JPH05140717A - Manufacture of galvannealed steel sheet - Google Patents

Manufacture of galvannealed steel sheet

Info

Publication number
JPH05140717A
JPH05140717A JP32842591A JP32842591A JPH05140717A JP H05140717 A JPH05140717 A JP H05140717A JP 32842591 A JP32842591 A JP 32842591A JP 32842591 A JP32842591 A JP 32842591A JP H05140717 A JPH05140717 A JP H05140717A
Authority
JP
Japan
Prior art keywords
alloying
plating
steel sheet
steel
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32842591A
Other languages
Japanese (ja)
Inventor
Shinichi Suzuki
眞一 鈴木
Makoto Itomi
誠 糸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32842591A priority Critical patent/JPH05140717A/en
Publication of JPH05140717A publication Critical patent/JPH05140717A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To securely execute alloying treatment by previously applying Fe-C-S composite plating to the surface of a steel sheet, then applying galvanizing and thereafter executing heating and alloying treatment. CONSTITUTION:The surface of a steel sheet contg. 0.02 to 0.05% P and/or 0.03 to 3% Si and/or 0.1 to 3% Mn is applied with Fe-C-S composite plating and is then galvanized, and thereafter, alloying is executed in heating. Thus, its plating wettability is improved, the alloying rates of various steel sheets with different alloying reaction rates are equalized, the industrial manufacture is facilitated and the alloying rates can be promoted particularly to the kinds of steel late in alloying reaction such as P-added steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合金化溶融亜鉛系めっ
き鋼板の製造方法に関して、めっき濡れ性を改善し、合
金化反応速度の異なる各種鋼板の合金化速度を平準化
し、工業的製造を容易ならしめることと、P添加鋼のご
とき、特に合金化反応の遅い鋼種に対して、その合金化
速度を促進させることを狙いとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a galvannealed steel sheet, which improves the coating wettability and equalizes the alloying rates of various steel sheets having different alloying reaction rates, thereby achieving industrial production. The purpose is to facilitate the process and to accelerate the alloying rate of steels such as P-added steels, which have a particularly slow alloying reaction.

【0002】[0002]

【従来技術とその課題】合金化溶融亜鉛めっき鋼板はF
e6〜18%含有するZn−Fe合金組成をもち、塗装
耐食性、プレス成形性、溶接性が優れていることから自
動車、家電、建材など広い産業分野に使用されている材
料である。その製造方法は、通常冷延鋼板あるいは熱延
鋼板を酸化性あるいは無酸化雰囲気で昇温し、表面に付
着している油などの汚れを焼去し、次いで還元雰囲気中
で表面を清浄化した後、溶融亜鉛めっきを施し、次いで
加熱処理によって地鉄からFeをめっき層に拡散せしめ
て合金化する工程で実施されている。合金化反応はFe
の拡散速度に支配されるので、鋼種によってその速度が
異なり、その対処方法としてラインスピードを変更した
り、めっき浴中のAl濃度を調整しているが、操業能率
の低下や、品質バラツキをもたらす不利がある。また、
高張力鋼板として実施されているP添加鋼はFe拡散速
度が著しく遅いため、生産障害が甚だしい。一方、高張
力鋼板として実施されているSi添加鋼では鋼中のSi
含有量が高いと、鋼板表面にSi酸化物を生成し、これ
が溶融亜鉛との濡れ性を阻害し、鋼中のSi含有量が低
くても含金化速度の低下を招く。この解決策として、め
っきに先立ち鋼板表面にFeめっきを施すことが開示
(特開昭59−23858号)されているが、効果は不
十分であることがわかり、本発明はその改善方法を提案
するものである。
[Prior Art and Problems] Alloyed hot-dip galvanized steel sheet is F
It has a Zn-Fe alloy composition containing 6 to 18% of e and is excellent in coating corrosion resistance, press formability, and weldability, and thus is a material used in a wide range of industrial fields such as automobiles, home appliances, and building materials. The manufacturing method is as follows: normal cold-rolled steel sheet or hot-rolled steel sheet is heated in an oxidizing or non-oxidizing atmosphere, stains such as oil adhering to the surface are burned off, and then the surface is cleaned in a reducing atmosphere. After that, hot-dip galvanizing is performed, and then Fe is diffused from the base iron into the plated layer by heat treatment to alloy it. The alloying reaction is Fe
Since it is controlled by the diffusion rate of aluminum, the speed varies depending on the steel type, and the line speed is changed or the Al concentration in the plating bath is adjusted as a method of coping with it, but this causes a decrease in operating efficiency and quality variations. There is a disadvantage. Also,
P-added steel, which is used as a high-strength steel sheet, has a significantly low Fe diffusion rate, which causes serious production problems. On the other hand, in the Si-added steel that is implemented as a high-strength steel plate, the Si in the steel is
When the content is high, Si oxide is generated on the surface of the steel sheet, which impedes the wettability with molten zinc, and even if the Si content in the steel is low, it causes a reduction in the rate of hydriding. As a solution to this problem, it has been disclosed that the surface of the steel sheet is plated with Fe prior to plating (Japanese Patent Laid-Open No. 59-23858). However, the effect is insufficient, and the present invention proposes a method for improving it. To do.

【0003】[0003]

【発明が解決しようとする課題】本発明は上述の問題を
有利に解決するためになされたものであり、溶融めっき
前のプレめっきの効果をさらに高める新規なめっき方法
に特徴がある。
The present invention has been made in order to advantageously solve the above-mentioned problems, and is characterized by a novel plating method for further enhancing the effect of pre-plating before hot dipping.

【0004】[0004]

【課題を解決するための手段】本発明は (1)予め鋼板表面にFe−C−S複合めっきを施し、
次いで溶融亜鉛系めっきを施した後、加熱合金化処理す
ることを特徴とする合金化溶融亜鉛系めっき鋼板の製造
方法 (2)P0.02〜0.5%および/またはSi0.0
3〜3%および/またはMn0.1〜3%含有する鋼板
表面にFe−C−S複合めっきを施し、次いで溶融亜鉛
系めっきを施した後、加熱合金化することを特徴とする
合金化溶融亜鉛めっき鋼板の製造方法 (3)Fe2+イオンおよび0.01g〜20g/lのポ
リスルフォン、スルフィド誘導体等のSを含む有機化合
物を1種または2種以上を含む酸性めっき浴を用いて、
めっきすることを特徴とする請求項1または2に記載の
Fe−C−S複合めっきの製造方法である。
Means for Solving the Problems The present invention is as follows: (1) Fe-C-S composite plating is applied to the surface of a steel sheet in advance,
Then, a hot dip galvanized coating is applied, followed by a heat alloying treatment. A method for producing an alloyed hot dip galvanized steel sheet (2) P0.02 to 0.5% and / or Si0.0
Fe-C-S composite plating is applied to the surface of a steel sheet containing 3 to 3% and / or 0.1 to 3% of Mn, and then hot dip galvanizing is applied, followed by heat alloying. Method for producing galvanized steel sheet (3) Using an acidic plating bath containing one or two or more Fe 2 + ions and 0.01 to 20 g / l polysulfone, an organic compound containing S such as a sulfide derivative,
Plating is carried out, It is a manufacturing method of Fe-C-S compound plating according to claim 1 or 2 characterized by things.

【0005】[0005]

【作用】Fe−C−S複合めっき層とはFe中にカーボ
ン質およびS質物質が合金、混合、あるいは吸蔵されて
いる構造のめっき層をさす。Fe−C−S複合めっき層
の形成方法として、電気めっき法の例を以下に示す。鋼
板を必要ならば通常の方法で脱脂、酸洗処理をした後、
硫酸第一鉄及びあるいは塩化第一鉄の水溶液にポリスル
フォンを0.01から10g/l添加した浴に導き、鋼
板を陰極として電流密度30〜300A/dm2、0.
1〜30秒の電解処理をする事により、Feめっき層中
にCおよびS物質であるポリスルフォンがCとして0.
01〜1%、Sとして0.01〜0.5%共析する。次
いで、無酸化炉中500〜700℃に昇温し、還元炉中
で500〜800℃に保持して熱処理をすると、Feめ
っき層が再結晶するとともに、ポリスルフォンが分解し
てFe−C−S複合めっき層が形成する。カーボン質分
および硫黄質分が存在しない場合にはFeめっき層は再
結晶によって母材鋼板と同様な結晶粒を形成するが、こ
の粒界を通って、母材鋼板のMn,Si,P,Al等の
元素がFeめっき層表面まで容易に拡散する。これらト
ラップエレメントは後の合金化反応に重大な影響を及ぼ
すものであるが、その表面濃度が鋼種によって異なるの
で合金化速度がそれぞれ異なるのである。Feプレめっ
きではこのような理由でトラップエレメントの表面濃度
を平準化する作用が不十分であった。これに対して、F
e−C−S複合めっきでは、再結晶過程でアモルファス
様の微細結晶が生成し、明確な粒界が観察されない。ま
た、CおよびSは粒内での拡散がP,Si,Mnと比較
して速く、粒界および表面に濃化しやすい。そのため上
記トラップエレメントのめっき層表面への拡散が著しく
抑制され、鋼種が異なってもその表面濃度が平準化し、
ほぼ一定の合金化反応速度が達成される。P添加鋼にお
いても、Pの表面濃度が抑制され、合金化速度は普通鋼
に近いレベルまで促進できる。また、Si,Mn添加鋼
においても同様な効果からSi,Mnの酸化物の生成が
抑制され溶融亜鉛との濡れ性やめっき密着力が向上され
るとともに合金加速度も促進できる。
The Fe-C-S composite plating layer refers to a plating layer having a structure in which carbonaceous and S-based substances are alloyed, mixed, or occluded in Fe. An example of an electroplating method is shown below as a method for forming the Fe—C—S composite plating layer. If necessary, after degreasing and pickling the steel plate in the usual way,
The solution was introduced into a bath containing 0.01 to 10 g / l of polysulfone in an aqueous solution of ferrous sulfate and / or ferrous chloride, and a steel sheet was used as a cathode to obtain a current density of 30 to 300 A / dm 2 ,
By performing electrolytic treatment for 1 to 30 seconds, polysulfone, which is a C and S substance, in the Fe plating layer has a C.
0 to 1% and 0.01 to 0.5% of S are codeposited. Then, when the temperature is raised to 500 to 700 ° C. in a non-oxidizing furnace, and is held at 500 to 800 ° C. in a reducing furnace for heat treatment, the Fe plating layer is recrystallized and polysulfone is decomposed to form Fe—C—. The S composite plating layer is formed. In the absence of carbonaceous matter and sulfuraceous matter, the Fe plating layer recrystallizes to form crystal grains similar to those of the base steel sheet, but through the grain boundaries, Mn, Si, P, and Elements such as Al easily diffuse to the surface of the Fe plating layer. These trap elements have a significant effect on the subsequent alloying reaction, but their surface concentration differs depending on the steel type, and therefore the alloying rate differs. For this reason, the effect of leveling the surface concentration of the trap element was insufficient in Fe pre-plating. On the other hand, F
In the e-C-S composite plating, amorphous-like fine crystals are generated in the recrystallization process, and clear grain boundaries are not observed. Further, C and S diffuse faster in the grains than P, Si, and Mn, and are likely to be concentrated at grain boundaries and surfaces. Therefore, the diffusion of the trap element to the plating layer surface is significantly suppressed, and even if the steel types are different, the surface concentration is leveled,
A nearly constant alloying reaction rate is achieved. Even in the P-added steel, the surface concentration of P is suppressed and the alloying rate can be promoted to a level close to that of ordinary steel. In addition, also in the case of Si and Mn-added steel, the formation of oxides of Si and Mn is suppressed by the same effect, the wettability with molten zinc and the plating adhesion are improved, and the alloy acceleration can be promoted.

【0006】次に、Fe−C−S複合めっきのめっき方
法について述べる。まず、電気めっきによる方法である
が、硫酸第一鉄及びあるいは塩化第一鉄の水溶液にC質
分,S質分としてポリスルフォン、スルフィド誘導体や
Sを含有するアニオン系界面活性剤、カチオン系界面活
性剤、非イオン系界面活性剤、両イオン性界面活性剤の
1種または2種以上を0.01〜20g/l添加した酸
性めっき浴を用いて、鋼板を陰極として電解処理を行
う。これらのC質分,S質分物質はスルフォン基、スル
フィド基、エーテル基やアミン基などの極性基の作用に
より活性な点への吸着性が高いため、Feめっき中に容
易に均一に含有される。
Next, a plating method of Fe-C-S composite plating will be described. First, a method by electroplating is used. An aqueous solution of ferrous sulfate and / or ferrous chloride is used as an anionic surfactant and a cationic interface containing polysulfone, a sulfide derivative and S as C and S components. Using an acidic plating bath containing 0.01 to 20 g / l of one or more of an activator, a nonionic surfactant and a zwitterionic surfactant, electrolytic treatment is performed using a steel sheet as a cathode. These C and S substances have high adsorbability at active points due to the action of polar groups such as sulfone groups, sulfide groups, ether groups and amine groups, so they are easily and uniformly contained in Fe plating. It

【0007】これら添加剤は一般的に R2−X−(R1−Y)n−R3 および、あるいは R2−(R1−X)n−R3 で示される化合物を指す。ここで、 X,Y:O(エーテル基)、S(スルフィド基)、SO
2(スルフォン基)、NH,NR(アミン基)、NR2+
(アンモニウム基) R1:アルキレン基 及び、あるいは R2,R3:H、アルキル基、フェニル、ナフチルなどの
アリール基およびまたはその誘導体(カルボン酸、硫
酸、リン酸等の官能基、塩、エステル) n=1〜2000 これら化合物はポリスルフォンの様に直鎖化合物であっ
てもよく、クラウンエーテルやモノラウリン酸ソルビタ
ンのスルフォン誘導体の様な環式化合物でもよく、ポリ
アミンスルホンの様な直鎖、環式混合物でも良い。具体
的な例を挙げれば、
These additives are generally R2-X- (R1-Y) n-R3  And / or R2-(R1-X) n-R3  Indicates a compound represented by. Here, X, Y: O (ether group), S (sulfide group), SO
2(Sulfone group), NH, NR (amine group), NR2+
(Ammonium group) R1: Alkylene group and / or R2, R3: H, alkyl group, phenyl, naphthyl, etc.
Aryl groups and / or their derivatives (carboxylic acids, sulfur
Acid, phosphoric acid or other functional group, salt, ester) n = 1 to 2000 These compounds are linear compounds such as polysulfone.
May also be crown ether or sorbita monolaurate
A cyclic compound such as a sulfone derivative of
A linear or cyclic mixture such as amine sulfone may be used. Concrete
For example,

【0008】[0008]

【化1】 [Chemical 1]

【0009】・スルフィド RSR’ R,R’=アルキル、HSulfide RSR 'R, R' = alkyl, H

【0010】[0010]

【化2】 [Chemical 2]

【0011】[0011]

【化3】 [Chemical 3]

【0012】[0012]

【化4】 [Chemical 4]

【0013】[0013]

【化5】 [Chemical 5]

【0014】・チオ尿素 SC(NH22 等である。これら添加剤のめっき浴中の添加量は0.0
1〜20g/lが好ましい範囲である。0.01g/l
未満ではほとんど効果が認められない。また20g/l
を越えるとC,Sの含有量が飽和し、めっき浴中への溶
解度に制約される。上記添加剤は1種または2種以上混
合して使用することもできる。Fe2+イオン濃度は特に
制限されるものではないが、通常10〜150g/lの
範囲で、目的とするめっきを電流効率を勘案して最適条
件を採用することができる。さらに、Na+,K+,NH4
+,Mg2+イオン等の無関係塩を添加することは、浴の
電気伝導度を高めるために有効である。なお、目的に応
じてはNi,Co,Cr,Mn,Cu,Cd,Sn,P
bなどのイオンを少量添加してめっき層に第3成分を少
量共析させても効果は本質的には変わらない。
・ Thiourea SC (NH2)2  Etc. The addition amount of these additives in the plating bath is 0.0
1 to 20 g / l is a preferable range. 0.01 g / l
Below the level, almost no effect is observed. 20g / l
If the content exceeds C, the content of C and S will be saturated, and the dissolution in the plating bath will occur.
Limited by the solution. The above additives are mixed alone or in combination of two or more.
It can also be used together. Fe2+ Especially the ion concentration
Although not limited, usually 10 to 150 g / l
In the range, the target plating is optimal considering the current efficiency.
The matter can be adopted. In addition, Na +, K +, NHFour
+, Mg2+ Adding extraneous salts such as ions to the bath
It is effective for increasing the electrical conductivity. Depending on the purpose,
Then Ni, Co, Cr, Mn, Cu, Cd, Sn, P
Add a small amount of ions such as b to reduce the third component in the plating layer.
The effect is essentially the same even if the amount of eutectoid is used.

【0015】次に、めっき条件について説明する。電流
密度30A/dm2以上で鋼板にめっきを行うことが好
ましい。30A/dm2以下では合金化向上を行うに十
分なFe−C−Sめっきのめっき量を得るのに時間がか
かり工業的でない。めっき液の流速は鋼帯との相対速度
として、10〜200m/min、めっき温度は40〜
70℃が適当である。めっき量としては、0.2〜10
g/m2のめっきを施す。めっき量が0.2g/m2未満
であると、効果が少なく、また10g/m2超になると
効果はほとんど変わらず、コスト的にも不利になるので
10g/m2以下が好ましい。また、Fe−C−Sめっ
き中のC量としては、0.01%以上1.0%以下が好
ましい。C量が0.01%未満であると合金化反応に及
ぼす作用が小さく、また1.0%超ではめっき層が脆く
なり、炉内で剥離する傾向がでるので好ましくない。ま
た、Fe−C−Sめっき中のS量としては、0.001
%以上0.5%以下が好ましい。S量が0.005%未
満であると合金化反応に及ぼす作用が小さく、また0.
5%超ではめっき層が脆くなり、炉内で剥離する傾向が
でるので好ましくない。なお、めっき前に鋼板を必要な
らば通常の方法で脱脂、酸洗処理を行ってもよい。ま
た、硫化物微粒子をそのまま、あるいは上記の界面活性
剤と一緒に添加することも可能である。
Next, the plating conditions will be described. It is preferable to plate the steel sheet at a current density of 30 A / dm 2 or more. When it is 30 A / dm 2 or less, it takes time to obtain a sufficient amount of Fe—C—S plating for improving alloying, which is not industrial. The flow velocity of the plating solution is 10 to 200 m / min as the relative velocity to the steel strip, and the plating temperature is 40 to
70 ° C is suitable. The plating amount is 0.2 to 10
Apply g / m 2 plating. If the plating amount is less than 0.2 g / m 2 , the effect is small, and if it exceeds 10 g / m 2 , the effect is almost the same and the cost is disadvantageous. Therefore, 10 g / m 2 or less is preferable. The amount of C in the Fe-C-S plating is preferably 0.01% or more and 1.0% or less. If the amount of C is less than 0.01%, the effect on the alloying reaction is small, and if it exceeds 1.0%, the plating layer becomes brittle and peels off in the furnace, which is not preferable. The amount of S in the Fe-C-S plating is 0.001.
% Or more and 0.5% or less is preferable. When the S content is less than 0.005%, the effect on the alloying reaction is small, and the content of 0.
If it exceeds 5%, the plating layer becomes fragile and tends to peel off in the furnace, which is not preferable. If necessary, the steel sheet may be degreased and pickled by a conventional method before plating. It is also possible to add the sulfide fine particles as they are or together with the above-mentioned surfactant.

【0016】次に上記以外の態様例を示す。電気めっき
法は溶融めっき法の直前で行っても良い。電気めっき
後、必要ならフラックスを塗布し、400〜500℃に
加熱して溶融めっき浴に導くか、あるいは直接常温のま
ま溶融めっき浴に導き、浴内で加熱してめっきをしても
良い。この場合、Fe−C−S複合めっき層のC,S含
有物質は未分解あるいは部分分解状態で溶融めっきされ
るが、溶融めっき浴内でのトラップエレメント拡散に十
分の抑制作用がある。Fe−C−S複合めっきはFe,
C,Sをターゲットとする物理蒸着法、気化性Fe塩と
有機物蒸気を用いて分解析出させる化学蒸着法でも適用
できる。これらの方法でのFe−C−S複合めっきの作
用機構は上述と同じで自明であろう。本発明のFe−C
−N複合めっき層の厚さは、0.2〜10g/m2が好
適である。0.2g/m2未満であると、効果が判然と
せず、また10g/m2超になると効果はほとんど変わ
らず、コスト的にも不利になる。
Next, examples of modes other than the above will be shown. The electroplating method may be performed immediately before the hot dipping method. After electroplating, if necessary, flux may be applied and heated to 400 to 500 ° C. to lead to a hot dip plating bath, or directly to the hot dip bath at room temperature and heated in the bath for plating. In this case, the C, S-containing substance of the Fe-C-S composite plating layer is hot-dipped in the undecomposed or partially decomposed state, but it has a sufficient suppressing effect on the diffusion of the trap element in the hot-dip plating bath. Fe-C-S composite plating is Fe,
The physical vapor deposition method targeting C and S, and the chemical vapor deposition method of decomposing and depositing by using a vaporizable Fe salt and an organic vapor can also be applied. The mechanism of action of the Fe-C-S composite plating in these methods will be the same as above and will be obvious. Fe-C of the present invention
The thickness of the -N composite plating layer is preferably 0.2 to 10 g / m 2 . If it is less than 0.2 g / m 2 , the effect is unclear, and if it is more than 10 g / m 2 , the effect is almost unchanged and the cost is disadvantageous.

【0017】P添加鋼においては0.02〜0.5%の
P含有量の鋼板で合金化促進効果が大きい。0.02%
未満では普通鋼と変わらず、0.5%Pを越えると本発
明のFe−C−S複合めっきをもってしても効果が不十
分となる。Si添加鋼においては0.2〜3%のSi含
有量の鋼板で溶融亜鉛との濡れ性改善効果、合金化促進
効果、めっき密着性向上効果が大きい。0.2%未満で
は普通鋼と変わらず、3%Siを越えると本発明のFe
−C−S複合めっきをもってしても効果が不十分とな
る。Mn添加鋼においては0.1〜3%のMn含有量の
鋼板で溶融亜鉛との濡れ性改善効果、合金化促進効果、
めっき密着性向上効果が大きい。0.2%未満では普通
鋼と変わらず、3%Mnを越えると本発明のFe−C−
S複合めっきをもってしても効果が不十分となる。これ
らの元素が2種以上添加されても各元素の効果範囲は上
記と同様である。なお、合金化溶融亜鉛めっき鋼板の溶
融めっき浴は通常Alを0〜0.15%添加しており、
その他にPb,Cd,Sb,Snも少量存在してもよ
く、さらには品質改善を目的として、Ni,Mn,T
i,Zr,Mg,Ca,Li、ランタナイドなどが少量
添加される場合があるが、合金化処理される工程を経る
場合には、本質的には本発明の方法は全て適用可能であ
る。Fe−C−S複合めっきにおいて、他の元素、例え
ば、Ni,Zn,Mn,Cu,P,B,O,N,Cl,
H,Naなどが少量混入しても本質的には本発明と同一
である。
In the P-added steel, a steel sheet having a P content of 0.02 to 0.5% has a large alloying promoting effect. 0.02%
If it is less than 0.5%, it is not different from ordinary steel, and if it exceeds 0.5% P, the effect is insufficient even with the Fe—C—S composite plating of the present invention. In the Si-added steel, a steel sheet having a Si content of 0.2 to 3% has a large effect of improving wettability with molten zinc, an effect of promoting alloying, and an effect of improving plating adhesion. If it is less than 0.2%, it is the same as ordinary steel, and if it exceeds 3% Si, Fe of the present invention is used.
Even with -C-S composite plating, the effect is insufficient. In the Mn-added steel, a steel sheet having a Mn content of 0.1 to 3% has an effect of improving wettability with molten zinc, an effect of promoting alloying,
Greatly improves the plating adhesion. If it is less than 0.2%, it is not different from that of ordinary steel, and if it exceeds 3% Mn, Fe-C- of the present invention.
Even with S composite plating, the effect is insufficient. Even if two or more of these elements are added, the effect range of each element is the same as above. The hot-dip galvanizing bath of the galvannealed steel sheet usually contains 0 to 0.15% Al.
In addition, Pb, Cd, Sb, and Sn may be present in a small amount, and Ni, Mn, and T may be added for the purpose of quality improvement.
Although a small amount of i, Zr, Mg, Ca, Li, lanthanide, etc. may be added, essentially all of the method of the present invention is applicable when the alloying step is performed. In Fe-C-S composite plating, other elements such as Ni, Zn, Mn, Cu, P, B, O, N, Cl,
Even if a small amount of H, Na, etc. is mixed, it is essentially the same as the present invention.

【0018】[0018]

【実施例】次に本発明の実施例を比較例とともに挙げ
る。 1)表1は各鋼板の化学組成を示し、また表1A、表1
B、表1C、表1Dは、それぞれ事前(予め)めっき条
件を示す。この事前のめっきを施した後、連続溶融亜鉛
系めっき設備前処理炉の直火無酸化炉出側で650℃
(板温)、還元熱処理炉で750〜800℃×30秒の
熱処理を施し、次いで亜鉛系めっき浴へ導きめっきを施
した。 2)上記めっき鋼板を表3A、表3Bに示すごとく合金
化処理した。合金化は、直火加熱炉温度を950℃、保
熱炉温度を650℃とそれぞれ一定として行い、溶融亜
鉛が保熱炉出側で完全に観察されなくなる場合のストリ
ップ通板速度を示した。この場合通板速度が大きいほど
合金化速度が速く、短時間で合金化処理ができることを
示すものである。
EXAMPLES Next, examples of the present invention will be given together with comparative examples. 1) Table 1 shows the chemical composition of each steel sheet, and Tables 1A and 1
B, Table 1C, and Table 1D show pre-plating conditions. After performing this pre-plating, 650 ° C. at the outlet of the direct-heating non-oxidizing furnace of the continuous hot dip galvanizing equipment pretreatment furnace.
(Plate temperature), heat treatment was carried out at 750 to 800 ° C. for 30 seconds in a reduction heat treatment furnace, and then it was introduced into a zinc-based plating bath for plating. 2) The plated steel sheet was alloyed as shown in Tables 3A and 3B. The alloying was carried out with the temperature of the direct-fired heating furnace kept constant at 950 ° C. and the temperature of the heat-retaining furnace kept constant at 650 ° C., respectively. In this case, the higher the stripping speed is, the faster the alloying speed is, which means that the alloying treatment can be performed in a shorter time.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2A】 [Table 2A]

【0021】[0021]

【表2B】 [Table 2B]

【0022】[0022]

【表2C】 [Table 2C]

【0023】[0023]

【表2D】 [Table 2D]

【0024】[0024]

【表3A】 [Table 3A]

【0025】[0025]

【表3B】 [Table 3B]

【0026】[0026]

【発明の効果】このように本発明によれば短時間で合金
化処理でき、それだけ生産性を向上することができる。
かくすることにより、鋼種により合金化処理条件(温
度、時間)をほとんど変更すること無く合金化処理がで
き、工業的に安定して、しかも確実に合金化処理ができ
る。また合金化処理時間を短縮でき、それだけ生産性を
向上することができる、溶融亜鉛との濡れ性やめっき密
着性を向上できる等の優れた効果が得られる。
As described above, according to the present invention, the alloying treatment can be performed in a short time, and the productivity can be improved accordingly.
By doing so, the alloying treatment can be carried out with almost no change in the alloying treatment conditions (temperature, time) depending on the steel type, which is industrially stable and can be reliably performed. Further, the alloying treatment time can be shortened, the productivity can be improved accordingly, and the excellent effects such as the wettability with molten zinc and the plating adhesion can be improved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 予め鋼板表面にFe−C−S複合めっき
を施し、次いで溶融亜鉛系めっきを施した後、加熱合金
化処理することを特徴とする合金化溶融亜鉛めっき鋼板
の製造方法。
1. A method for producing an alloyed hot-dip galvanized steel sheet, which comprises subjecting a steel sheet surface to Fe—C—S composite plating in advance, then hot-dip galvanizing, and then heat-alloying.
【請求項2】 P0.02〜0.5%および/またはS
i0.03〜3%および/またはMn0.1〜3%含有
する鋼板表面にFe−C−S複合めっきを施し、次いで
溶融亜鉛系めっきを施した後、加熱合金化処理すること
を特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
2. P0.02-0.5% and / or S
Fe—C—S composite plating is applied to the surface of the steel sheet containing i0.03 to 3% and / or Mn of 0.1 to 3%, and then hot dip galvanizing is applied, followed by heat alloying treatment. A method for manufacturing a galvannealed steel sheet.
【請求項3】 Fe2+イオンおよび0.01〜20g/
lのポリスルフォン、スルフィド誘導体等のSを含む有
機化合物を1種または2種以上を含む酸性めっき浴を用
いて、めっきすることを特徴とする請求項1または2に
記載のFe−C−S複合めっきの製造方法。
3. Fe 2 + ions and 0.01 to 20 g /
Fe-C-S according to claim 1 or 2, wherein the S-containing organic compound such as polysulfone and sulfide derivative of 1 is plated using an acidic plating bath containing one or more kinds. Composite plating manufacturing method.
JP32842591A 1991-11-18 1991-11-18 Manufacture of galvannealed steel sheet Withdrawn JPH05140717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32842591A JPH05140717A (en) 1991-11-18 1991-11-18 Manufacture of galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32842591A JPH05140717A (en) 1991-11-18 1991-11-18 Manufacture of galvannealed steel sheet

Publications (1)

Publication Number Publication Date
JPH05140717A true JPH05140717A (en) 1993-06-08

Family

ID=18210120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32842591A Withdrawn JPH05140717A (en) 1991-11-18 1991-11-18 Manufacture of galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JPH05140717A (en)

Similar Documents

Publication Publication Date Title
US6921439B2 (en) Flux and process for hot dip galvanization
CN108486415A (en) A kind of preparation method of steel plate and steel plate after dip galvanized aluminum magnesium plating solution and its hot-dip
WO1987005337A1 (en) Fluoride-free flux compositions for the hot galvanizing in aluminium-containing zinc baths
JPH0463259A (en) Galvannealed steel sheet excellent in workability and its production
JPH05140719A (en) Manufacture of galvannealed steel sheet
JPH05140717A (en) Manufacture of galvannealed steel sheet
JPH05140716A (en) Manufacture of galvannealed steel sheet
KR970000190B1 (en) Method for producing zinc coated steel sheet
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JPH05140720A (en) Manufacture of galvannealed steel sheet
JPH05140712A (en) Manufacture of galvanized steel sheet
JPH05140714A (en) Manufacture of galvannealed steel sheet
JPH05140718A (en) Manufacture of galvannealed steel sheet
JPH05140715A (en) Manufacture of galvanized steel sheet
JPH05140713A (en) Manufacture of galvanized steel sheet
JPH05148604A (en) Manufacture of galvanized steel sheet
JP3404489B2 (en) Hot dip galvanizing method for steel
JP3631584B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
JP3376914B2 (en) Manufacturing method and apparatus for hot-dip galvanized steel sheet
JPS6055588B2 (en) Method for producing molten zinc-magnesium alloy plated steel sheet
JPH10259466A (en) Production of hot-dip galvannealed steel sheet
JPH05140711A (en) Manufacture of galvanized steel sheet
JPH0426746A (en) Production of galvannealed steel sheet
JP2000169948A (en) Hot dip galvannealed steel sheet and its production
JPH07197225A (en) Hot-dip metal plating method of high tensile strength hot-rolled steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204