JPH05140678A - Copper base alloy for building up welding excellent in wear resistance - Google Patents

Copper base alloy for building up welding excellent in wear resistance

Info

Publication number
JPH05140678A
JPH05140678A JP3325027A JP32502791A JPH05140678A JP H05140678 A JPH05140678 A JP H05140678A JP 3325027 A JP3325027 A JP 3325027A JP 32502791 A JP32502791 A JP 32502791A JP H05140678 A JPH05140678 A JP H05140678A
Authority
JP
Japan
Prior art keywords
alloy
wear resistance
copper
wear
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3325027A
Other languages
Japanese (ja)
Other versions
JP3305738B2 (en
Inventor
Makoto Yoshida
信 吉田
Kazuhiko Mori
和彦 森
Masahiro Nakagawa
政宏 仲川
Hiroyuki Murase
博之 村瀬
Minoru Kawasaki
稔 河崎
Taku Saito
卓 斎藤
Koji Tanaka
浩司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP32502791A priority Critical patent/JP3305738B2/en
Publication of JPH05140678A publication Critical patent/JPH05140678A/en
Application granted granted Critical
Publication of JP3305738B2 publication Critical patent/JP3305738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To improve the wear resistance of a copper base alloy for building up welding at a high temp. as for a dispersion strengthening type wear resistant copper base alloy. CONSTITUTION:This copper base alloy has a compsn. constituted of, by weight, 5 to 30.0% Ni, 0.5 to 5.0% Si, 0.5 to 3.0% B, 2 to 30% Co and the balance Cu with inevitable impurities (where the total of alloy components other than Cu does not exceed 60%). A part of Co can be substituted by Fe. Moreover, at least one kind among high m.p. carbides, Pb, Sn and Zn may be added. The hard grains of Co borides are small in the deterioration in hardness at a high temp. and contribute to the improvement of its wear resistance at a high temp. and on heavy loads.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅(Cu)基合金、よ
り詳しくは、耐摩耗性に優れている分散強化型の肉盛用
銅基合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper (Cu) base alloy, and more particularly to a dispersion strengthened copper base alloy for overlay welding, which has excellent wear resistance.

【0002】[0002]

【従来の技術】銅基合金の耐摩耗性材料としては、Cu
にベリリウム(Be)を添加したベリリウム銅あるいは
コルソン合金として知られるCu−Ni−Si合金など
の析出硬化型の合金や、銅基マトリックス中にSi
2 、Cr2 3 、BeO、TiO2 、ZrO2 、Mg
O、MnOなどの硬質酸化物を主体とする粒子を分散さ
せた分散強化型の合金などが知られている。
2. Description of the Related Art Cu is a wear-resistant material for copper-based alloys.
Beryllium copper with beryllium (Be) added to it or a precipitation hardening alloy such as a Cu-Ni-Si alloy known as Corson alloy, or Si in a copper-based matrix.
O 2 , Cr 2 O 3 , BeO, TiO 2 , ZrO 2 , Mg
A dispersion-strengthened alloy in which particles mainly composed of a hard oxide such as O or MnO are dispersed is known.

【0003】特に、ベリリウム銅は、鋼並みの強さ(1
00kg/mm2以上の引張強度)を有し、銅基合金の中では
高い硬さ(Hv300以上の硬度)を有している。しか
しながら、このような析出硬化処理(時効硬化処理)を
施したものでは、析出(時効)温度よりも高い温度状態
(350〜450℃)になると、急激に硬さが低下し、
耐摩耗部材としては不十分である。また、このような析
出硬化処理は大物部材に適用し難く、熱処理による歪み
の発生が問題となり、処理に長時間を必要とする。さら
に、析出は、固体内の拡散によって生じるため、析出粒
子の大きさは数μm程度と微細であり、このため硬さは
得られても、摺動(滑り)を伴う摩耗条件では、しばし
ば大きな摩耗を生じることがある。
In particular, beryllium copper is as strong as steel (1
It has a tensile strength of 00 kg / mm 2 or more) and a high hardness (hardness of Hv 300 or more) among copper-based alloys. However, in the case where such precipitation hardening treatment (age hardening treatment) is applied, when the temperature (350 to 450 ° C.) higher than the precipitation (aging) temperature is reached, the hardness sharply decreases,
It is insufficient as a wear resistant member. In addition, such a precipitation hardening treatment is difficult to apply to a large-sized member, and distortion due to heat treatment becomes a problem, which requires a long time for the treatment. Further, since the precipitation is caused by diffusion in the solid, the size of the precipitated particles is as small as several μm. Therefore, even if hardness is obtained, it is often large under wear conditions involving sliding. May cause wear.

【0004】また、分散強化型の銅基合金の内で、内部
酸化法によって得られるものは、固体内での酸素の拡散
により酸化物粒子を形成するので、この分散粒子は析出
型の場合と同様に微細なものとなってしまう。しかも、
固体内拡散のために高温長時間の処理を必要とし、大物
部材に適用し難く、歪み発生の問題もある。また、焼結
法によって得られるものは、原料粉体の粒径を変えるこ
とで容易に分散粒子の大きさをコントロールすることは
できるが、均一な分散をミクロンオーダでコントロール
することは困難である。しかも、肉盛のように局部的に
銅基合金層を形成しようとすると、基体である被処理部
材全体を焼結温度まで加熱しなければならず、それによ
って被処理部材に変形・歪みが発生してしまうので、肉
盛用には不向きである。
Further, among the dispersion-strengthened copper-based alloys, those obtained by the internal oxidation method form oxide particles by diffusion of oxygen in the solid, so that the dispersed particles are different from those of the precipitation type. Similarly, it becomes minute. Moreover,
Since it needs to be treated at a high temperature for a long time for diffusion in a solid, it is difficult to apply it to a large-sized member, and there is a problem of strain generation. Further, in the product obtained by the sintering method, the size of dispersed particles can be easily controlled by changing the particle size of the raw material powder, but it is difficult to control the uniform dispersion on the order of microns. .. Moreover, if a copper-based alloy layer is to be locally formed as in the case of overlaying, the entire substrate to be processed must be heated to the sintering temperature, which causes deformation and distortion of the processed member. Therefore, it is not suitable for build-up.

【0005】そこで、本出願人は、肉盛用耐摩耗性銅基
合金として、Cu−Ni−Fe−(B)−Si系の銅基
合金に珪化物や硼化物の硬質粒子を晶出により分散させ
た銅基分散強化合金を、特開昭63−157826号公
報で提案した。Fe−Ni系の珪化物および硼化物の硬
質粒子を分散させて、従来材よりも耐摩耗性を向上させ
ることができた。
Therefore, the applicant of the present invention, as a wear-resistant copper-based alloy for build-up, crystallizes hard particles of silicide or boride on a Cu-Ni-Fe- (B) -Si-based copper-based alloy by crystallization. A dispersed copper-based dispersion strengthened alloy has been proposed in JP-A-63-157826. By dispersing the hard particles of Fe-Ni-based silicide and boride, it was possible to improve wear resistance as compared with the conventional material.

【0006】ところで、内燃機関(例えば、自動車エン
ジン)の排気バルブは、その温度がフェース部では70
0℃以上であり、しかも排気ガス温度が1000℃以上
になる場合もある。このために、バルブシートは、70
0℃以上のバルブと接触しかつ1000℃以上のガスに
曝されることになる。したがって、バルブシートの表面
温度が高温になり、バルブに銅基合金が凝着しやすい状
態になる。そして、一旦凝着が発生すると、そこでは銅
(Cu)基合金同士の接触になるため、凝着が激しく進
行して大きな摩耗を生じることになる。上述した提案に
係る銅基合金は、硬質粒子の晶出による強化作用を利用
しているが、マトリックスの銅リッチ相の凝着を抑える
ことができないことが分かった。また、第2相の析出で
強化した従来の銅基分散強化合金においても、銅リッチ
相の凝着が抑えられないことが分かった。
By the way, the temperature of an exhaust valve of an internal combustion engine (for example, an automobile engine) is 70 at the face portion.
The temperature may be 0 ° C. or higher, and the exhaust gas temperature may be 1000 ° C. or higher. For this purpose, the valve seat is 70
It will come into contact with the valve at 0 ° C or higher and be exposed to gas at 1000 ° C or higher. Therefore, the surface temperature of the valve seat becomes high, and the copper-based alloy easily adheres to the valve. Then, once the adhesion occurs, the copper (Cu) base alloys come into contact with each other at the adhesion, so that the adhesion progresses violently and large wear occurs. It has been found that the copper-based alloy according to the above-mentioned proposal utilizes the strengthening effect due to the crystallization of hard particles, but cannot suppress the adhesion of the copper-rich phase of the matrix. It was also found that the adhesion of the copper-rich phase cannot be suppressed even in the conventional copper-based dispersion strengthened alloy strengthened by the precipitation of the second phase.

【0007】そこで、本出願人は、マトリックスの銅リ
ッチ相の凝着を抑制するために、銅よりも酸化しやすい
亜鉛(Zn)、錫(Sn)を銅基初晶中に固溶させる方
法(特開平3−60895号)や鉛(Pb)を銅基α相
デンドライト(樹枝状晶)間に分散させる方法(特開平
3−87327号公報)を提案した。さらに、硼素
(B)添加(硼化物の形成)の代わりにモリブデン(M
o)を添加し、モリブデンの珪化物を形成することで潤
滑性を高めて改善することを提案した(特願平3−13
0737号)。
Therefore, the present applicant has proposed a method in which zinc (Zn) and tin (Sn), which are more likely to be oxidized than copper, are dissolved in the primary crystal of the copper base in order to suppress the adhesion of the copper-rich phase of the matrix. (JP-A-3-60895) and a method of dispersing lead (Pb) between copper-based α-phase dendrites (dendritic crystals) (JP-A-3-87327) have been proposed. Further, instead of adding boron (B) (formation of boride), molybdenum (M
o) was added to form a molybdenum silicide to improve the lubricity and improve it (Japanese Patent Application No. 3-13).
0737).

【0008】また、上記提案のCu−Ni−Fe−
(B)−Si系の銅基合金のFe−Ni系の珪化物/硼
化物では、高温での硬さが低下することがあるので、摩
擦により高温となり易い比較的負荷の高い滑り摩耗に対
して耐摩耗特性が劣る傾向がある。そこで、クロム(C
r)を添加して、Fe−Ni−Cr系の珪化物および硼
化物の硬質粒子を分散させることを特開平1−1118
31号公報にて提案し、さらに、鉄(Fe)を削除可能
にしたCu−Ni−Cr−B−Si系の銅基合金を特開
平1−152232号公報にて提案した。
Further, the above-mentioned proposed Cu-Ni-Fe-
In the case of (B) -Si-based copper-based alloy Fe-Ni-based silicide / boride, the hardness at high temperature may decrease. Wear resistance tends to be inferior. Therefore, chrome (C
r) is added to disperse the hard particles of Fe-Ni-Cr-based silicide and boride.
No. 31, and further, a Cu-Ni-Cr-B-Si-based copper-based alloy capable of removing iron (Fe) was proposed in Japanese Patent Laid-Open No. 1-152232.

【0009】[0009]

【発明が解決しようとする課題】滑り摩耗に対する耐摩
耗特性は、上述した提案の銅基合金で改善されたが、特
に、アブレッシブな摩耗に対してもっと耐磨耗性を高め
たものが求められている。そこで、本発明の目的は、十
分に耐摩耗性に優れた肉盛用銅基合金を提供することで
ある。
Although the wear resistance property against sliding wear is improved by the above-mentioned proposed copper-based alloy, in particular, the one having higher wear resistance against abrasive wear is required. ing. Therefore, an object of the present invention is to provide a copper-based alloy for build-up, which is sufficiently excellent in wear resistance.

【0010】[0010]

【課題を解決するための手段】上述の目的が、Ni:5
〜30.0wt%、Si:0.5〜5.0wt%、B:0.5〜3.0
wt%、Co:2〜30wt%(ただし、これら合金成分の
合計が60wt%を越えない)、残部がCuおよび不可避
的不純物の組成からなる耐摩耗性に優れた肉盛銅基合金
によって達成される。
[Means for Solving the Problems] The above-mentioned object is Ni: 5.
~ 30.0wt%, Si: 0.5-5.0wt%, B: 0.5-3.0
wt%, Co: 2 to 30 wt% (however, the total of these alloy components does not exceed 60 wt%), and the balance is a hardfacing copper-based alloy with excellent wear resistance composed of Cu and inevitable impurities. It

【0011】Coの一部をFeに置換することもできる
(ただし、Co≧2wt%)。さらに、上述の組成に、高
融点炭化物、Pb、SnおよびZnの一種または二種以
上を含有させても良い。
It is also possible to replace part of Co with Fe (provided that Co ≧ 2 wt%). Further, the above composition may contain one or more of high melting point carbides, Pb, Sn and Zn.

【0012】本発明に係る分散強化銅基合金は、先に提
案した合金と同様に、金属基体上にレーザ、TIGアー
ク、プラズマアーク、電子ビームなどの高密度加熱エネ
ルギーを用いて溶着(肉盛)することによって容易に形
成されるものである。その際の銅基合金は、粉末あるい
は溶接棒の形態で用意される。
The dispersion-strengthened copper-based alloy according to the present invention, like the previously proposed alloy, is deposited (build-up) on a metal substrate by using high-density heating energy such as laser, TIG arc, plasma arc, and electron beam. ) Is easily formed. In this case, the copper-based alloy is prepared in the form of powder or welding rod.

【0013】[0013]

【作用】本発明における組成成分の限定理由は次の通り
である。NiはCuに固溶してCu基マトリックスを強
化し、硬質なNiの珪化物(シリサイド)をデンドライ
トの間に形成して分散強化により耐摩耗性を高める。ま
た、2液相分離後にマトリックス中に均一に分散する硬
質粒子中に珪化物、硼化物として存在し、耐摩耗性確保
に重要な役割を果たす。5%未満では効果が十分に現れ
ず、一方、30%を越えると、2液相分離化を抑制し、
耐摩耗性確保が難しくなる。また、肉盛合金(層)の靱
性が低下する。
The reasons for limiting the composition components in the present invention are as follows. Ni forms a solid solution with Cu to strengthen the Cu-based matrix, forms a hard Ni silicide (densitide) between dendrites, and enhances wear resistance by dispersion strengthening. Further, they exist as silicides and borides in the hard particles that are uniformly dispersed in the matrix after the separation of the two liquid phases, and play an important role in ensuring wear resistance. If it is less than 5%, the effect is not sufficiently exhibited, while if it exceeds 30%, the separation of two liquid phases is suppressed,
It becomes difficult to secure wear resistance. Further, the toughness of the hardfacing alloy (layer) is reduced.

【0014】Siは珪化物形成元素であって、主にNi
と、そしてFe、Coとで化合物(珪化物)を形成し
て、さらにCu基マトリックスの強化に寄与して耐摩耗
性などを確保する。その量が0.5%未満では、珪化物硬
質粒子の形成に不十分であり、一方、5%を越えると、
肉盛層(ビード)の靱性が低下し、割れの発生が見られ
る。
Si is a silicide forming element, and mainly Ni
And Fe and Co to form a compound (silicide), which further contributes to the strengthening of the Cu-based matrix and ensures wear resistance and the like. If the amount is less than 0.5%, it is insufficient to form hard silicide particles, while if it exceeds 5%,
The toughness of the build-up layer (bead) is reduced, and cracking is observed.

【0015】Bは主にCo、Fe、Niと化合物を形成
し、硬質粒子を構成する。この硬質粒子が耐摩耗性確保
に寄与する。その量が0.5%未満では十分な耐摩耗性確
保が難しく、5.0%を越えると、肉盛合金(層)靱性が
損なわれ、割れが発生し易くなる。
B mainly forms a compound with Co, Fe and Ni to form hard particles. These hard particles contribute to ensuring wear resistance. If the amount is less than 0.5%, it is difficult to secure sufficient wear resistance, and if it exceeds 5.0%, the toughness of the overlay alloy (layer) is impaired and cracking is likely to occur.

【0016】CoはCu基マトリックスとほとんど固溶
せず、2液相分離を促進し、主に硼化物として硬質粒子
を形成する。この硼化物は高温での硬度低下が比較的小
さいので、高温での耐摩耗性を向上させ、高負荷での耐
摩耗性を向上させることになる。その量が2%未満で
は、その効果が得られず、一方、30%を越えると相手
材への攻撃性の悪化や肉盛合金の靱性低下を招く。
Co hardly forms a solid solution with the Cu-based matrix, promotes the separation of two liquid phases, and forms hard particles mainly as a boride. Since this boride has a relatively small decrease in hardness at high temperatures, it improves wear resistance at high temperatures and wear resistance at high loads. If the amount is less than 2%, the effect cannot be obtained. On the other hand, if the amount exceeds 30%, the aggressiveness to the partner material is deteriorated and the toughness of the overlay alloy is deteriorated.

【0017】FeはCoと同様な効果を有して、Coの
一部を置換するように添加される。Feは硬質粒子の耐
熱温度を下げるが、相手攻撃性との兼ね合いで、Co単
独添加の場合よりもトータルの摩耗量でバランスが良く
なることがある。高負荷下での特性確保のためにはCo
≧2%は必要であり、CoとFeとの合計量が2%未満
では耐摩耗性が十分でなく、30%を越えると相手材へ
の攻撃性の悪化や肉盛合金の靱性低下を招く。
Fe has the same effect as Co and is added so as to replace a part of Co. Although Fe lowers the heat resistant temperature of the hard particles, the balance with the total amount of wear may be better than in the case of adding Co alone, in consideration of the opponent attacking property. To secure the characteristics under high load, Co
≧ 2% is required, and if the total amount of Co and Fe is less than 2%, the wear resistance is not sufficient, and if it exceeds 30%, the aggressiveness to the mating material deteriorates and the toughness of the overlay alloy decreases. ..

【0018】高融点炭化物はマトリックス中に分散して
耐摩耗性をより一層向上させる効果がある。付加的に添
加する高融点炭化物とは、融点が1500℃以上であっ
て、実質的に肉盛合金と反応(固溶、晶出など)しない
炭化物であり、例えば、TaC、TiC、Cr3 2
VC、NbCなどである。高融点炭化物の添加量として
は、耐摩耗性効果を出すには1wt%以上が望ましく、一
方、20wt%を越えると溶着性を悪化させるので望まし
くない。
The high melting point carbide is dispersed in the matrix and has the effect of further improving the wear resistance. The high melting point carbide to be additionally added is a carbide having a melting point of 1500 ° C. or higher and substantially not reacting with the build-up alloy (solid solution, crystallization, etc.). For example, TaC, TiC, Cr 3 C 2 ,
VC, NbC, etc. The amount of the high melting point carbide added is preferably 1 wt% or more in order to exert the wear resistance effect, while if it exceeds 20 wt%, the weldability is deteriorated, which is not desirable.

【0019】Pbは高温雰囲気において固体潤滑作用を
もたらす元素として添加するものである。Pbの添加量
としては、固体潤滑作用による凝着摩耗特性の改善効果
を出すには2wt%以上が望ましく、一方、20wt%を越
えると分散硬質粒子の凝集を招き、相手材攻撃性が増大
するので望ましくない。
Pb is added as an element which brings about a solid lubricating action in a high temperature atmosphere. The amount of Pb added is preferably 2 wt% or more in order to obtain the effect of improving the cohesive wear characteristics due to the solid lubrication action. On the other hand, when it exceeds 20 wt%, the dispersed hard particles agglomerate and the attacking property of the mating material increases. So undesirable.

【0020】SnおよびZnはCu基合金の耐凝着性向
上(Cu基初晶での酸化物被膜形成)のために添加する
ものである。Snの添加量としては、凝着摩耗特性の改
善効果を出すには3wt%以上が望ましく、一方、15wt
%を越えるとレーザやTIGなどにて肉盛した際に割れ
の発生を招くことがあり望ましくない。また、Znの添
加量としては、凝着摩耗特性の改善効果を出すには同じ
く3wt%以上が望ましく、一方、30wt%を越えると肉
盛した際に割れの発生を招くことがあり望ましくない。
Sn and Zn are added in order to improve the adhesion resistance of the Cu-based alloy (formation of oxide film by Cu-based primary crystal). The amount of Sn added is preferably 3 wt% or more in order to improve the effect of adhesion wear characteristics, while 15 wt%
If it exceeds%, cracking may occur when overlaying with laser or TIG, which is not desirable. Also, the amount of Zn added is preferably 3 wt% or more in order to obtain the effect of improving the cohesive wear characteristics, and on the other hand, when it exceeds 30 wt%, cracking may occur during overlaying, which is not desirable.

【0021】[0021]

【実施例】以下、添付図面を参照して、本発明の実施態
様例および比較例によって本発明をより詳細に説明す
る。表1に示した組成(wt%)の合金粉末の試料A〜I
(本発明実施例のCu基合金)と、比較例として特開昭
63−157826号公報(特許請求の範囲第1項)で
の合金粉末の試料Jと、特開平1−52232号公報で
の合金粉末の試料Kとを、後述するようにレーザ光を熱
源として用いて、Al合金(JIS・AC2C)基板上
に溶着させて肉盛(溶着)層を形成した。試料Fは高融
点炭化物としてTaC粒子を9.0%付加添加したもので
あり、試料GはPbを3.0%付加添加したものであり、
試料HはSnを5.0%付加添加したものであり、そして
試料IはZnを5.0%付加添加したものである。試料J
およびKは比較例のCu基合金である。
The present invention will now be described in more detail with reference to the accompanying drawings by way of embodiments and comparative examples of the present invention. Samples A to I of alloy powder having the composition (wt%) shown in Table 1
(Cu-based alloys of Examples of the present invention), as a comparative example, alloy powder sample J in JP-A-63-157826 (claim 1) and JP-A-1-52232. The alloy powder sample K was welded onto an Al alloy (JIS / AC2C) substrate using a laser beam as a heat source as described later to form a build-up (welding) layer. Sample F was added with 9.0% of TaC particles as a high melting point carbide, Sample G was added with 3.0% of Pb,
Sample H was 5.0% Sn added, and Sample I was 5.0% Zn added. Sample J
And K are Cu-based alloys of comparative examples.

【0022】[0022]

【表1】 [Table 1]

【0023】ここでの肉盛(溶着)は、図1に示すよう
な装置を用いて行った。図1において、金属基体(Al
合金基板:AC2C)1を矢印Tの方向へ450〜20
00mm/min の速度で連続的に移動させる。この金属基
体1上に、試料A〜Kの粉末2をホッパー(図示せず)
から粉末供給管3を介して、移動方向Tに対し直交する
方向にある幅Wで連続的に供給する。一方、レーザ光
4、はレーザ光源(図示せず)から折り返しミラー5お
よびオシレートミラー6で反射されて、金属基体1上の
粉末2に直径0.5〜5.0mmに集光された状態で1×10
2 〜2×104 w/mm2 のパワー密度で照射される。こ
こでオシレートミラー6は、ガルバノモータなどの振動
機構7によって所定角度の範囲で振動して、粉末2に照
射されるレーザ光4を移動方向Pに対し直交する方向、
すなわち、金属基体1上の粉末2の幅Wの方向に10〜
500Hzの周波数でオシレート(走査)する。
The overlaying (welding) here was carried out using an apparatus as shown in FIG. In FIG. 1, a metal substrate (Al
Alloy substrate: AC2C) 1 in the direction of arrow T 450 to 20
It is moved continuously at a speed of 00 mm / min. A powder 2 of samples A to K is hopper (not shown) on the metal base 1.
Is continuously supplied through the powder supply pipe 3 with a width W in a direction orthogonal to the moving direction T. On the other hand, the laser beam 4 is reflected from a laser light source (not shown) by the folding mirror 5 and the oscillating mirror 6, and is focused on the powder 2 on the metal substrate 1 to have a diameter of 0.5 to 5.0 mm. 1 x 10
Irradiation is performed with a power density of 2 to 2 × 10 4 w / mm 2 . Here, the oscillating mirror 6 vibrates within a range of a predetermined angle by a vibrating mechanism 7 such as a galvanometer motor, so that the laser beam 4 irradiated on the powder 2 is orthogonal to the moving direction P,
That is, 10 to 10 in the direction of the width W of the powder 2 on the metal substrate 1.
Oscillate (scan) at a frequency of 500 Hz.

【0024】ここで、金属基体1上に配置された合金粉
末もしくは混合粉末2がレーザ光4の照射により急速溶
融された状態では、その溶融物9はCu基マトリックス
となる合金の液相と、分散相なるべき液相とが分離した
状態、すなわち2液相またはそれ以上の多液相状態とな
り、その多液相状態の溶融物9をレーザ光ビームのオシ
レートによって攪拌することにより、2液相以上の多液
相が分離したまま、水中で油を攪拌する如き様相を呈
し、最終的に分散相粒子となるべき液相が球状に近い状
態でマトリックスとなるべき液相中に均一に分散する。
そしてその状態でレーザビームと金属基体との相対移動
(走査)によって溶融物9が凝固する際には、分散相と
なるべき相がマトリックスとなる相中に均一に分散した
まま凝固して、CoとNiの珪化物や硼化物からなる分
散相粒子がCu基マトリックス中に分散した本発明のC
u基分散強化合金からなる溶着層8が金属基体1上に形
成されるものである。
Here, in a state where the alloy powder or the mixed powder 2 arranged on the metal substrate 1 is rapidly melted by the irradiation of the laser beam 4, the melt 9 is the liquid phase of the alloy which becomes the Cu-based matrix, The liquid phase to be the dispersed phase is in a separated state, that is, a multi-liquid state of two liquid phases or more, and the melt 9 in the multi-liquid phase state is agitated by the laser light beam oscillating to form the two liquid phase. The above multi-liquid phase remains separated, and it looks like stirring oil in water, and finally the dispersed phase becomes a matrix, and the liquid phase that is to become particles is uniformly dispersed in the liquid phase that becomes the matrix. ..
When the melt 9 is solidified by the relative movement (scanning) of the laser beam and the metal substrate in this state, the phase to be the dispersed phase is solidified while being uniformly dispersed in the phase to be the matrix, and Co And C of the present invention in which dispersed phase particles of a silicide or boride of Ni are dispersed in a Cu-based matrix.
A welding layer 8 made of a u-based dispersion strengthened alloy is formed on the metal substrate 1.

【0025】このようなレーザ光4の照射によって、粉
末2(粒径:40〜150μm)は瞬時に溶融されて溶
融物9となり、かつレーザ光4をオシレートすることに
よりその溶融物9が攪拌され、引き続いてその溶融物9
が金属基体1のT方向への移動によりレーザ光4が照射
されない位置に到れば、金属基体1への熱移動により急
速凝固され、分散強化Cu基合金からなる肉盛層(溶着
層)8が形成される。
By the irradiation of the laser beam 4 as described above, the powder 2 (particle size: 40 to 150 μm) is instantly melted to become a melt 9, and the laser beam 4 is oscillated to stir the melt 9. , Then the melt 9
When the metal substrate 1 reaches a position where the laser beam 4 is not irradiated by the movement in the T direction, the metal substrate 1 is rapidly solidified by the heat transfer to the metal substrate 1, and a buildup layer (welding layer) 8 made of a dispersion strengthened Cu-based alloy is formed. Is formed.

【0026】試料A〜Kについてレーザ肉盛(溶着)
を、例えば、レーザ出力4.5kW、レーザビーム径2.5
mm、処理走査速度800mm/min、レーザビームのオシレ
ート幅8mm、パワー密度225W/mm2 、オシレート周
波数200Hzの条件にて行い、Al基板1上に分散強
化Cu基合金の肉盛層8が得られる。試料Cの肉盛層の
表面研磨組織の金属組織写真(×400)を図2に示
す。なお、試料A、B、DおよびEの肉盛層も試料Cと
本質的に同様な組織であった。
Laser overlaying (welding) on samples A to K
For example, laser output 4.5 kW, laser beam diameter 2.5
mm, processing scanning speed 800 mm / min, laser beam oscillating width 8 mm, power density 225 W / mm 2 , oscillating frequency 200 Hz, to obtain a dispersion strengthened Cu-based alloy build-up layer 8 on the Al substrate 1. .. FIG. 2 shows a metallographic photograph (× 400) of the surface-polished structure of the overlay of Sample C. The overlay layers of Samples A, B, D and E had essentially the same structure as Sample C.

【0027】この組織写真(図2)から、銅基合金での
Cu基のマトリックス中に比較的大きな硬質粒子が比較
的均一に分散していることが分かる。これらの粒子は、
Co、Niの珪化物、硼化物(HV>700)から構成
されている。
From the microstructure photograph (FIG. 2), it can be seen that relatively large hard particles are relatively uniformly dispersed in the Cu-based matrix of the copper-based alloy. These particles are
It is composed of Co and Ni silicides and borides (HV> 700).

【0028】(摩耗試験)形成した肉盛層(分散強化C
u基合金)の摺動摩耗特性を調べるために、大越式摩耗
試験機により摩耗試験を行った。この試験は図3に示す
ように、金属基板1上の肉盛層8にステライトNo.6
(Co−Cr−W系の表面硬化用肉盛材)からなるロー
タ10を押しつけつつ該ロータを回転させ、摩耗痕の幅
L調べる方法である。
(Abrasion test) The built-up layer (dispersion strengthened C
In order to investigate the sliding wear characteristics of the (u-based alloy), a wear test was conducted using an Ogoshi-type wear tester. In this test, as shown in FIG. 3, Stellite No. was applied to the overlay layer 8 on the metal substrate 1. 6
This is a method of examining the width L of the wear mark by rotating the rotor 10 while pressing the rotor 10 made of (Co-Cr-W-based surfacing material for surface hardening).

【0029】試験条件としては、すべり速度0.3m/
秒、すべり距離100m、最終荷重20kgとした。この
ような摩耗試験の結果を図4に示す。図4から明らかな
ように、本発明に係る銅基合金試料A〜Iでは、比較例
JおよびK(従来例)よりも摩耗痕幅が小さい。このよ
うに本発明の銅基合金は耐摩耗性が従来よりも向上して
いる。
The test condition is a slip velocity of 0.3 m /
The sliding distance was 100 m and the final load was 20 kg. The result of such an abrasion test is shown in FIG. As is clear from FIG. 4, in the copper-based alloy samples A to I according to the present invention, the wear scar width is smaller than in Comparative Examples J and K (conventional example). As described above, the wear resistance of the copper-based alloy of the present invention is improved as compared with the conventional one.

【0030】(硬質粒子サイズ分布)試料C(本発明)
および試料K(比較例、特開平1−52232号公報で
のCu基合金)の硬質粒子(Cr、Co、Niの珪化物
および硼化物)のサイズを調べ、そのサイズ分布を図5
に示す。Crはその硼化物の融点(凝固点)が約180
0℃と高く、肉盛合金の凝固時に優先的に硼素(B)と
反応して硼化物を形成する。レーザ肉盛では凝固速度が
非常に速いために、この硼化物が大きく成長することな
く凝固が終了するので、粒子サイズの小さいものが多数
形成される。一方、Coを含有した試料Cでは、コバル
ト硼化物の融点が比較的低い(約1000℃)ために、
液相での2相分離を行うのに十分時間があり(時間の制
御が可能となる)、大きなサイズの粒子を晶出すること
ができる。そのために、図5に示すように、サイズ分布
がなだらかな曲線で大きなサイズの粒子も形成される。
一般に、アブレッシブな摩耗に対する特性を確保するに
は、ある程度大きなサイズの硬質粒子が相手材の硬質粒
子との兼ね合いで重要であり、Cr含有銅基合金では大
きなサイズの硬質粒子を形成することが困難であるの
で、耐摩耗特性確保が難しいと考えられる。
(Hard Particle Size Distribution) Sample C (Invention)
And the size of the hard particles (silicides and borides of Cr, Co, and Ni) of Sample K (Comparative Example, Cu-based alloy in JP-A-1-52232) were examined, and its size distribution was shown in FIG.
Shown in. Cr has a melting point (freezing point) of the boride of about 180.
It is as high as 0 ° C. and reacts preferentially with boron (B) during solidification of the hardfacing alloy to form boride. Since the solidification rate is extremely high in laser overlaying, the solidification ends without the large growth of the boride, so that many particles having a small particle size are formed. On the other hand, in the sample C containing Co, since the melting point of cobalt boride is relatively low (about 1000 ° C.),
There is sufficient time to allow two-phase separation in the liquid phase (time can be controlled) and large size particles can be crystallized. Therefore, as shown in FIG. 5, particles of large size are also formed with a gentle curve of size distribution.
In general, in order to secure the characteristics against abrasive wear, hard particles of a certain size are important in consideration of the hard particles of the mating material, and it is difficult to form hard particles of large size with a Cr-containing copper-based alloy. Therefore, it is considered difficult to secure wear resistance.

【0031】(硬質粒子の硬度)試料C(本発明)およ
び試料J(比較例、特願昭63−157826号公報で
のCu基合金)の硬質粒子(試料CではNi、Coの珪
化物および硼化物、試料JではNi、Feの珪化物およ
び硼化物)およびマトリックスのビッカース硬さ(HV
{9.8N})を調べ、その結果を図6に示す。図6から
分かるように、試料CおよびJのCu基マトリックス部
の硬さはほぼ同じであるが、硬質粒子の高温硬さは試料
Cのほうが試料Jよりも高い。これは、2液相分離によ
って生じた試料Cの硬質粒子の硬さは高温による低下が
少ないからであり、特に、高負荷を受ける場合に耐摩耗
性が優れることになる。
(Hardness of Hard Particles) Hard particles of sample C (invention) and sample J (comparative example, Cu-based alloy in Japanese Patent Application No. 63-157826) (Ni and Co silicides in sample C and Boride, Ni and Fe silicides and borides in sample J, and Vickers hardness (HV) of matrix
{9.8N}) was investigated and the result is shown in FIG. As can be seen from FIG. 6, the hardnesses of the Cu-based matrix portions of Samples C and J are almost the same, but the high temperature hardness of the hard particles is higher in Sample C than in Sample J. This is because the hardness of the hard particles of the sample C generated by the two liquid phase separation does not decrease much due to the high temperature, and the wear resistance is excellent especially when a high load is applied.

【0032】(CoのFeによる置換)本発明では、必
須成分のCoの一部をFeにて置換することができ、F
e置換効果を次のようにして調べた。銅基合金組成とし
ては、Ni:20wt%、Si:2.8wt%、B:1.3wt
%、CoおよびFeの合計(一定):10wt%、残部C
uとして、Fe量を変えた組成で、図1に関連して説明
したレーザ肉盛を上述した条件で行って、金属基体1の
上に肉盛層8を形成した。図3に示した大越式摩耗試験
機にて、ロータ10の材質をステライトNo.6(肉盛
用合金)とし、上述した条件にて摩耗試験を行い肉盛層
の摩耗痕幅(耐摩耗性)およびロータ減量(相手材攻撃
性)を調べ、その結果を図7に示す。CoおよびFeの
一定合計量(10%)においてFe量が多くなるほど、
耐摩耗性が低下するが、相手攻撃性が強くなる。したが
って、相手材に応じて銅基合金組成を規定することによ
って、相手攻撃性および耐摩耗性を含めた摩耗特性をよ
り適切なものとした肉盛層を形成することができる。
(Replacement of Co with Fe) In the present invention, a part of Co, which is an essential component, can be replaced with Fe.
The e substitution effect was investigated as follows. The copper-based alloy composition is Ni: 20 wt%, Si: 2.8 wt%, B: 1.3 wt%
%, Total of Co and Fe (constant): 10 wt%, balance C
As the u, the laser overlay described with reference to FIG. 1 was performed under the above-described conditions with the composition in which the amount of Fe was changed, and the overlay layer 8 was formed on the metal substrate 1. With the Ogoshi-type wear tester shown in FIG. No. 6 (alloy for build-up), a wear test was conducted under the above-described conditions to examine the wear scar width (wear resistance) and rotor weight loss (attacking property of the mating material) of the build-up layer, and the results are shown in FIG. As the amount of Fe increases in a constant total amount of Co and Fe (10%),
Abrasion resistance decreases, but opponent attacking property increases. Therefore, by defining the copper-based alloy composition in accordance with the mating material, it is possible to form a built-up layer having more appropriate wear characteristics including mating aggressiveness and wear resistance.

【0033】[0033]

【発明の効果】以上説明したように、本発明に係る分散
強化Cu基合金は、従来よりも高温状態での耐摩耗性が
優れている。そして、本発明のCu基合金を任意に金属
基体上に肉盛(溶着)できるので、各種の機械部品(エ
ンジンのバルブシートを含め)で耐摩耗性が必要な部位
のみにこれを形成して特性向上を図ることができる。
As described above, the dispersion-strengthened Cu-based alloy according to the present invention is more excellent in wear resistance in a high temperature state than ever before. Since the Cu-based alloy of the present invention can be optionally overlaid (welded) on a metal substrate, it can be formed only on the parts of various mechanical parts (including engine valve seats) that require wear resistance. It is possible to improve the characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】金属基板上へCu基合金をレーザ肉盛(溶着)
する方法を示す装置の概略斜視図である。
FIG. 1 Laser overlaying (welding) of a Cu-based alloy on a metal substrate
It is a schematic perspective view of the apparatus which shows the method.

【図2】本発明にかかる試料Cの分散強化Cu基合金肉
盛層の金属組織写真(×400)である。
FIG. 2 is a metallographic photograph (× 400) of a dispersion strengthened Cu-based alloy overlay layer of Sample C according to the present invention.

【図3】大越式摩耗試験機を模式的に示す概略図であ
る。
FIG. 3 is a schematic view schematically showing an Ogoshi-type wear tester.

【図4】摩耗試験結果を示すグラフである。FIG. 4 is a graph showing wear test results.

【図5】試料CおよびKの硬質粒子サイズの分布を示す
グラフである。
FIG. 5 is a graph showing the distribution of hard particle size of samples C and K.

【図6】試料CおよびKの硬質粒子およびマトリックス
の硬さを示すグラフである。
FIG. 6 is a graph showing hardness of hard particles and a matrix of Samples C and K.

【図7】本発明の銅基合金でのFe量の摩耗痕幅および
ロータ減量への影響を示すグラフである。
FIG. 7 is a graph showing the influence of the Fe amount on the wear scar width and rotor weight loss in the copper-based alloy of the present invention.

【符号の説明】[Explanation of symbols]

1…金属基体 2…粉末 4…レーザ光 8…肉盛層(溶着層) 10…ロータ DESCRIPTION OF SYMBOLS 1 ... Metal substrate 2 ... Powder 4 ... Laser light 8 ... Overlay layer (welding layer) 10 ... Rotor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 和彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 仲川 政宏 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 村瀬 博之 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 河崎 稔 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 斎藤 卓 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 田中 浩司 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Mori 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Corporation (72) Inventor Masahiro Nakagawa 1 Toyota Town, Aichi Prefecture, Toyota Motor Corporation ( 72) Inventor Hiroyuki Murase 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Corporation (72) Inventor Minoru Kawasaki 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation, (72) Inventor, Taku Saito Aichi Prefecture Inside the Toyota Central Research Institute Co., Ltd. at 41 Nagamute, Nagakute-machi, Aichi-gun (72) Inventor Koji Tanaka Inside the Toyota Central Research Institute at 41-City, Nagakute-machi, Nagakute-cho, Aichi-gun, Aichi

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記組成: Ni: 5 〜30.0wt% Si: 0.5〜 5.0wt% B : 0.5〜 3.0wt% Co: 2 〜30 wt% (ただし、これら合金成分の合計が60wt%を越えな
い) Cuおよび不可避的不純物:残部 からなる耐摩耗性に優れた肉盛銅基合金。
1. The following composition: Ni: 5 to 30.0 wt% Si: 0.5 to 5.0 wt% B: 0.5 to 3.0 wt% Co: 2 to 30 wt% (however, of these alloy components The total amount does not exceed 60 wt%) Cu and unavoidable impurities: A hardfacing copper-based alloy consisting of the balance and excellent in wear resistance.
【請求項2】 下記組成: Ni: 5 〜30.0wt% Si: 0.5〜 5.0wt% B : 0.5〜 3.0wt% CoおよびFe: 2 〜30 wt%(ただし、
Co≧2wt%) (ただし、これら合金成分の合計が60wt%を越えな
い) Cuおよび不可避的不純物:残部 からなる耐摩耗性に優れた肉盛銅基合金。
2. The following composition: Ni: 5 to 30.0 wt% Si: 0.5 to 5.0 wt% B: 0.5 to 3.0 wt% Co and Fe: 2 to 30 wt% (however,
Co ≧ 2 wt%) (However, the total of these alloy components does not exceed 60 wt%) Cu and inevitable impurities: A hardfacing copper-based alloy with excellent wear resistance consisting of the balance.
【請求項3】 高融点炭化物、Pb、SnおよびZnの
一種または二種以上を含有している請求項1または2記
載の肉盛銅基合金。
3. The hardfacing copper-based alloy according to claim 1, which contains one or more of high melting point carbides, Pb, Sn and Zn.
JP32502791A 1991-11-14 1991-11-14 Overlaid copper-based alloy with excellent wear resistance Expired - Fee Related JP3305738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32502791A JP3305738B2 (en) 1991-11-14 1991-11-14 Overlaid copper-based alloy with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32502791A JP3305738B2 (en) 1991-11-14 1991-11-14 Overlaid copper-based alloy with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH05140678A true JPH05140678A (en) 1993-06-08
JP3305738B2 JP3305738B2 (en) 2002-07-24

Family

ID=18172331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32502791A Expired - Fee Related JP3305738B2 (en) 1991-11-14 1991-11-14 Overlaid copper-based alloy with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP3305738B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435828A (en) * 1993-12-21 1995-07-25 United Technologies Corporation Cobalt-boride dispersion-strengthened copper
JP2005029894A (en) * 2003-07-02 2005-02-03 Daimler Chrysler Ag Process for producing valve seat
WO2005087960A1 (en) * 2004-03-15 2005-09-22 Toyota Jidosha Kabushiki Kaisha Wear-resistant copper alloy for overlaying and valve sheet
JP2005256147A (en) * 2004-03-15 2005-09-22 Toyota Motor Corp Overlaying abrasion-resistant copper-based alloy
JP2008030071A (en) * 2006-07-27 2008-02-14 Sanyo Special Steel Co Ltd Raw material powder for laser built-up valve seat and valve seat using the same powder
JP2008264842A (en) * 2007-04-23 2008-11-06 Sanyo Special Steel Co Ltd Raw material powder for laser clad valve seat and valve seat using the same
JP2012241621A (en) * 2011-05-19 2012-12-10 Toyota Motor Corp Cylinder block for engine subjected to overlay welding, method for manufacturing the same, and weld overlay material
CN112533710A (en) * 2018-08-02 2021-03-19 日产自动车株式会社 Sliding member and member for internal combustion engine
CN116710219A (en) * 2020-12-25 2023-09-05 千住金属工业株式会社 Sliding member, bearing, method for manufacturing sliding member, and method for manufacturing bearing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534086A (en) * 1993-12-21 1996-07-09 United Technologies Corporation Method for making a cobalt-boride dispersion-strengthened copper
US5435828A (en) * 1993-12-21 1995-07-25 United Technologies Corporation Cobalt-boride dispersion-strengthened copper
JP2005029894A (en) * 2003-07-02 2005-02-03 Daimler Chrysler Ag Process for producing valve seat
US7850795B2 (en) 2004-03-15 2010-12-14 Toyota Jidosha Kabushiki Kaisha Build-up wear-resistant copper alloy and valve seat
WO2005087960A1 (en) * 2004-03-15 2005-09-22 Toyota Jidosha Kabushiki Kaisha Wear-resistant copper alloy for overlaying and valve sheet
JP2005256147A (en) * 2004-03-15 2005-09-22 Toyota Motor Corp Overlaying abrasion-resistant copper-based alloy
US7815756B2 (en) 2004-03-15 2010-10-19 Toyota Jidosha Kabushiki Kaisha Build-up wear-resistant copper-based alloy
JP2008030071A (en) * 2006-07-27 2008-02-14 Sanyo Special Steel Co Ltd Raw material powder for laser built-up valve seat and valve seat using the same powder
JP2008264842A (en) * 2007-04-23 2008-11-06 Sanyo Special Steel Co Ltd Raw material powder for laser clad valve seat and valve seat using the same
JP2012241621A (en) * 2011-05-19 2012-12-10 Toyota Motor Corp Cylinder block for engine subjected to overlay welding, method for manufacturing the same, and weld overlay material
CN112533710A (en) * 2018-08-02 2021-03-19 日产自动车株式会社 Sliding member and member for internal combustion engine
EP3831517A4 (en) * 2018-08-02 2021-08-18 Nissan Motor Co., Ltd. Sliding member and member for internal combustion engine
CN116710219A (en) * 2020-12-25 2023-09-05 千住金属工业株式会社 Sliding member, bearing, method for manufacturing sliding member, and method for manufacturing bearing

Also Published As

Publication number Publication date
JP3305738B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
US5188799A (en) Wear-resistant copper-base alloy
US5004581A (en) Dispersion strengthened copper-base alloy for overlay
US4818307A (en) Dispersion strengthened copper-base alloy
EP0320195B1 (en) Wear resisting copper base alloys
JP2008522039A (en) Weldable cobalt alloy with crack resistance
JP3502281B2 (en) Laser-clad pot roll sleeve and bush for galvanizing bath
JPS6326281A (en) Welding using metal-ceramic composite body
JPH0698506B2 (en) Method for forming dispersed alloy layer on metal substrate
EP1694876A1 (en) Wear-resistant copper-based alloy
JP4603808B2 (en) Overlay wear resistant copper base alloy
EP1361288A1 (en) Wear-resistant copper-base alloy
JPH05140678A (en) Copper base alloy for building up welding excellent in wear resistance
JP2748717B2 (en) Wear-resistant copper-based alloy for cladding
JPH10158766A (en) Copper alloy with heat resistance and wear resistance
Shanmugasundaram et al. Investigating the effect of WC on the hardness and wear behaviour of surface modified AA 6063
JPH0647187B2 (en) Dispersion strengthened copper base alloy for overlay
Babinets et al. Influence of modification and microalloying on deposited metal structure and properties
JPH05156396A (en) Ni-base alloy for overlay
EP2738272B1 (en) Preparation method of aluminum alloy including iron-manganese homogeneous solid solution
JP2002194462A (en) Wear resistant copper based alloy
JPH0387327A (en) Copper base wear resistant alloy
JPH06190588A (en) Ni-base alloy for filling
JPH01215941A (en) Dispersion strengthened cu-based alloy
JP3196381B2 (en) Ni-base alloy for engine valve assembling
JPH0610081A (en) Engine provided with titanium valve for exhaust

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees