JPH0514100A - Substrate for surface acoustic wave device and manufacture thereof - Google Patents
Substrate for surface acoustic wave device and manufacture thereofInfo
- Publication number
- JPH0514100A JPH0514100A JP16267691A JP16267691A JPH0514100A JP H0514100 A JPH0514100 A JP H0514100A JP 16267691 A JP16267691 A JP 16267691A JP 16267691 A JP16267691 A JP 16267691A JP H0514100 A JPH0514100 A JP H0514100A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- powder
- acoustic wave
- surface acoustic
- sintered layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種電子機器の弾性表
面波フィルタや弾性表面波共振子等に用いる弾性表面波
デバイスの基板およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate of a surface acoustic wave device used for a surface acoustic wave filter or a surface acoustic wave resonator of various electronic devices and a method for manufacturing the same.
【0002】[0002]
【従来の技術】近年、弾性表面波フィルタや弾性表面波
共振子等に用いられる弾性表面波デバイスは、TV,V
TRをはじめ携帯電話,ポケットベル等の移動通信体に
も用いられ、その需要は年々増えていく傾向にある。2. Description of the Related Art In recent years, surface acoustic wave devices used for surface acoustic wave filters, surface acoustic wave resonators, etc.
It is also used in mobile communication devices such as TRs, mobile phones and pagers, and the demand for it is increasing year by year.
【0003】弾性表面波デバイスはPZT系等の圧電セ
ラミック材料製の基板の表面上に弾性表面波を励振する
入力電極と、受信する出力電極を配設した構成である。
この入力電極から励振された波は基板の表面を伝搬する
弾性表面波となるが、同時に基板の内部を伝搬し基板の
裏面で反射するバルク波も発生し、このバルク波が出力
電極で受信されると周波数特性におけるスプリアスの要
因となっていた。A surface acoustic wave device has a structure in which an input electrode for exciting the surface acoustic wave and an output electrode for receiving the surface acoustic wave are provided on the surface of a substrate made of a piezoelectric ceramic material such as PZT.
The wave excited from this input electrode becomes a surface acoustic wave propagating on the surface of the substrate, but at the same time, a bulk wave propagating inside the substrate and reflected on the back surface of the substrate is also generated, and this bulk wave is received by the output electrode. Then, it was a factor of spurious in the frequency characteristic.
【0004】このようなスプリアスの発生を防止するた
めに、図4に示すように基板5の表面から通過帯域中心
周波数の約1波長よりも深い部分に多数の気泡8を形成
し、入力電極6で励振されたバルク波を気泡8で拡散
し、出力電極7へは到達しないようにしていた。また図
5に示すように、基板5の裏面に矢印Aで示した表面波
伝搬方向と直交もしくは斜め方向の切り溝9を設けたり
さらに図6に示すように基板5の裏面を荒らしてラップ
面10を形成して基板5の裏面で反射するバルク波を拡
散させて、出力電極7へ到達しないようにしていた。In order to prevent the generation of such spurious, as shown in FIG. 4, a large number of bubbles 8 are formed from the surface of the substrate 5 in a portion deeper than about one wavelength of the center frequency of the pass band, and the input electrode 6 is formed. The bulk wave excited by was diffused by the bubble 8 so as not to reach the output electrode 7. Further, as shown in FIG. 5, a kerf 9 is provided on the back surface of the substrate 5 in a direction orthogonal to the surface wave propagation direction indicated by an arrow A or in an oblique direction. Further, as shown in FIG. 10 was formed to diffuse the bulk wave reflected on the back surface of the substrate 5 so as not to reach the output electrode 7.
【0005】[0005]
【発明が解決しようとする課題】しかしながら上記の従
来の構成では、気泡8の少ない層と多く存在する層を有
する基板5の形成では、二種類の基板を作成したのち接
合する際に接合不良を生じ基板5の信頼性が低下すると
いう問題点、また、切り溝9やラップ面10を形成する
加工工程が複雑となり、かつ基板5に割れや欠損等の加
工不良を生じ、基板5の強度を低下させるという問題点
を有していた。However, in the above-mentioned conventional structure, in forming the substrate 5 having a layer with a small number of bubbles 8 and a layer with a large number of bubbles, a bonding failure occurs when two types of substrates are prepared and then bonded. In addition, the reliability of the substrate 5 is lowered, and the processing steps of forming the kerf 9 and the lap surface 10 are complicated, and processing defects such as cracks and defects are generated in the substrate 5 to reduce the strength of the substrate 5. It had a problem of lowering it.
【0006】本発明は上記従来の問題点を解決するもの
で、スプリアス発生を防止し、かつ、高信頼性の弾性表
面波デバイスの基板およびその製造方法を提供すること
を目的とする。SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a substrate for a surface acoustic wave device which prevents spurious emission and is highly reliable, and a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】この目的を達成するため
に本発明の弾性表面波デバイスの基板およびその製造方
法は、入力電極と出力電極を配設する側の通過帯域中心
周波数の1波長よりも大きな厚みの圧電セラミック材料
の均質焼結層と、この均質焼結層に完全に融合した圧電
セラミック材料の不均質焼結層を備えた構成、および同
一組成の混合粉を用いた仮焼工程で、完全に反応させた
仮焼粉と不完全に反応させた仮焼粉を作製し、それぞれ
を粉砕、造粒したのち、焼成後の厚みが通過帯域中心周
波数の1波長よりも大きくなるだけの量の完全に仮焼し
た造粒物と、所定量の不完全に仮焼した造粒物を金型に
充填し、加工成形した成形体を焼結する方法としたもの
である。In order to achieve this object, a substrate of a surface acoustic wave device and a method of manufacturing the same according to the present invention are designed so that one wavelength of a center frequency of a pass band on a side where an input electrode and an output electrode are arranged is And a calcination process using a mixed powder of the same composition, with a homogeneous sintered layer of piezoelectric ceramic material having a large thickness and a heterogeneous sintered layer of piezoelectric ceramic material completely fused to this homogeneous sintered layer. Then, after producing calcined powder that completely reacted and calcined powder that reacted incompletely, crushing and granulating each, the thickness after firing is only larger than one wavelength of the pass band center frequency. The amount of the completely calcined granules and the predetermined amount of the incompletely calcined granules are filled in a mold, and the compact formed by processing is sintered.
【0008】[0008]
【作用】この構成と製造方法により、不均質焼結層がバ
ルク波を錯乱させてスプリアス発生を防止することとな
る。With this structure and manufacturing method, the inhomogeneous sintered layer disturbs bulk waves to prevent spurious emission.
【0009】[0009]
【実施例】(実施例1)
以下本発明の一実施例について、図面を参照しながら説
明する。EXAMPLE 1 An example of the present invention will be described below with reference to the drawings.
【0010】図1に示すように、PZT系圧電セラミッ
ク材料製の基板1は完全に焼結された通過帯域中心周波
数の1波長よりも大きな厚みの均質焼結層11と、これ
に完全に融合した同組成の不完全に焼結された不均質焼
結層12で構成されている。図中の4は不均質焼結層1
2中の欠陥部を示す。As shown in FIG. 1, a substrate 1 made of a PZT type piezoelectric ceramic material is a completely sintered homogeneous sintered layer 11 having a thickness greater than one wavelength of the center frequency of the pass band, and is completely fused to this. Incompletely sintered heterogeneous sintered layer 12 having the same composition as described above. 4 in the figure is a heterogeneous sintered layer 1
The defective part in 2 is shown.
【0011】均質焼結層11の表面に入力電極2と出力
電極3が配設された弾性表面波デバイスは、入力電極2
から励振された波が弾性表面波となり、矢印Aで示した
方向に伝搬され、出力電極3で受信される。The surface acoustic wave device in which the input electrode 2 and the output electrode 3 are provided on the surface of the homogeneous sintered layer 11 is the input electrode 2
The wave excited from becomes a surface acoustic wave, propagates in the direction indicated by arrow A, and is received by the output electrode 3.
【0012】弾性表面波の約90%のエネルギーは、基
板1の表面からの深さ方向に、通過帯域中心周波数の1
波長の範囲内で伝搬することが知られている。本実施例
では、その深さ範囲内は緻密な均質焼結層11で構成さ
れているため、弾性表面波はエネルギー損失が極めて少
ない状態で伝搬される。同時に基板1の内部を伝搬して
基板1の表面で反射してバルク波となる約10%のエネ
ルギーは、図2に示すように、不均質焼結層12の欠陥
部4で錯乱されて十分に抑圧され、出力電極3で受信さ
れる周波数特性のスプリアスが防止できる。About 90% of the surface acoustic wave energy is 1 at the center frequency of the pass band in the depth direction from the surface of the substrate 1.
It is known to propagate within a range of wavelengths. In this embodiment, since the dense homogeneous sintered layer 11 is formed within the depth range, the surface acoustic wave propagates with a very small energy loss. At the same time, about 10% of the energy that propagates inside the substrate 1 and is reflected on the surface of the substrate 1 to form a bulk wave is sufficiently disturbed by the defect portion 4 of the heterogeneous sintered layer 12 as shown in FIG. It is possible to prevent the spurious response of the frequency characteristic that is suppressed by the output electrode 3 and is received by the output electrode 3.
【0013】(実施例2)
以下本発明の弾性表面波デバイスの基板の製造方法につ
いて説明する。Example 2 A method for manufacturing a substrate of a surface acoustic wave device according to the present invention will be described below.
【0014】図3に示すように、まず原料を所定のPZ
T系圧電セラミック材料の組成となるように秤量し、ボ
ールミルで混合した。混合粉末の一部を最適仮焼温度に
て仮焼し、残りの混合粉末を最適仮焼温度より50〜2
00℃低い温度にて仮焼した後、それぞれの仮焼粉を粉
砕,造粒した。このようにして得られた二種類の造粒粉
のうち、最適仮焼温度で仮焼して得た造粒粉を、焼成後
の厚みが通過帯域中心周波数の1波長よりも大きくなる
だけの量を金型へ充填し、その上に最適仮焼温度より5
0〜200℃低い温度で仮焼して得た造粒粉を充填した
のち加圧成形した。この二層構造の成形体を最適焼成温
度で焼結し、その後分極した。この製造方法により、通
過帯域中心周波数の1波長よりも大きな厚みの圧電セラ
ミック材料の均質焼結層と、この均質焼結層に完全に融
合した同組成の圧電セラミック材料の不均質焼結層から
なる弾性表面波デバイスの基板を得ることができる。As shown in FIG. 3, first, the raw material is made into a predetermined PZ.
The T-type piezoelectric ceramic material was weighed so as to have a composition and mixed by a ball mill. Part of the mixed powder is calcined at the optimum calcination temperature, and the remaining mixed powder is 50 to 2 from the optimum calcination temperature.
After calcining at a low temperature of 00 ° C., each calcined powder was crushed and granulated. Of the two types of granulated powder thus obtained, the granulated powder obtained by calcining at the optimum calcining temperature is such that the thickness after firing is greater than one wavelength of the pass band center frequency. Fill the amount into the mold, and then add 5 from the optimum calcination temperature.
The granulated powder obtained by calcining at a low temperature of 0 to 200 ° C. was filled and then pressure-molded. This two-layered compact was sintered at the optimum firing temperature and then polarized. By this manufacturing method, a homogeneous sintered layer of a piezoelectric ceramic material having a thickness larger than one wavelength of the pass band center frequency and a heterogeneous sintered layer of a piezoelectric ceramic material of the same composition completely fused to the homogeneous sintered layer are formed. It is possible to obtain a substrate of the surface acoustic wave device.
【0015】なお、本発明に係わる弾性表面波デバイス
の基板の製造方法は、実施例2に限定されるものではな
く、本発明主旨の範囲内で変更できるものである。The method of manufacturing the substrate of the surface acoustic wave device according to the present invention is not limited to the second embodiment and can be modified within the scope of the present invention.
【0016】[0016]
【発明の効果】以上のように本発明は、入力電極と出力
電極を配設する側の通過帯域中心周波数の1波長よりも
大きな厚みの圧電セラミック材料の均質焼結層と、この
均質焼結層に完全に融合した圧電セラミック材料の不均
質焼結層を備えた構成、および同一組成の混合粉を用い
た仮焼工程で、完全に反応させた仮焼粉と不完全に反応
させた仮焼粉を作製し、それぞれを粉砕,造粒したの
ち、焼成後の厚みが通過帯域中心周波数の1波長よりも
大きくなるだけの量の完全に仮焼した造粒粉と、所定量
の不完全に仮焼した造粒物を金型に充填し、加圧成形し
た成形体を焼結する方法により、スプリアスの発生を防
止し、かつ高信頼性の優れた弾性表面波デバイスの基板
およびその製造方法を実現できるものである。As described above, the present invention provides a homogeneous sintered layer of a piezoelectric ceramic material having a thickness larger than one wavelength of the center frequency of the pass band on the side where the input electrode and the output electrode are arranged, and the homogeneous sintered layer. A structure with an inhomogeneous sintered layer of piezoceramic material completely fused to the layers, and a calcination process using a mixed powder of the same composition, a calcination powder that was completely reacted and a calcination powder that was incompletely reacted. After making burned powder, crushing and granulating each, completely calcined granulated powder in an amount such that the thickness after firing is greater than one wavelength of the passband center frequency, and a predetermined amount of incomplete Substrate of high-reliability surface acoustic wave device that prevents spurious generation and is manufactured by a method of filling a die with the granulated material calcined in a mold and sintering the molded body that has been pressure-molded The method can be realized.
【図1】本発明の第1の実施例における弾性表面波デバ
イスの基板の概念を示した断面略図FIG. 1 is a schematic sectional view showing a concept of a substrate of a surface acoustic wave device according to a first embodiment of the present invention.
【図2】同弾性表面波デバイスの基板におけるバルク波
の錯乱状態の概念を示した断面略図FIG. 2 is a schematic cross-sectional view showing the concept of a bulk wave confusion state in the substrate of the surface acoustic wave device.
【図3】本発明の第2の実施例における弾性表面波デバ
イスの基板の製造工程のフローチャートを示す図FIG. 3 is a diagram showing a flowchart of a manufacturing process of a substrate of a surface acoustic wave device according to a second embodiment of the present invention.
【図4】従来の弾性表面波デバイスの基板の概念を示し
た断面略図FIG. 4 is a schematic sectional view showing the concept of a substrate of a conventional surface acoustic wave device.
【図5】従来の別の弾性表面波デバイスの基板の概念を
示した断面略図FIG. 5 is a schematic sectional view showing the concept of a substrate of another conventional surface acoustic wave device.
【図6】従来のさらに別の弾性表面波デバイスの基板の
概念を示した断面略図FIG. 6 is a schematic sectional view showing the concept of a substrate of still another conventional surface acoustic wave device.
1 基板 2 入力電極 3 出力電極 11 均質焼結層 12 不均質焼結層 1 substrate 2 input electrodes 3 output electrodes 11 Homogeneous sintered layer 12 Heterogeneous sintered layer
Claims (2)
表面波デバイスの基板であって、前記入力電極と前記出
力電極を配設する側の通過帯域中心周波数の1波長より
も大きな厚みの圧電セラミック材料の均質焼結層と、前
記均質焼結層に完全に融合した圧電セラミック材料の不
均質焼結層を備えた弾性表面波デバイスの基板。1. A substrate of a surface acoustic wave device having an input electrode and an output electrode disposed on a surface thereof, the thickness being greater than one wavelength of a center frequency of a pass band on the side where the input electrode and the output electrode are disposed. A substrate of a surface acoustic wave device, comprising: a homogeneous sintered layer of the piezoelectric ceramic material; and a heterogeneous sintered layer of the piezoelectric ceramic material completely fused to the homogeneous sintered layer.
全に反応させた仮焼粉と不完全に反応させた仮焼粉を作
製し、それぞれを粉砕,造粒したのち、焼成後の厚みが
通過帯域中心周波数の1波長よりも大きくなるだけの量
の完全に仮焼した造粒物と、所定量の不完全に仮焼した
造粒粉を金型に充填し、加圧成形した成形体を焼結する
弾性表面波デバイスの基板の製造方法。2. A calcining step using a mixed powder of the same composition to prepare a completely calcined powder and an incompletely reacted calcined powder, crushing and granulating each, and then firing. The mold is filled with a quantity of completely calcined granules and a predetermined quantity of incompletely calcined granules such that the subsequent thickness is greater than one wavelength of the pass band center frequency and the pressure is applied. A method of manufacturing a substrate of a surface acoustic wave device, comprising sintering a molded body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16267691A JPH0514100A (en) | 1991-07-03 | 1991-07-03 | Substrate for surface acoustic wave device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16267691A JPH0514100A (en) | 1991-07-03 | 1991-07-03 | Substrate for surface acoustic wave device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0514100A true JPH0514100A (en) | 1993-01-22 |
Family
ID=15759177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16267691A Pending JPH0514100A (en) | 1991-07-03 | 1991-07-03 | Substrate for surface acoustic wave device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0514100A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7474033B2 (en) | 2004-06-09 | 2009-01-06 | Seiko Epson Corporation | Surface acoustic wave device, method of manufacturing the same, and electronic apparatus |
-
1991
- 1991-07-03 JP JP16267691A patent/JPH0514100A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7474033B2 (en) | 2004-06-09 | 2009-01-06 | Seiko Epson Corporation | Surface acoustic wave device, method of manufacturing the same, and electronic apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110417371B (en) | Film bulk acoustic resonator based on phononic crystal | |
EP1659687A1 (en) | Surface acoustic wave device and electronic apparatus | |
TWI780312B (en) | Hybrid structure for surface acoustic wave device and associated manufacturing process | |
CN203851109U (en) | Composite substrate | |
KR101777584B1 (en) | Design and fabrication of surface acoustic wave filters having plate modes | |
EP1519484A2 (en) | Piezoelectric device, cellular phone system using the piezoelectric device, and electronic equipment using the piezoelectric device | |
CN109219896B (en) | Hybrid structure for surface acoustic wave device | |
US4652784A (en) | Trapped-energy mode resonator and method of manufacturing the same | |
JPH02290303A (en) | High frequency dielectric component and its manufacture | |
JPH0514100A (en) | Substrate for surface acoustic wave device and manufacture thereof | |
CN116781033A (en) | High-frequency acoustic wave resonator and preparation method thereof | |
US4061816A (en) | Integrally sintered ceramic complex and method of manufacturing the same | |
JP3419327B2 (en) | Porcelain material, ultrasonic probe, piezoelectric vibrator, and methods of manufacturing them | |
JPH0158891B2 (en) | ||
US6621194B1 (en) | Piezoelectric element having thickness shear vibration and mobile communication device using the same | |
JPH05145363A (en) | Surface acoustic wave device and its manufacture | |
CN113411066A (en) | double-SAW resonator structure with high-frequency double-acoustic-wave mode and double-SAW filter | |
JPH1131942A (en) | Surface acoustic wave module element and its production | |
JPH04242313A (en) | Surface acoustic wave device and its manufacture | |
WO2019185248A1 (en) | Baw resonator with improved coupling, rf filter comprising a baw resonator and method of manufacturing a baw resonator | |
JPH07250399A (en) | Porous piezoelectric ceramic vibrator and its manufacture | |
JP3101970B2 (en) | Glass-ceramic sintered body and method for producing the same | |
US20110156836A1 (en) | Duplexer device and method of manufacturing the same | |
US20240258983A1 (en) | Acoustic wave device and method for producing same | |
JP3028250B2 (en) | Manufacturing method of piezoelectric ceramics |