515 A JPH05141515 A JP H05141515A
Authority
JP
Japan
Prior art keywords
line pressure
belt
ratio
value
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30467691A
Other languages
Japanese (ja)
Other versions
JP2761139B2 (en
Inventor
Yoshinobu Yamashita
佳宣 山下
Hiroaki Yamamoto
博明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Suzuki Motor Corp
Original Assignee
Mitsubishi Electric Corp
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Suzuki Motor Corp filed Critical Mitsubishi Electric Corp
Priority to JP30467691A priority Critical patent/JP2761139B2/en
Priority to US07/951,115 priority patent/US5259272A/en
Priority to DE4232233A priority patent/DE4232233A1/en
Publication of JPH05141515A publication Critical patent/JPH05141515A/en
Application granted granted Critical
Publication of JP2761139B2 publication Critical patent/JP2761139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To prevent a belt from slipping by calculating a safety ratio based on the effective tension of a CVT belt and secondary side hydraulic pressure, determining a limit operation quantity by which a safety ratio during speed change becomes a specified value or more based on the calculated value and operation quantity and the change rate of primary hydraulic pressure, and correcting line pressure. CONSTITUTION:A continuously variable transmission controls the supply and discharge of hydraulic fluid to and from the hydraulic servo mechanisms provided in movable pulley members 8 and 14 of a primary and secondary pulleys 4 and 10 respectively and takes out speed change output from an output shaft. In this case, in a control section 82, line pressure is controlled so as to be objective line pressure based on the driving state, and the speed change ratio is controlled to the objective speed change ratio. In addition, the minimum belt holding force value is operated based on the torque transmitted and the actual belt tension of actual diameter ratio, and the second belt holding value is operated based on the line pressure, and the first holding value is operated based on these holding force values and speed change ratio. In the next step, operation quantity for speed changing is limited so that the ratio of the second holding force value during speed change to the first holding force value may become a specified value or more, and line pressure is corrected based on the limit information.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、車両用動力伝達装置
として用いられる無段変速機(以下「CVT」という)
の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuously variable transmission (hereinafter referred to as "CVT") used as a power transmission device for vehicles.
The present invention relates to the control device.

【0002】[0002]

【従来の技術】車両においては、内燃機関と駆動車輪間
に変速装置が介在している。変速装置は広範囲に変化す
る車両の走行条件に合致させて駆動輪の駆動力と走行速
度とを変更し、内燃機関の性能を充分に発揮させてい
る。変速装置の一種として無段変速機があり、これは回
転軸に固定された固定プーリ部片とこの固定プーリ部片
と接離可能に回転軸に装着された可動プーリ部片とを有
するプーリの両プーリ部片間に形成される溝部の溝幅を
増減することにより、プーリに巻掛けられたベルトの回
転半径を減増させて動力を伝達し、ベルトレシオ(変速
比)を変えるものである。この無段変速機は、例えば特
開昭57−186656号公報、特開昭59−4324
9号公報、特開昭59−77159号公報、特開昭61
−233256号公報に開示されている。
2. Description of the Related Art In a vehicle, a transmission is interposed between an internal combustion engine and driving wheels. The transmission system changes the driving force of the drive wheels and the traveling speed in accordance with the traveling condition of the vehicle, which varies over a wide range, so that the performance of the internal combustion engine is fully exhibited. BACKGROUND ARTOne type of speed change device is a continuously variable transmission, which is a pulley having a fixed pulley part fixed to a rotary shaft and a movable pulley part mounted on the rotary shaft so as to be able to come in contact with and separate from the fixed pulley part. By increasing or decreasing the groove width of the groove formed between the two pulley pieces, the radius of rotation of the belt wound around the pulley is reduced to transmit power and change the belt ratio (gear ratio). .. This continuously variable transmission is disclosed, for example, in JP-A-57-186656 and JP-A-59-4324.
No. 9, JP-A-59-77159, JP-A-61.
It is disclosed in Japanese Patent Publication No. 233256.

【0003】[0003]

【発明が解決しようとする課題】ベルト式無段変速機の
変速比は、車両の運転状態で決まる目標エンジン回転数
に実際のエンジン回転数が一致するようにフィードバッ
ク制御され、また目標値に対する追従性を満たすために
各制御ゲインが決められるが、急加速や急減速に伴なう
偏差の一時的な急増で操作量過大となり、無段変速機の
追従限界を越えると、ベルトスリップが生じるという課
題があった。又、この過渡的なベルトスリップを防止す
るために、常時必要以上のベルト挟持力を加えること
は、ベルトの寿命や燃費の悪化を招いた。
The gear ratio of the belt-type continuously variable transmission is feedback-controlled so that the actual engine speed matches the target engine speed determined by the operating condition of the vehicle, and also follows the target value. Each control gain is determined to satisfy the above requirement, but the operation amount becomes too large due to a temporary sudden increase in deviation due to sudden acceleration or deceleration, and belt slip occurs if the tracking limit of the continuously variable transmission is exceeded. There were challenges. Further, in order to prevent the transitional belt slip, constantly applying an excessive belt holding force causes deterioration of the belt life and fuel consumption.

【0004】この発明は上記のような課題を解決するた
めに成されたものであり、ベルトスリップや過大挟持力
によるベルト寿命の劣化を防止することができるととも
に、追従性を損うことなく変速制御をすることができる
車両用無段変速機の制御装置を得ることを目的とする。
The present invention has been made to solve the above problems, and can prevent the deterioration of the belt life due to the belt slip and the excessive gripping force, and at the same time, the speed change without impairing the followability. An object of the present invention is to obtain a control device for a continuously variable transmission for a vehicle that can be controlled.

【0005】[0005]

【課題を解決するための手段】ベルトスリップが発生す
るのは、可動側プーリ部片に供給される圧力によって生
じるベルト挟持力とベルト張力の関係であり、変速比が
ほぼ一定の平衡状態では一般に下式によって示すことが
できる。1次側(エンジン側)が駆動で2次側(車輪軸
側)が被駆動の場合、入力軸側=1次側の挟持力F1
The belt slip is caused by the relationship between the belt clamping force and the belt tension generated by the pressure supplied to the movable pulley piece, and is generally found in the equilibrium state where the gear ratio is almost constant. It can be shown by the following formula. When the primary side (engine side) is driven and the secondary side (wheel shaft side) is driven, the clamping force F 1 on the input shaft side = primary side is

【0006】[0006]

【数1】 [Equation 1]

【0007】出力軸側=2次側の挟持力F2 The clamping force F 2 on the output shaft side = secondary side is

【0008】[0008]

【数2】 [Equation 2]

【0009】ここで、A=exp(μ・φ/sin β) Teff : 実効ベルト張力=M1 /R1 1 : 1次側トルク α1 ,α2 :ベルト接触角 β : シーブ半頂角 R1 : 1次側のベルト半径 μ : プーリとベルトとの摩擦係数 φ : プーリとベルトとの接触部位におけるベルト
張力が最大から最小まで変化する角度
Where A = exp (μφ / sin β) T eff : Effective belt tension = M 1 / R 1 M 1 : Primary torque α 1 , α 2 : Belt contact angle β: Sheave half top Angle R 1 : Primary-side belt radius μ: Coefficient of friction between pulley and belt φ: Angle at which belt tension at the contact point between pulley and belt changes from maximum to minimum

【0010】φ≦α1 またはα2 であればベルトスリッ
プは発生せず、反対にφ>α1 またはα2 であればベル
トスリップが発生する。(1),(2)式で各第1項は
ベルトスリップが発生しないための最低ベルト挟持力で
あり、{ }内の値はそれに対する安全率と考えられ
る。一方、変速比RC =R2 /R1 (R2=2次側のベ
ルト半径)は、各挟持力(各軸推力)F1 ,F2 の比
(即ち安全率の比)と安全率で決まる。この関係を示す
例が図2である。即ち、図2は1次及び2次側安全率S
1 ,SF2 と変速比RC の関係を示す。
If φ ≦ α 1 or α 2 , belt slip does not occur, and conversely, if φ> α 1 or α 2 , belt slip occurs. The first term in each of the equations (1) and (2) is the minimum belt holding force for preventing belt slip, and the value in {} is considered to be a safety factor for it. On the other hand, the gear ratio R C = R 2 / R 1 (R 2 = belt radius on the secondary side) is determined by the ratio of each clamping force (each axial thrust) F 1 and F 2 (that is, the safety factor ratio) and the safety factor. Depends on. An example showing this relationship is shown in FIG. That is, FIG. 2 shows the primary and secondary side safety factors S
The relationship between F 1 and SF 2 and the gear ratio R C is shown.

【0011】通常、無段変速機においては、ベルトスリ
ップが発生しないように制御されたライン圧で第2挟持
力F2 を確保するとともに、目標エンジン回転数になる
ように1次側油圧即ち第1挟持力F1 を加減して変速比
を制御する。
Normally, in a continuously variable transmission, the second clamping force F 2 is secured by the line pressure controlled so that belt slip does not occur, and the primary side hydraulic pressure, that is, the first hydraulic pressure, is adjusted so as to reach the target engine speed. 1 The grip ratio F 1 is adjusted to control the gear ratio.

【0012】図3は変速に関係する油圧回路図を示す。
この図における関係式は次の通りである。遠心油圧を無
視すると各挟持力は F1 =P1 ・S1 (3) F2 =P2 ・S2 (4) 又、第1油路30の流量Q1 、第2油圧室24への流量
2 は連続の式より、
FIG. 3 shows a hydraulic circuit diagram related to gear shifting.
The relational expression in this figure is as follows. Ignoring the centrifugal hydraulic pressure, each clamping force is F 1 = P 1 · S 1 (3) F 2 = P 2 · S 2 (4) Also, the flow rate Q 1 of the first oil passage 30 to the second hydraulic chamber 24 The flow rate Q 2 is

【0013】[0013]

【数3】 [Equation 3]

【0014】[0014]

【数4】 [Equation 4]

【0015】又、ダウンシフト時の制御弁と管路抵抗よ
り、
From the control valve and the line resistance at the time of downshift,

【0016】[0016]

【数5】 [Equation 5]

【0017】[0017]

【数6】 [Equation 6]

【0018】ここで、 x1 ,x2 :1次及び2次側可動プーリ部片8,14の
軸方向位置 P1 ,P2 :第1及び第2油圧室22,24の圧力 S1 ,S2 :1次及び2次側可動プーリ部片8,14の
受圧面積 V1 ,V2 :第1及び第2油圧室22,24の容積 B :作動油の体積弾性係数 L1 ,L2 :第1及びライン油路30,32の等価管路
長 A1 ,A2 :第1及びライン油路30,32の等価断面
積 ρ ,ν :作動油の密度及び動粘度 Aa,Ca:1次側油圧制御弁34のポートaの開口面
積及び流量係数であり、開口面積Aaは平衡状態のデュ
ーティ(=実中立値)とデューティの差の関数であり、
デューティが実中立値のとき零であって差が大きくなる
と開口面積Aaも大きくなる。 Pl :ライン油圧 である。
Where x 1 , x 2 are the axial positions P 1 , P 2 of the primary and secondary movable pulley part pieces 8, 14: pressures S 1 , of the first and second hydraulic chambers 22, 24, S 2 : Pressure receiving areas of the primary and secondary side movable pulley part pieces 8 and 14, V 1 , V 2 : Volumes of the first and second hydraulic chambers 22 and 24 B: Volume elastic coefficients of hydraulic oil L 1 and L 2 : Equivalent pipe lengths A 1 and A 2 of the first and line oil passages 30 and 32: Equivalent cross-sectional area of the first and line oil passages 30 and 32 ρ, ν: Density and kinematic viscosity of hydraulic fluid Aa, Ca: 1 The opening area and the flow coefficient of the port a of the secondary hydraulic control valve 34, and the opening area Aa is a function of the duty (= actual neutral value) in the equilibrium state and the duty difference,
When the duty is an actual neutral value, it is zero, and when the difference becomes large, the opening area Aa also becomes large. P l : Line hydraulic pressure.

【0019】プーリ移動速度dx/dtは、平衡条件式
(1),(2)より外れた両挟持力F1 ,F
2 ((3),(4)式)の差に比例すると考えられる。
従って、ある条件下では(1)式から(8)式までの関
係よりdP1 /dt≒0となる。操作量であるデューテ
ィに対する1次油圧P1 の実機でのダウンシフトのステ
ップ応答例を図4に示す。変速制御では、新たな平衡点
に達するか位置的限界に達してdx/dt=0となる。
新平衡点に達した場合は、1次油圧P1 は(1),
(3)式で決まる第1挟持力F1 になるような値とな
る。位置的限界に達した場合は、1次油圧P1 は零とな
っていくが、ストッパからの反力で挟持力が確保され
る。
The pulley moving speed dx / dt is the sandwiching force F 1 , F that deviates from the equilibrium condition expressions (1) and (2).
It is considered to be proportional to the difference between 2 (equations (3) and (4)).
Therefore, under a certain condition, dP 1 / dt≈0 from the relations of the expressions (1) to (8). FIG. 4 shows an example of the step response of the downshift in the actual machine of the primary hydraulic pressure P 1 with respect to the duty which is the operation amount. In the shift control, dx / dt = 0 is reached when a new equilibrium point is reached or a positional limit is reached.
When the new equilibrium point is reached, the primary hydraulic pressure P 1 is (1),
The value is such that the first clamping force F 1 determined by the equation (3) is obtained. When the positional limit is reached, the primary hydraulic pressure P 1 becomes zero, but the clamping force is secured by the reaction force from the stopper.

【0020】速い変速比の変化速度が要求されるほど、
即ち実中立値−デューティが大きいほど過渡の(プーリ
移動中の)1次油圧P1 は低くなり、(1)式の最低ベ
ルト挟持力が確保されない場合にベルトスリップが発生
する。従って、ベルトスリップを発生させないために
は、ダウンシフト中の1次油圧P1 が(1)式の最低ベ
ルト挟持力を確保できる値以上になるように、操作量の
デューティを制限することである。
The higher the speed of change of the gear ratio is required, the more
That is, the larger the actual neutral value-duty, the lower the transient primary hydraulic pressure P 1 (while the pulley is moving), and belt slip occurs when the minimum belt clamping force of the equation (1) is not secured. Therefore, in order to prevent the occurrence of belt slip, the duty of the operation amount is limited so that the primary hydraulic pressure P 1 during the downshift becomes equal to or higher than the value that can secure the minimum belt clamping force of the formula (1). ..

【0021】従って、この発明に係る車両用無段変速機
の制御装置は、伝達トルクとプーリの実効径の比の実効
ベルト張力より最低ベルト挟持力値を演算する第1演算
手段と、この最低ベルト挟持力値と第2演算手段による
第2挟持力値と変速比より平衡状態での第1挟持力値を
演算する第3演算手段と、変速制御手段の操作量に対す
る第1挟持力の変化率の関係を決定する決定手段と、こ
の関係と第3演算手段の出力から変速中の第2挟持力値
を演算する第4演算手段と、第1演算手段の出力に対す
第4演算手段の出力の比が所定値以上になるように変速
制御手段の操作量を制限する制限手段と、変速制御手段
の操作量制限情報に応じてライン圧を補正するライン圧
補正手段を設けたものである。
Therefore, the control device for a continuously variable transmission for a vehicle according to the present invention includes first calculating means for calculating the minimum belt clamping force value from the effective belt tension of the ratio of the transmission torque and the effective diameter of the pulley, and the minimum calculating means. Third computing means for computing the first clamping force value in the equilibrium state from the belt clamping force value, the second clamping force value by the second computing means, and the gear ratio, and the change of the first clamping force with respect to the operation amount of the shift control means. Of the determining means for determining the relationship between the ratios, the fourth calculating means for calculating the second clamping force value during shifting from this relationship and the output of the third calculating means, and the fourth calculating means for the output of the first calculating means. Limiting means for limiting the operation amount of the shift control means so that the output ratio becomes a predetermined value or more, and line pressure correction means for correcting the line pressure according to the operation amount limitation information of the shift control means are provided. ..

【0022】[0022]

【作用】この発明においては、2次油圧=ライン油圧と
入力トルクで決まる2次安全率と変速比との関係から求
まる平衡状態での1次安全率と、予め求められた実中立
値−デューティと1次油圧減衰率即ち1次安全率の減衰
率との関係とから、過渡状態での1次安全率=平衡状態
の安全率×1次安全率の減衰率が求められ、1次安全率
が所定値を下まわらないようなデューティに変速制御手
段の操作量を制限する。又、操作量制限の結果、偏差が
大きくなると判断される場合は、操作量制限を緩和させ
るために、ライン圧を補正する。
In the present invention, the primary safety factor in the equilibrium state obtained from the relationship between the secondary hydraulic pressure = the secondary hydraulic pressure determined by the line hydraulic pressure and the input torque and the gear ratio, and the actual neutral value-duty obtained in advance. And the relationship between the primary hydraulic damping factor, that is, the primary safety factor, the primary safety factor in the transient state = the equilibrium safety factor x the primary safety factor's damping factor. Restricts the operation amount of the shift control means to a duty that does not fall below a predetermined value. When it is determined that the deviation becomes large as a result of the operation amount restriction, the line pressure is corrected in order to ease the operation amount restriction.

【0023】[0023]

【実施例】以下、この発明の実施例を図面とともに説明
する。図1はこの実施例による車両用ベルト式無段変速
機の制御装置の構成を示し、2はベルト式無段変速機、
2Aはベルト、4は1次側プーリ、6は1次側固定プー
リ部片、8は1次側可動プーリ部片、10は2次側プー
リ、12は2次側固定プーリ部片、14は2次側可動プ
ーリ部片である。このように、1次側プーリ4は回転軸
16に固定された固定プーリ部片6と、回転軸16にそ
の軸方向に移動可能でかつ回転不可能に装着された可動
プーリ部片8を有し、2次側プーリ10も同様の構成と
なっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a control device for a belt type continuously variable transmission according to this embodiment, and 2 denotes a belt type continuously variable transmission.
2A is a belt, 4 is a primary side pulley, 6 is a primary side fixed pulley section piece, 8 is a primary side movable pulley section piece, 10 is a secondary side pulley, 12 is a secondary side fixed pulley section piece, and 14 is It is a secondary movable pulley piece. As described above, the primary pulley 4 has the fixed pulley part 6 fixed to the rotating shaft 16 and the movable pulley part 8 mounted on the rotating shaft 16 so as to be movable in the axial direction but non-rotatable. However, the secondary pulley 10 has the same structure.

【0024】1次側可動プーリ部片8と2次側可動プー
リ部片14にはそれぞれ第1、第2ハウジング18,2
0が装着され、第1及び第2油圧室22,24が形成さ
れる。第2油圧室24内には、その拡大方向に第2ハウ
ジング20を付勢するばね等からなる付勢手段26を設
ける。回転軸16には油圧ポンプ28を設け、オイルタ
ンク94内に還流した作動油をストレーナ96を介して
吸い込み、ライン油路32に圧送する。ライン油路32
は第2油圧室24と連通すると共に、第1三方電磁弁4
2により第2油路40を介して制御される1次側油圧制
御弁34と連通し、1次側油圧制御弁34は第1油路3
0を介して第1油圧室22と連通する。
The primary side movable pulley section piece 8 and the secondary side movable pulley section piece 14 are respectively provided with first and second housings 18 and 2.
0 is mounted, and first and second hydraulic chambers 22 and 24 are formed. In the second hydraulic chamber 24, a biasing means 26 including a spring or the like for biasing the second housing 20 in the expanding direction is provided. The rotary shaft 16 is provided with a hydraulic pump 28, and the working oil that has recirculated into the oil tank 94 is sucked through the strainer 96 and pressure-fed to the line oil passage 32. Line oilway 32
Communicates with the second hydraulic chamber 24, and the first three-way solenoid valve 4
2 communicates with the primary-side hydraulic control valve 34 controlled by the second hydraulic passage 40 via the second hydraulic passage 40.
0 to communicate with the first hydraulic chamber 22.

【0025】又、ライン油路32は、第3三方電磁弁5
8により第4油路56を通して制御されるクラッチ圧制
御弁52を介してクラッチ油路64と連通する。クラッ
チ油路64には、その油圧検出用に第6油路66を介し
て油圧センサ68が設けられている。ライン圧Pl は、
第2三方電磁弁50により第5油路48を通して制御さ
れるライン圧制御弁44によって調圧(例えば、6〜2
5kg/cm2)される。ライン圧制御弁44は第7油路46
を介してライン油路32と連通する。第3油路60の油
圧はライン圧を減圧する調圧弁38によって制御用一定
圧(例えば4.2kg/cm2)に保たれ、制御弁34,44,
52及び三方電磁弁42,50,58に導かれる。
The line oil passage 32 is connected to the third three-way solenoid valve 5
8 communicates with the clutch oil passage 64 via the clutch pressure control valve 52 controlled by the fourth oil passage 56. An oil pressure sensor 68 is provided in the clutch oil passage 64 via a sixth oil passage 66 for detecting the oil pressure. The line pressure P l is
The line pressure control valve 44 controlled by the second three-way solenoid valve 50 through the fifth oil passage 48 regulates the pressure (for example, 6 to 2).
5 kg / cm 2 ). The line pressure control valve 44 is the seventh oil passage 46.
Through the line oil passage 32. The hydraulic pressure in the third oil passage 60 is maintained at a constant control pressure (for example, 4.2 kg / cm 2 ) by the pressure regulating valve 38 for reducing the line pressure, and the control valves 34, 44,
52 and three-way solenoid valves 42, 50, 58.

【0026】又、無段変速機の回転速度測定のために、
第1ハウジング18の外側に1次側回転検出歯車70と
1次側回転速度検出器72を設け、第2ハウジング20
の外側に2次側回転検出歯車74と2次側回転速度検出
器76を設ける。この実施例では、1次側回転速度N1
はエンジン回転数Neに等しく、また変速比Rc=N1
/N2 で算出される。又、油圧式発進クラッチ62の出
力側に伝達用歯車78を設け、この伝達用歯車78には
前後進切替装置、減速歯車、差動機、駆動軸、タイヤと
つながる。伝達用歯車78の回転速度計測用にクラッチ
出力回転速度検出器80を設け、クラッチ出力回転速度
3 を得る。N3 は車速に相当する。又、(N2
3 )はクラッチスリップ回転数となる。
For measuring the rotational speed of the continuously variable transmission,
A primary side rotation detection gear 70 and a primary side rotation speed detector 72 are provided outside the first housing 18, and the second housing 20
A secondary side rotation detection gear 74 and a secondary side rotation speed detector 76 are provided on the outside of the. In this embodiment, the primary side rotation speed N 1
Is equal to the engine speed Ne, and the gear ratio Rc = N 1
Calculated as / N 2 . A transmission gear 78 is provided on the output side of the hydraulic start clutch 62, and the transmission gear 78 is connected to the forward / reverse switching device, the reduction gear, the differential gear, the drive shaft, and the tire. A clutch output rotation speed detector 80 is provided for measuring the rotation speed of the transmission gear 78 to obtain the clutch output rotation speed N 3 . N 3 corresponds to the vehicle speed. Also, (N 2
N 3 ) is the clutch slip rotation speed.

【0027】さらに、図示してない気化器のスロットル
開度、エンジン回転数、車速、各スイッチ信号等の車両
の運転状態や、油圧、油温等の情報を制御部82に入力
する。制御部82は三方電磁弁42,50,58にデュ
ーティ出力することにより、ライン圧、クラッチおよび
変速の制御を行なう。
Further, information such as a throttle opening of a carburetor, an engine speed, a vehicle speed, vehicle operating states such as switch signals, and hydraulic pressure and oil temperature (not shown) are input to the control unit 82. The control unit 82 outputs the duty to the three-way solenoid valves 42, 50 and 58 to control the line pressure, the clutch and the shift.

【0028】図5は制御部82の構成を示し、この図5
を用いて制御の流れを説明する。まず、クラッチ制御に
おいては、スロットル開度センサ113によって検出さ
れたスロットル開度θ、クラッチ出力回転速度検出器8
0により検出されたクラッチ出力回転数N3 =車速V、
1次側回転速度検出器72により検出された1次側回転
数N1 =エンジン回転数Ne、2次側回転速度検出器7
6により検出された2次側回転数N2 =クラッチ入力回
転数、及びその他の車両運転状態114が入力され、目
標クラッチ圧決定手段104は目標クラッチ圧を決定す
る。一方、発進クラッチ62の油圧Pcを油圧センサ6
8で検出し、目標クラッチ圧と油圧Pcは減算器111
に入力され、その偏差がクラッチ圧制御演算手段109
に入力され、クラッチ圧制御演算手段109は操作量で
あるデューティDcを出力し、この出力は油圧回路11
5に入力され、発進クラッチ62の油圧が目標クラッチ
圧に制御される。
FIG. 5 shows the structure of the control unit 82.
The flow of control will be described using. First, in the clutch control, the throttle opening θ detected by the throttle opening sensor 113 and the clutch output rotation speed detector 8
Clutch output speed N 3 detected by 0 = vehicle speed V,
Primary-side rotation speed N 1 detected by the primary-side rotation speed detector 72 = engine rotation speed Ne, secondary-side rotation speed detector 7
The secondary side rotation speed N 2 detected by 6 = the clutch input rotation speed and the other vehicle operating state 114 are input, and the target clutch pressure determination means 104 determines the target clutch pressure. On the other hand, the oil pressure Pc of the starting clutch 62 is detected by the oil pressure sensor 6
The target clutch pressure and the hydraulic pressure Pc are detected by the subtractor 111.
To the clutch pressure control calculation means 109.
The clutch pressure control calculation means 109 outputs a duty Dc which is an operation amount, and this output is output to the hydraulic circuit 11.
5, the hydraulic pressure of the starting clutch 62 is controlled to the target clutch pressure.

【0029】次に、ライン圧の制御においては、変速比
演算手段102は1次側回転数N1 及び2次側回転数N
2 を入力され、変速比Rc=N1 /N2 を算出する。
又、CVT入力トルク演算手段103はスロットル開度
θとエンジン回転数Ne=N1 を入力され、1次側トル
クM1 を算出する。目標ライン圧決定手段105は変速
比Rcと1次側トルクM1 を入力されて目標ライン圧P
lsp1を決定する。ライン圧補正手段112は目標エンジ
ン回転数決定手段101の出力と1次側回転速度検出器
72の出力Neとの偏差EIRとデューティ制限値D
max とデューティDrを入力されてライン補正値Plad
を求め、このライン補正値Plad は目標ライン圧決定手
段105に入力され、目標ライン圧Plsp1と加算されて
目標ライン圧Plsp となる。ライン圧制御演算手段10
8は目標ライン圧Plsp と油圧Pcを入力され、操作量
であるデューティDl を油圧回路115に入力する。
Next, in the control of the line pressure, the gear ratio calculating means 102 is operated by the primary side rotation speed N 1 and the secondary side rotation speed N.
2 is input, and the gear ratio Rc = N 1 / N 2 is calculated.
Further, CVT input torque calculation means 103 is input to the throttle opening θ and the engine speed Ne = N 1, and calculates the primary torque M 1. The target line pressure determining means 105 receives the gear ratio Rc and the primary side torque M 1 and receives the target line pressure P.
Determine lsp1 . The line pressure correction means 112 is a deviation EIR between the output of the target engine speed determination means 101 and the output Ne of the primary side rotation speed detector 72 and the duty limit value D.
The line correction value P lad after inputting max and duty Dr
The calculated, this line correction value P lad is input to the target line pressure determining means 105, a target line pressure P lsp are added to the target line pressure P LSP1. Line pressure control calculation means 10
8 inputs the target line pressure P 1sp and the hydraulic pressure Pc, and inputs the duty D 1 which is the operation amount to the hydraulic circuit 115.

【0030】図6はライン圧補正手段112の動作を示
すフローチャートであり、ステップ401では偏差EI
Rが200rpm 以上か以下かを判定し、以下の場合には
ステップ402で100rpm 以下か否かを判定し、10
0rpm 以上の場合にはステップ403でdEIR/dt
即ちEIRの変化方向が正か負かを判定する。正の場合
にはステップ404に進み、デューティDrが制限中
(Dr=Dmax )か否かを判定し、制限中であればステ
ップ405で前回補正量Plad に所定増分量ΔPlad
加えて今回の補正量とする。又、EIRが100rpm 以
下又はdEIR/dtが負の場合にはステップ407で
前回補正量Plad に所定減量分ΔPlad を減算して今回
の補正量を得る。
FIG. 6 is a flow chart showing the operation of the line pressure correction means 112. In step 401, the deviation EI
It is determined whether R is 200 rpm or more or less, and if it is less than or equal to 100 rpm in step 402, 10
If it is 0 rpm or more, dEIR / dt is performed in step 403.
That is, it is determined whether the change direction of EIR is positive or negative. If it is positive, the routine proceeds to step 404, where it is judged whether or not the duty Dr is being limited (Dr = D max ), and if it is being limited, at step 405 a predetermined increment ΔP lad is added to the previous correction amount P lad. This is the correction amount. If the EIR is 100 rpm or less or dEIR / dt is negative, then in step 407, the predetermined reduction amount ΔP lad is subtracted from the previous correction amount P lad to obtain the current correction amount.

【0031】次に、変速制御においては、目標エンジン
回転数決定手段101はスロットル開度θと車速Vから
目標エンジン回転数Nesp を決定し、この目標エンジン
回転数Nesp とエンジン回転数Neが減算器110に入
力され、その偏差EIRが変速制御演算手段106に入
力され、変速制御演算手段106は操作量であるデュー
ティDrを出力し、油圧回路115を介してCVT11
7を変速制御する。116はエンジン、118は駆動装
置である。
Next, in the shift control, the target engine speed determining means 101 determines the target engine speed N esp from the throttle opening θ and the vehicle speed V, and the target engine speed N esp and the engine speed Ne are determined. The difference EIR is input to the subtractor 110, and the deviation EIR is input to the shift control calculating means 106. The shift control calculating means 106 outputs the duty Dr, which is an operation amount, and the CVT 11 is output via the hydraulic circuit 115.
7 is gear shift controlled. Reference numeral 116 is an engine, and 118 is a drive device.

【0032】又、変速制御演算手段106からのデュー
ティ出力Drは制限値決定手段107により決定された
デューティ制限値Dmax で制限される。図7は変速制御
演算手段106の詳細な構成を示し、比例−積分制御に
より、積分ゲインKI の積分器201の出力を減算器2
04において公称中立値Dnnから差し引き、実中立値D
nを得る。一方、比例ゲインKP の比例演算器202の
出力を制限器203の制限値Dmax により制限し、減算
器205で実中立値Dnから制限器203の出力を差し
引いたものをデューティDrとして出力する。
The duty output Dr from the shift control calculating means 106 is limited by the duty limit value D max determined by the limit value determining means 107. FIG. 7 shows a detailed configuration of the shift control calculation means 106. The output of the integrator 201 having the integral gain K I is subtracted by the subtracter 2 by the proportional-integral control.
The actual neutral value D is subtracted from the nominal neutral value Dnn in 04.
get n. On the other hand, the output of the proportional calculator 202 of the proportional gain K P is limited by the limit value D max of the limiter 203, and the subtracter 205 subtracts the output of the limiter 203 from the actual neutral value Dn and outputs it as the duty Dr. ..

【0033】図9に制限値決定手段107の動作のフロ
ーチャートを示す。ステップ301では、変速比Rcと
半径R1 の関係マップMAP1よりR1 を算出する。ス
テップ302ではクラッチが直結か否かを判定し、直結
状態であればステップ303で1次側トルクM1 =TE
とし、直結状態でなければステップ304でクラッチ圧
PcとクラッチゲインKc(トルク/圧力)の積=2次
側トルクをRcで割った1次換算トルクPc・Kc/R
cとTE のうち小さい方を1次側トルクM1 とする。
FIG. 9 shows a flowchart of the operation of the limit value determining means 107. In step 301, R 1 is calculated from the relationship map MAP1 of the gear ratio Rc and the radius R 1 . In step 302, it is determined whether or not the clutch is directly connected. If the clutch is in the direct connected state, in step 303 the primary side torque M 1 = T E
If it is not in the direct connection state, in step 304 the product of clutch pressure Pc and clutch gain Kc (torque / pressure) = secondary torque divided by Rc, primary conversion torque Pc · Kc / R
The smaller of c and T E is the primary torque M 1 .

【0034】ステップ305では、実効張力Teff =M
1 /R1 を演算し、ステップ306では最低ライン圧P
lmin=Teff・cos β/S2・2μを演算し、ステップ3
07では2次側安全率SF2 =Plsp /Plminを演算す
る。ステップ308ではTE の正負を判定し、負の場合
即ち2次側駆動の場合にはステップ309で図2の破線
で示す関係マップMAP3より1次側安全率SF1 を演
算し、TE が正または零の場合即ち1次側駆動の場合に
はステップ310に進み、図2の実線で示す関係MAP
2から1次側安全率SF1 を求める。ステップ311で
は、過渡状態の安全率が1を下回らないように、定常状
態の安全率SF1 と図8に示すMAP4からデューティ
制限値Dmax を演算する。図8は図4でほぼ一定となっ
た1次油圧減衰率の逆数=1次側安全率として、SF1
とDmax の関係を描いたものである。
In step 305, the effective tension T eff = M
1 / R 1 is calculated, and in step 306, the minimum line pressure P
lmin = T eff · cos β / S 2 · , and step 3
At 07, the secondary side safety factor SF 2 = P lsp / P lmin is calculated. Step 308 determines the sign of the T E, calculates the relation map MAP3 than primary safety factor SF 1 indicated by the broken line in FIG. 2 in step 309 if the negative case i.e. secondary drive, is T E If it is positive or zero, that is, if it is the primary side drive, the routine proceeds to step 310, where the relationship MAP shown by the solid line in FIG.
The primary safety factor SF 1 is calculated from 2. In step 311, the duty limit value D max is calculated from the steady state safety factor SF 1 and MAP4 shown in FIG. 8 so that the transient state safety factor does not fall below 1. FIG. 8 shows SF 1 as the reciprocal of the primary hydraulic damping rate which is almost constant in FIG.
And D max .

【0035】実施例2 上記実施例においては、エンジン116、CVT11
7、発進クラッチ62の接続順序であるが、エンジン1
16、発進クラッチ62、CVT117の接続順序であ
っても同様である。又、発進クラッチ62は湿式油圧ク
ラッチとして説明したが、電磁クラッチでも流体クラッ
チでもよい。図9のステップ304ではクラッチトルク
の推定は、電磁クラッチの場合には例えばその電流値よ
り可能である。又、流体クラッチの場合には、例えば速
度比の関数で与えられる容量係数と入力回転数より可能
である。又、図9のステップ308でのCVT117の
1次側が駆動側か被駆動側かの判定は、例えばクラッチ
の入力回転数と出力回転数の差の符号で行なうこともで
きる。さらに、過渡状態での1次側安全率を1以上とし
ているが、さらに確実にするために1より大きな値にす
ることも考えられる。
Embodiment 2 In the above embodiment, the engine 116 and the CVT 11 are used.
7, the connection order of the starting clutch 62, the engine 1
The same applies to the connection order of 16, the start clutch 62, and the CVT 117. Although the starting clutch 62 is described as a wet hydraulic clutch, it may be an electromagnetic clutch or a fluid clutch. In step 304 of FIG. 9, the clutch torque can be estimated from the current value of the electromagnetic clutch, for example. Further, in the case of a fluid clutch, it is possible from the capacity coefficient and the input rotation speed given as a function of the speed ratio, for example. Further, the determination as to whether the primary side of the CVT 117 is the driving side or the driven side in step 308 of FIG. 9 can be made by the sign of the difference between the input rotation speed and the output rotation speed of the clutch, for example. Further, the primary side safety factor in the transient state is set to 1 or more, but it may be set to a value larger than 1 in order to make it more reliable.

【0036】[0036]

【発明の効果】以上のようにこの発明によれば、CVT
ベルトの有効張力と2次側油圧と変速比とから定常状態
の安全率を算出し、これと予め求めた操作量と1次油圧
の変化率の関係から変速中(過渡状態)の安全率が所定
値以上となる限界操作量を求めて変速制御中の操作量を
制限することにより、過大な操作量による1次側油圧低
下により発生するCVTベルトスリップを確実に防止す
ることができる。又、必要な場合のみ必要なだけライン
圧を補正するライン圧補正手段を設けたので、高ライン
圧による損失の増大をすることなしに、操作量制限によ
る変速制御性能の低下を回避できる。しかも、すべてを
電子制御で構成したので安価にでき、精度の高いものが
得られる。
As described above, according to the present invention, the CVT
The steady-state safety factor is calculated from the effective tension of the belt, the secondary hydraulic pressure, and the gear ratio. By limiting the operation amount during the shift control by obtaining the limit operation amount that is equal to or more than the predetermined value, it is possible to reliably prevent the CVT belt slip caused by the decrease in the primary side hydraulic pressure due to the excessive operation amount. Further, since the line pressure correcting means for correcting the line pressure only when necessary is provided, it is possible to avoid the reduction of the shift control performance due to the operation amount limitation without increasing the loss due to the high line pressure. Moreover, since everything is electronically controlled, the cost can be reduced and a highly accurate product can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明装置の構成図である。FIG. 1 is a block diagram of an apparatus according to the present invention.

【図2】車両用無段変速機の1次及び2次安全率と変速
比との関係図である。
FIG. 2 is a relationship diagram between a primary and secondary safety factor and a gear ratio of a continuously variable transmission for a vehicle.

【図3】この発明装置による変速関係の詳細油圧回路図
である。
FIG. 3 is a detailed hydraulic circuit diagram related to gear shifting by the device of the present invention.

【図4】この発明装置の1次油圧のステップ応答図であ
る。
FIG. 4 is a step response diagram of the primary hydraulic pressure of the device of the present invention.

【図5】この発明装置の制御部の構成図である。FIG. 5 is a configuration diagram of a control unit of the device of the present invention.

【図6】この発明によるライン圧補正手段の動作を示す
フローチャートである。
FIG. 6 is a flowchart showing the operation of the line pressure correction means according to the present invention.

【図7】この発明による変速制御演算手段の構成図であ
る。
FIG. 7 is a block diagram of a shift control calculation means according to the present invention.

【図8】車両用無段変速機の1次側安全率とデューティ
制限値との関係図である。
FIG. 8 is a relationship diagram between a primary side safety factor and a duty limit value of a continuously variable transmission for a vehicle.

【図9】この発明による制限値決定手段の動作を示すフ
ローチャートである。
FIG. 9 is a flowchart showing the operation of the limit value determining means according to the present invention.

【符号の説明】[Explanation of symbols]

2 ベルト式無段変速機 2A ベルト 4 1次側プーリ 6,12 固定プーリ部片 8,14 可動プーリ部片 10 2次側プーリ 32 ライン油路 34,44,52 制御弁 68 油圧センサ 72,76,80 回転速度検出器 82 制御部 101 目標エンジン回転数手段 102 変速比演算手段 103 CVT入力トルク演算手段 104 目標クラッチ圧決定手段 105 目標ライン圧決定手段 106 変速制御演算手段 107 制限値決定手段 108 ライン圧制御演算手段 109 クラッチ圧制御演算手段 112 ライン圧補正手段 113 スロットル開度センサ 115 油圧回路 116 エンジン 117 CVT 2 Belt type continuously variable transmission 2A Belt 4 Primary pulley 6,12 Fixed pulley piece 8,14 Movable pulley piece 10 Secondary pulley 32 Line oil passage 34,44,52 Control valve 68 Hydraulic sensor 72,76 , 80 rotational speed detector 82 control unit 101 target engine speed means 102 gear ratio calculation means 103 CVT input torque calculation means 104 target clutch pressure determination means 105 target line pressure determination means 106 shift control calculation means 107 limit value determination means 108 lines Pressure control calculation means 109 Clutch pressure control calculation means 112 Line pressure correction means 113 Throttle opening sensor 115 Hydraulic circuit 116 Engine 117 CVT

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年4月3日[Submission date] April 3, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】速い変速比の変化速度が要求されるほど、
即ち実中立値−デューティが大きいほど過渡の(プーリ
移動中の)1次油圧P1 は低くなり、(1)式の最低ベ
ルト挟持力が確保されない場合にベルトスリップが発生
する。従って、ベルトスリップを発生させないために
は、ダウンシフト中の1次油圧P1 が(1)式の最低ベ
ルト挟持力を確保できる値以上になるように、操作量の
デューティを制限することであるが、ドライバビリティ
の悪化は避けなければならない。
The higher the speed of change of the gear ratio is required, the more
That is, the larger the actual neutral value-duty, the lower the transient primary hydraulic pressure P 1 (while the pulley is moving), and belt slip occurs when the minimum belt clamping force of the equation (1) is not secured. Therefore, in order to prevent the occurrence of belt slip, so that the primary hydraulic P 1 in the downshift (1) or a value which can ensure the minimum belt clamping force type, and child limits the duty of the operation amount There is drivability
We must avoid the deterioration.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】次に、ライン圧の制御においては、変速比
演算手段102は1次側回転数N1 及び2次側回転数N
2 を入力され、変速比Rc=N1 /N2 を算出する。
又、CVT入力トルク演算手段103はスロットル開度
θとエンジン回転数Ne=N1 を入力され、1次側トル
クM1 を算出する。目標ライン圧決定手段105は変速
比Rcと1次側トルクM1 を入力されて目標ライン圧P
lsp1を決定する。ライン圧補正手段112は目標エンジ
ン回転数決定手段101の出力と1次側回転速度検出器
72の出力Neとの偏差EIRとデューティ制限値D
max とデューティDrを入力されてライン補正値Plad
を求め、このライン補正値Plad は目標ライン圧決定手
段105に入力され、目標ライン圧Plsp1と加算されて
目標ライン圧Plsp となる。ライン圧制御演算手段10
8は目標ライン圧Plsp と油圧Pcを入力され、操作量
であるデューティDl を油圧回路115に出力する。た
だし、Pcがライン圧と等しくない状態(クラッチ非直
結状態)では、目標ライン圧に対応した所定デューティ
を出力する。
Next, in the control of the line pressure, the gear ratio calculating means 102 is operated by the primary side rotation speed N 1 and the secondary side rotation speed N.
2 is input, and the gear ratio Rc = N 1 / N 2 is calculated.
Further, CVT input torque calculation means 103 is input to the throttle opening θ and the engine speed Ne = N 1, and calculates the primary torque M 1. The target line pressure determining means 105 receives the gear ratio Rc and the primary side torque M 1 and receives the target line pressure P.
Determine lsp1 . The line pressure correction means 112 is a deviation EIR between the output of the target engine speed determination means 101 and the output Ne of the primary side rotation speed detector 72 and the duty limit value D.
The line correction value P lad after inputting max and duty Dr
The calculated, this line correction value P lad is input to the target line pressure determining means 105, a target line pressure P lsp are added to the target line pressure P LSP1. Line pressure control calculation means 10
A target line pressure P 1sp and a hydraulic pressure Pc are input to the hydraulic circuit 8, and a duty D 1 which is an operation amount is output to the hydraulic circuit 115 . Was
However, the state where Pc is not equal to the line pressure (clutch
In the (connected state), a predetermined duty corresponding to the target line pressure
Is output.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F16H 59:54 8207−3J Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area F16H 59:54 8207-3J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固定プーリ部片、可動プーリ部片及び可
動プーリ部片に設けられた油圧サーボを有し、実効径が
連続可変の1次側プーリ及び2次側プーリと、これらプ
ーリ間に張設された駆動ベルトを備え、油圧源が発生す
る油圧を調圧したライン圧を1次側プーリ及び2次側プ
ーリの何れか一方の油圧サーボに供給することにより駆
動ベルトの第2挟持力を発生させると共に、上記ライン
圧を各プーリの何れか他方の油圧サーボに選択的に供給
することにより変速油圧を作って駆動ベルトの第1挟持
力を発生させ、かつ可動プーリ部片を軸方向に移動させ
て変速比を制御する車両用無段変速機の制御装置におい
て、運転状態検出手段の情報から決定された目標ライン
圧に制御するライン圧制御手段と、上記情報から決定さ
れた目標変速比又は目標エンジン回転数に制御する変速
制御手段と、伝達トルクと上記実効径の比の実効ベルト
張力より最低ベルト挟持力値を演算する第1演算手段
と、上記ライン圧より第2挟持力値を演算する第2演算
手段と、第1及び第2演算手段の出力と変速比より変速
比がほぼ一定である平衡状態での第1挟持力値を演算す
る第3演算手段と、変速制御手段の操作量に対する第1
挟持力の変化率の関係を決定する決定手段と、上記関係
と第3演算手段の出力から変速中の第2挟持力値を演算
する第4演算手段と、第1演算手段の出力に対する第4
演算手段の出力の比が所定値以上になるように変速制御
手段の操作量を制限する制限手段と、変速制御手段の操
作量制限情報に応じてライン圧を補正するライン圧補正
手段を備えたことを特徴とする車両用無段変速機の制御
装置。
1. A primary pulley and a secondary pulley having a fixed pulley portion, a movable pulley portion, and a hydraulic servo provided on the movable pulley portion, the effective diameter of which is continuously variable, and between these pulleys. A second clamping force of the drive belt is provided by providing a tensioned drive belt and supplying a line pressure, which regulates the hydraulic pressure generated by the hydraulic pressure source, to the hydraulic servo of either the primary side pulley or the secondary side pulley. And the line pressure is selectively supplied to the other hydraulic servo of each pulley to generate the shift hydraulic pressure to generate the first clamping force of the drive belt and to move the movable pulley piece in the axial direction. In a control device for a continuously variable transmission for a vehicle, which controls the gear ratio by moving the line speed to a line pressure control means for controlling to a target line pressure determined from information of a driving state detecting means, and a target gear shift determined from the above information. Ratio or A shift control means for controlling to a target engine speed, a first calculating means for calculating a minimum belt clamping force value from an effective belt tension of a ratio of a transmission torque and the effective diameter, and a second clamping force value from the line pressure. Operation of the shift control means, a second calculation means for calculating the first clamping force value in an equilibrium state in which the gear ratio is substantially constant based on the outputs of the first and second calculation means and the gear ratio. First to quantity
Determining means for determining the relationship of the changing rate of the clamping force, fourth calculating means for calculating the second clamping force value during shifting from the above relationship and the output of the third calculating means, and fourth for the output of the first calculating means.
A limiting means for limiting the operation amount of the shift control means so that the ratio of the output of the computing means becomes a predetermined value or more, and a line pressure correction means for correcting the line pressure according to the operation amount limitation information of the shift control means. A control device for a continuously variable transmission for a vehicle, comprising:
JP30467691A 1991-09-27 1991-11-20 Control device for continuously variable transmission for vehicles Expired - Fee Related JP2761139B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30467691A JP2761139B2 (en) 1991-11-20 1991-11-20 Control device for continuously variable transmission for vehicles
US07/951,115 US5259272A (en) 1991-09-27 1992-09-25 Control device for continuously variable transmission for vehicles and method of controlling the same
DE4232233A DE4232233A1 (en) 1991-09-27 1992-09-25 CONTROL UNIT FOR A CONTINUOUSLY VARIABLE GEARBOX FOR VEHICLES AND RELATED CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30467691A JP2761139B2 (en) 1991-11-20 1991-11-20 Control device for continuously variable transmission for vehicles

Publications (2)

Publication Number Publication Date
JPH05141515A true JPH05141515A (en) 1993-06-08
JP2761139B2 JP2761139B2 (en) 1998-06-04

Family

ID=17935887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30467691A Expired - Fee Related JP2761139B2 (en) 1991-09-27 1991-11-20 Control device for continuously variable transmission for vehicles

Country Status (1)

Country Link
JP (1) JP2761139B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147388A (en) * 2003-11-17 2005-06-09 Hyundai Motor Co Ltd Line pressure variable control method and its system of automatic transmission
JP2007529697A (en) * 2004-03-16 2007-10-25 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Control method for continuously variable transmission
US7435200B2 (en) * 2004-08-02 2008-10-14 Jatco Ltd Hydraulic pressure control apparatus of belt-drive continuously variable transmission for automotive vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147388A (en) * 2003-11-17 2005-06-09 Hyundai Motor Co Ltd Line pressure variable control method and its system of automatic transmission
JP4542383B2 (en) * 2003-11-17 2010-09-15 現代自動車株式会社 Method and system for variable line pressure control of automatic transmission
JP2007529697A (en) * 2004-03-16 2007-10-25 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Control method for continuously variable transmission
US7435200B2 (en) * 2004-08-02 2008-10-14 Jatco Ltd Hydraulic pressure control apparatus of belt-drive continuously variable transmission for automotive vehicle

Also Published As

Publication number Publication date
JP2761139B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
US7678016B2 (en) Control apparatus for vehicle
KR101100554B1 (en) Control apparatus of driving force in case of belt slipping for vehicle equipped with v-belt continuously variable transmission and control method thereof
US8298121B2 (en) Lock-up clutch control apparatus
US20100248874A1 (en) Belt type continuously variable transmission and control method thereof
JPH08285021A (en) Control device for continuously variable transmission
JPH0557464B2 (en)
JPH0624895B2 (en) Line pressure control device for continuously variable transmission
KR100411357B1 (en) Control device for a continuously variable transmission
JPH10281271A (en) Gear ratio control device of continuously variable transmission
US7192372B2 (en) Hydraulic pressure sensor failure control system for belt-type continuously variable transmission
JP2006046420A (en) Hydraulic control device for belt continuously variable transmission
JP2014137105A (en) Shift control device of continuously variable transmission for vehicle
JP5765168B2 (en) Hydraulic control device for belt type continuously variable transmission for vehicle
JPH05141515A (en) Controller of continuously variable transmission for vehicle
JP2710872B2 (en) Control device for continuously variable transmission for vehicles
JP2761138B2 (en) Control device for continuously variable transmission for vehicles
JP4195741B2 (en) Vehicle running control method
JP3348594B2 (en) Transmission control device for continuously variable transmission
JP3714024B2 (en) Input torque estimation device
JP2004108525A (en) Hydraulic pressure reduction ratio limiting device in v-belt type continuously variable transmission
JP3464347B2 (en) Transmission control device for continuously variable transmission
JP4151195B2 (en) Control device for continuously variable transmission for vehicle
JP2001248717A (en) Line pressure control device for continuously variable transmission
JPH06288449A (en) Pulley lateral pressure control device for belt-type continuously variable transmission
JP3334553B2 (en) Gear ratio control device for continuously variable transmission

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100320

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100320

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees