JPH05140337A - Polyimide fiber for matrix resin for molding - Google Patents

Polyimide fiber for matrix resin for molding

Info

Publication number
JPH05140337A
JPH05140337A JP33151991A JP33151991A JPH05140337A JP H05140337 A JPH05140337 A JP H05140337A JP 33151991 A JP33151991 A JP 33151991A JP 33151991 A JP33151991 A JP 33151991A JP H05140337 A JPH05140337 A JP H05140337A
Authority
JP
Japan
Prior art keywords
fiber
temperature
polyimide
resin
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33151991A
Other languages
Japanese (ja)
Inventor
Koichi Yamada
浩一 山田
Toshimasa Kuroda
俊正 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP33151991A priority Critical patent/JPH05140337A/en
Publication of JPH05140337A publication Critical patent/JPH05140337A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject fiber containing a specific amount of a specific recurring unit, having a specific shape, exhibiting excellent wettability to reinforcing fiber in melt molding and giving a composite material having excellent mechanical properties, heat-resistance, etc. CONSTITUTION:The objective fiber contains >=85mol% of the recurring unit of formula and has a melt viscosity(MV) of <=7,000 poise at 400 deg.C and a shearing rate of 100 sec<-1>, a shearing elongation (EL) of 50-120% and a crystallinity (Xp) of <=20%. The fiber can be produced by reacting a diamine with a tetracarboxylic acid dianhydride and dehydrating and cyclizing the obtained polyamic acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、母材樹脂に強化繊維が
包埋されてなる複合体を製造するに適した、成型品母材
樹脂用ポリイミド繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyimide fiber for a molded base material resin, which is suitable for producing a composite in which reinforcing fibers are embedded in a base material resin.

【0002】[0002]

【従来の技術】ポリエーテルエーテルケトン(PEE
K)、ポリエーテルイミド(PEI)、ポリフェニレン
サルファイド(PPS)等の耐熱性熱可塑樹脂を繊維強
化複合体の母材樹脂(マトリックス)に用いたものは、
エポキシ樹脂等の熱硬化性樹脂をマトリックスに用いた
ものと比較して、耐熱性、耐湿性及び難燃性に優れると
同時に、成型サイクルが短くできる、母材樹脂の長期保
存安定性に優れるといった特徴を有している。しかしそ
の反面、溶融粘度が大きく強化繊維に対する濡れ性やフ
ィバーインプレグネーション性に劣り、また樹脂を含浸
させたプリプレグのタック性やドレープ性も劣るため、
成型温度及び成型圧力を高くしなければならないといっ
た問題点を有している。
2. Description of the Related Art Polyether ether ketone (PEE)
K), polyetherimide (PEI), polyphenylene sulfide (PPS), or other heat-resistant thermoplastic resin is used as the matrix resin of the fiber-reinforced composite.
Compared to those that use a thermosetting resin such as epoxy resin for the matrix, it has excellent heat resistance, moisture resistance and flame retardancy, at the same time can shorten the molding cycle, and has excellent long-term storage stability of the base material resin. It has features. However, on the other hand, the melt viscosity is large and the wettability to the reinforcing fiber and the fiber impregnation property are poor, and the tackiness and the drape property of the prepreg impregnated with the resin are also poor,
There is a problem that the molding temperature and the molding pressure must be increased.

【0003】かかる問題点を解決するために、特にファ
イバーインプレグネーション性を改善するために、上記
熱可塑性樹脂を繊維化し、強化繊維と混合して使用する
方法が提案されている。例えば、強化繊維トウを熱可塑
性繊維でラッピングする方法、強化繊維と熱可塑性繊維
とを引揃え又は交互に製織する方法等が提案されている
が、共に成型時の熱可塑性樹脂の含浸性(濡れ性)が未
だ不充分である。かかる点をさらに改良せんと、熱可塑
性繊維と強化繊維とを流体等により混織させる方法(例
えばコーミングルドヤーン)が提案されている(特開昭
60―209033号公報、特開昭60―209034
号公報参照)。かかる方法により得られる成型品は、含
浸性、母材樹脂の均一分散性に優れているため、強化繊
維の補強効果が改善される。近年、強化繊維の補強効果
をさらに改善するため、熱可塑性繊維、強化繊維のの混
合を無撚、無糊の状態で行う、あるいは強化繊維にクリ
ンプを発生させずに混合する技術も提案されている。こ
の他、安価に複合体を得る方法としては、熱可塑性繊維
からなる布帛と強化繊維からなる布帛とを交互に積層し
て熱成型する方法も提案されている。
In order to solve such problems, in particular, in order to improve the fiber impregnation property, a method has been proposed in which the above-mentioned thermoplastic resin is made into a fiber and mixed with a reinforcing fiber to be used. For example, a method of wrapping the reinforcing fiber tow with a thermoplastic fiber, a method of aligning or alternately weaving the reinforcing fiber and the thermoplastic fiber, and the like have been proposed, but both are impregnated with the thermoplastic resin at the time of molding (wetness). Sex) is still insufficient. In order to further improve this point, a method of mixing and weaving thermoplastic fibers and reinforcing fibers with a fluid or the like (for example, combed yarn) has been proposed (JP-A-60-209033, JP-A-60-209034).
(See the official gazette). The molded product obtained by such a method is excellent in impregnation property and uniform dispersibility of the base material resin, so that the reinforcing effect of the reinforcing fiber is improved. In recent years, in order to further improve the reinforcing effect of the reinforcing fibers, a technique of mixing the thermoplastic fibers and the reinforcing fibers in a non-twisted or non-glued state, or a technique of mixing the reinforcing fibers without causing crimps has been proposed. There is. In addition, as a method for inexpensively obtaining a composite, a method has been proposed in which a cloth made of thermoplastic fibers and a cloth made of reinforcing fibers are alternately laminated and thermoformed.

【0004】かかる成型品母材樹脂用として用いられる
熱可塑性繊維としては、従来、PEEK、PEI、PP
S等からなる繊維が提案されているが、近年、特に航空
・宇宙等の分野では更に耐熱性の優れた母材樹脂用繊維
が要求されている。かかる要求に答えんがため、近年、
有機高分子中最も耐熱性に優れているとされているポリ
イミドを母材樹脂用繊維として用いる方法が種々検討さ
れているが、従来のポリイミド繊維は溶融紡糸が困難で
あったり実質的に不融性であるため、良好な複合体が得
られないといった問題がある。
Conventionally, PEEK, PEI and PP have been used as the thermoplastic fibers used for the base resin of the molded product.
Fibers made of S or the like have been proposed, but in recent years, particularly in the fields of aviation, space, etc., there has been a demand for fibers for base material resins that have even higher heat resistance. In order to answer such requests, in recent years,
Various methods of using polyimide, which is said to have the highest heat resistance among organic polymers, as the fiber for the base resin have been studied, but conventional polyimide fibers are difficult to melt-spin or are substantially infusible. Therefore, there is a problem in that a good complex cannot be obtained because of its excellent properties.

【0005】一方、溶融成型可能なポリイミド樹脂が最
近提案され、かかる樹脂を溶融紡糸・延伸した繊維が、
高強度及び高弾性率を有することが開示されている(特
開昭63―211319号公報、特開平2―23491
1号公報、特開平3―10344号公報)。しかしなが
ら、これらの繊維は、高強度・高弾性率といった特性を
有しているため、成型品母材樹脂用繊維として使用する
場合、得られる成型品に反りや歪が生じ易く、また成型
加工時に該ポリイミド繊維を溶融させても強化繊維間に
浸透し難く、そのため強化繊維とマトリックス繊維との
間の充分な接着が得られず、補強効果の良好な複合体が
得られないといった問題があった。
On the other hand, a melt-moldable polyimide resin has been recently proposed, and a fiber obtained by melt-spinning and stretching such a resin is
It has been disclosed that it has a high strength and a high elastic modulus (Japanese Patent Laid-Open No. 63-213319 and Japanese Patent Laid-Open No. 23491/1991).
No. 1, JP-A-3-10344). However, since these fibers have characteristics such as high strength and high elastic modulus, when they are used as fibers for molded product base material resin, the resulting molded product is apt to warp or distort, and at the time of molding process. Even if the polyimide fiber was melted, it was difficult to penetrate between the reinforcing fibers, and therefore sufficient adhesion between the reinforcing fiber and the matrix fiber could not be obtained, and there was a problem that a composite having a good reinforcing effect could not be obtained. ..

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術の有する問題点が解消され、成型品を製造する際の変
形量を任意に変更することができ、且つ溶融成型加工時
には強化繊維との濡れ性が良好で力学的特性に優れ、し
かも耐熱性の良好な複合体を得ることのできる新規な成
型品母材樹脂用ポリイミド繊維を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the above-mentioned prior art, allows the amount of deformation at the time of producing a molded product to be arbitrarily changed, and provides a reinforcing fiber at the time of melt molding. It is an object of the present invention to provide a novel polyimide fiber for a base material resin for a molded product, which is capable of obtaining a composite having good wettability, excellent mechanical properties, and good heat resistance.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため鋭意検討した結果、近年耐熱性に優れて
いるとして種々検討されているPEEKやこれよりも更
に高融点のポリエーテルケトン(PEK)に代表される
芳香族ポリエーテル類は、350℃以上といった高温で
も熱分解せず安定して繊維化できるものの、そのガラス
転移点が145℃、165℃であり、耐熱温度220℃
以上が要求される航空・宇宙分野には使用できないのに
対して、特定のポリイミド樹脂は約410℃といった高
温でも安定に紡糸でき、しかも得られる繊維は補強繊維
との濡れ性が良好で、且つガラス転移点が240℃以上
で耐熱性にも極めて優れていること、さらには、かかる
ポリイミド繊維は取り扱い性も良好であることを見出
し、本発明に到達した。
Means for Solving the Problems As a result of intensive investigations by the present inventors in order to achieve the above-mentioned object, PEEK, which has been variously studied in recent years as having excellent heat resistance, and polyether having a melting point higher than that of PEEK have been investigated. Aromatic polyethers represented by ketones (PEK) can be stably formed into fibers without thermal decomposition even at a high temperature of 350 ° C. or higher, but their glass transition points are 145 ° C. and 165 ° C., and the heat-resistant temperature is 220 ° C.
While it cannot be used in the aerospace field where the above requirements are required, a specific polyimide resin can be stably spun even at a high temperature of about 410 ° C, and the obtained fiber has good wettability with the reinforcing fiber, and The inventors have found that the glass transition point is 240 ° C. or higher and the heat resistance is extremely excellent, and that the polyimide fiber is also easy to handle, and thus arrived at the present invention.

【0008】すなわち、本発明によれば、繰り返し単位
の85モル%以上が下記単位であり、
That is, according to the present invention, 85 mol% or more of the repeating units are the following units,

【0009】[0009]

【化2】 温度400℃剪断速度100sec-1での溶融粘度(M
V)が7000ポイズ以下である熱可塑性ポリイミドか
らなる繊維であって、破断伸度(EL)が50〜120
%、結晶化度(Xρ)が20%以下であることを特徴と
する成型品母材樹脂用ポリイミド繊維、が提供される。
[Chemical 2] Melt viscosity at a temperature of 400 ° C and a shear rate of 100 sec -1 (M
V) a fiber made of a thermoplastic polyimide having a poise of 7,000 poise or less, and an elongation at break (EL) of 50 to 120.
%, And the crystallinity (Xρ) is 20% or less, a polyimide fiber for molded product base material resin is provided.

【0010】以下に本発明を構成する各要求とその作用
効果について詳述する。本発明でいうポリイミドは、ジ
アミンとテトラカルボン酸二無水物とを反応させて得ら
れるポリアミド酸をさらに脱水環化して得られるもので
って、下記繰り返し単位を85モル%以上含有するもの
を対象とするが、
Each requirement and its function and effect constituting the present invention will be described in detail below. The polyimide referred to in the present invention is obtained by further subjecting a polyamic acid obtained by reacting a diamine and a tetracarboxylic acid dianhydride to a cyclodehydration and containing 85 mol% or more of the following repeating units. However,

【0011】[0011]

【化3】 [Chemical 3]

【0012】本発明の目的を損わない範囲内で第3成分
を共重合したポリイミドであっても、熱安定性を向上さ
せる目的でポリマー末端をジルカルボン酸無水物で封鎖
されたものであってもよい。
Even a polyimide obtained by copolymerizing a third component within the range not impairing the object of the present invention, is a compound in which the polymer terminal is blocked with a dicarboxylic acid anhydride for the purpose of improving thermal stability. Good.

【0013】また、かかるポリイミドには、本発明の目
的を阻害しない範囲で安定剤、可塑剤、艶消剤、滑剤及
び難燃剤等の添加剤を含有せしめることもできる。
The polyimide may contain additives such as a stabilizer, a plasticizer, a matting agent, a lubricant and a flame retardant within the range not impairing the object of the present invention.

【0014】次に、かかるポリイミドは、温度400
℃、剪断速度100sec-1での溶融粘度(MV)が7
000ポイズ以下であることが必要である。溶融粘度が
7000ポイズを越える場合には、本発明の繊維を得る
際の曵糸性が低下して生産性が劣るだけでなく単繊維繊
度の細いものが得難くなり、しかも強化繊維と複合する
際の濡れ性(強化繊維との)も低下して力学的特性の良
好な複合体を得ることができなくなるので好ましくな
い。
Next, the polyimide has a temperature of 400.
Melt viscosity (MV) at a shear rate of 100 sec -1 at 7 ℃
It must be 000 poise or less. When the melt viscosity is more than 7,000 poises, not only the spinning property in obtaining the fiber of the present invention is lowered, but also the productivity is poor, and it becomes difficult to obtain a fiber having a small single fiber fineness, and moreover, it is combined with the reinforcing fiber. The wettability (with the reinforcing fiber) at that time is also lowered, and a composite having good mechanical properties cannot be obtained, which is not preferable.

【0015】さらに本発明のポリイミド繊維は、破断伸
度(EL)が50〜120%、結晶化度(Xρ)が20
%以下であることが大切である。ELが50%未満の場
合には、ポリイミド分子鎖が繊維軸方向に高度に配向し
ているため、繊維強度が大きくなって取り扱い性は良く
なるものの、成型品の母材樹脂となすべく加熱溶融処理
する際、該繊維が収縮して強化繊維間に空隙を生じた
り、成型品に反りや歪が生じたりするため好ましくな
い。一方ELが120%を越える場合には、配向度が小
さくて成型品に加工する際の収縮が少なくなるものの、
その詳細な理由は不明であるが、強化繊維として炭素繊
維やセラミック繊維が用いられている場合、強化繊維表
面での母材樹脂の配向は繊維状態での配向が一部残存し
ている場合には強化繊維表面を核として結晶が成長し易
いのに対して、ELが120%を越える場合には結晶の
成長が小さくなって接着強度が小さくなるため好ましく
ない。
Further, the polyimide fiber of the present invention has a breaking elongation (EL) of 50 to 120% and a crystallinity (Xρ) of 20.
It is important to be less than%. If the EL is less than 50%, the polyimide molecular chains are highly oriented in the fiber axis direction, so the fiber strength increases and the handleability improves, but heat melting to form the base resin of the molded product. During the treatment, the fibers shrink, resulting in voids between the reinforcing fibers, and warping or distortion of the molded product, which is not preferable. On the other hand, when EL exceeds 120%, the degree of orientation is small and shrinkage during processing into a molded product is small, but
The detailed reason is unknown, but when carbon fiber or ceramic fiber is used as the reinforcing fiber, the orientation of the base material resin on the surface of the reinforcing fiber is when the orientation in the fiber state partially remains. The crystal easily grows with the surface of the reinforced fiber as a nucleus, whereas when EL exceeds 120%, the crystal growth becomes small and the adhesive strength becomes small, which is not preferable.

【0016】また、ELが上記範囲内にあっても、結晶
化度Xρが20%以下である必要がある。20%を越え
る場合には、強化繊維と複合加熱溶融して複合体を製造
する際の流れ性及び濡れ性が低下して、強化繊維間に空
隙を生ずることとなるため好ましくない。
Even if EL is within the above range, the crystallinity Xρ must be 20% or less. If it exceeds 20%, the flowability and wettability at the time of composite heating and melting with the reinforcing fibers to produce a composite are deteriorated and voids are generated between the reinforcing fibers, which is not preferable.

【0017】以上に説明した本発明のポリイミド繊維を
製造するには、例えば以下に述べる溶融紡糸・延伸方法
を採用すれば良い。すなわち、前述の熱可塑性ポリイミ
ドを溶融温度400〜430℃で溶融し、紡糸口金より
押出す。溶融温度が400℃未満では溶融不充分で安定
した紡糸が困難となり、一方430℃を越える場合には
ポリマーのゲル化が生じ易くなるので望ましくない。
To produce the above-described polyimide fiber of the present invention, for example, the melt spinning / drawing method described below may be employed. That is, the above-mentioned thermoplastic polyimide is melted at a melting temperature of 400 to 430 ° C. and extruded from the spinneret. If the melting temperature is less than 400 ° C, melting is insufficient and stable spinning becomes difficult, while if it exceeds 430 ° C, gelation of the polymer tends to occur, which is not desirable.

【0018】次に紡糸口金温度は395〜425℃の範
囲に設定することが望ましく、395℃未満の場合には
吐出ポリマーの伸長細化が充分に行なわれなくなり断糸
が多発する。一方425℃を越える場合には紡糸口金面
に異物が付着したり、ポリマー中にゲルが生じ易くなっ
て長時間安定に紡糸することができなくなる。紡糸口金
温度のコントロールは、紡糸パック周り温度及び紡糸口
金直下の雰囲気温度をコントロールすることにより容易
になし得る。
Next, it is desirable to set the temperature of the spinneret in the range of 395 to 425 ° C. If the temperature is lower than 395 ° C., the discharged polymer is not sufficiently thinned and stretched frequently, resulting in frequent yarn breakage. On the other hand, when the temperature exceeds 425 ° C., foreign matter adheres to the surface of the spinneret and gel is easily generated in the polymer, and stable spinning cannot be performed for a long time. The spinneret temperature can be easily controlled by controlling the temperature around the spin pack and the ambient temperature immediately below the spinneret.

【0019】次に吐出された糸条は、紡糸口金面直下に
設けられた、長さ10cm以上、雰囲気温度250〜4
00℃に調節された加熱紡糸筒を通過せしめた後、冷却
して捲きとられる。ここで加熱紡糸筒を通過させない場
合には、吐出された糸条の冷却固化が速すぎて充分細化
された糸条を高速で捲きとることができなくなる。した
がって、成型品母材樹脂用として好ましく用いられる細
単繊維繊度のものが得難くなるので好ましくない。
Next, the discharged yarn is provided at a position just below the surface of the spinneret and has a length of 10 cm or more and an ambient temperature of 250 to 4
After passing through a heating spinning tube adjusted to 00 ° C, it is cooled and wound up. If the yarn is not passed through the heating spinning cylinder, the discharged yarn is cooled and solidified too quickly to wind up a sufficiently thin yarn at a high speed. Therefore, it becomes difficult to obtain a fine monofilament fineness that is preferably used for a molded product matrix resin, which is not preferable.

【0020】加熱筒の形状は、筒内の雰囲気温度をでき
るだけ一様に維持する上で円筒形が好ましく、また長さ
は10cm以上、好ましくは20〜100cmが適当で
ある。長さが10cm未満では吐出された糸条が急速に
冷却されて糸切れしやすくなり、一方100cmを超え
る場合には、取扱い性及び紡糸での作業性の面で不利と
なる上に、効果もほぼ飽和するので好ましくない。
The shape of the heating cylinder is preferably cylindrical in order to keep the atmospheric temperature in the cylinder as uniform as possible, and the length is 10 cm or more, preferably 20 to 100 cm. If the length is less than 10 cm, the discharged yarn is cooled rapidly and the yarn is easily broken, while if it exceeds 100 cm, it is disadvantageous in terms of handleability and workability in spinning and has an effect. It is not preferable because it is almost saturated.

【0021】また、加熱筒を設けても、筒内の紡糸口金
に近い紡糸口金下の雰囲気温度が250℃未満の場合に
は、口金温度が395℃未満になったり、吐出された糸
条が急速に冷却されたりして、糸切れが多くなり、ポリ
イミド繊維の安定した引取りができなくなる。一方、こ
の雰囲気温度が400℃を超える場合には、口金温度が
425℃を超えたり、吐出された糸条が適度に冷却され
ず、途中で温度上昇するようなことも起こるため、長時
間安定してポリイミド繊維を引取ることができなくな
る。
Even if a heating cylinder is provided, if the atmosphere temperature under the spinneret near the spinneret in the cylinder is less than 250 ° C., the spinneret temperature will be less than 395 ° C. If the polyimide fiber is cooled rapidly, the number of yarn breakages increases, making it impossible to stably collect the polyimide fiber. On the other hand, when the ambient temperature exceeds 400 ° C, the spinneret temperature exceeds 425 ° C, the discharged yarn is not cooled appropriately, and the temperature rises in the middle, so that the temperature is stable for a long time. As a result, the polyimide fiber cannot be collected.

【0022】次に100〜2000m/分、好ましくは
500〜1500/分の速度で引き取り、必要に応じて
さらに延伸する。延伸は通常公知の方法が適用でき、例
えば、ホットローラー、プレートヒーター、温水バス、
スチームチャンバー等の加熱手段を用いることができ
る。延伸倍率は好ましくは2倍以下、延伸温度も好まし
くは300℃以下とすることにより、破断伸度50〜1
20%、結晶化度20%以下のポリイミド繊維を容易に
得ることができる。延伸温度は通常ガラス転移点(T
g)より高い温度、すなわち本発明の対象とする熱可塑
性ポリイミドでは250℃以上で行なわれるのが一般で
あり、250〜300℃の範囲から選択しても良いが、
本発明においては、90〜98℃の温水中、もしくは蒸
気中でも十分延伸が可能である。
Next, it is drawn at a speed of 100 to 2000 m / min, preferably 500 to 1500 / min, and further stretched if necessary. A generally known method can be applied to the stretching, for example, a hot roller, a plate heater, a hot water bath,
A heating means such as a steam chamber can be used. The stretching ratio is preferably 2 times or less, and the stretching temperature is also preferably 300 ° C. or less, so that the breaking elongation is 50 to 1
A polyimide fiber having a crystallinity of 20% or less and 20% or less can be easily obtained. The stretching temperature is usually the glass transition point (T
g) higher temperature, that is, it is generally carried out at 250 ° C. or higher in the thermoplastic polyimide targeted by the present invention, and may be selected from the range of 250 to 300 ° C.,
In the present invention, sufficient stretching is possible even in hot water at 90 to 98 ° C or in steam.

【0023】なお、紡糸工程や延伸工程では、糸条に水
以外の油剤や糊剤等は使用しないのが好ましい。油剤や
糊剤等は、繊維が溶融して強化繊維間に侵入するのを妨
げたり、母材樹脂と強化繊維の接着を妨げたり、母材樹
脂の性能を低下させたりするだけでなく、成型温度で熱
分解してガスを発生しやすく、そのために成型品にボイ
ドや欠陥を生じさせ、表面に窪みを生じさせたりする。
本発明の熱可塑性ポリイミド繊維は、成型温度が400
〜400℃となるため、このような温度で熱分解を起こ
さず且つ接着を妨げない油剤や糊剤は実際には求められ
ない。しかし、ポリイミド繊維単独で織編物等の布帛に
する場合、取扱い性を向上する目的で、油剤や糊剤を使
用し、布帛にしてから精練工程で除去することも可能で
ある。その場合には、容易に除去し得るようなものを選
択する必要がある。通常、紡糸工程あるいは延伸工程に
おいて、プロピレンオキサイドとエチレンオキサイドの
共重合体で分子量が1000〜2000程度のポリエー
テル系油剤に、制電剤としてオレイルホスフェートカリ
ウム塩等のアニオン活性剤を少量加えたものがオイリン
グ剤として用いられるが、このようなオイリング剤なら
ば通常の溶剤や洗剤を用いて洗浄し、次に温水を用いて
溶剤や洗剤を除去した後、脱水して乾燥する精練工程に
より十分に除去することができる。また糊剤も通常用い
られているようなものであれば、同様に精練工程で除去
できる。
In the spinning process and the drawing process, it is preferable not to use an oil agent other than water, a sizing agent, etc. in the yarn. Oils and sizing agents not only prevent the fibers from melting and entering between the reinforcing fibers, hinder the adhesion between the base resin and the reinforcing fibers, and reduce the performance of the base resin, but also molding It is likely to be thermally decomposed at a temperature to generate a gas, which causes a void or a defect in the molded product and causes a dent on the surface.
The thermoplastic polyimide fiber of the present invention has a molding temperature of 400
Since the temperature is up to 400 ° C., an oil agent or a sizing agent that does not cause thermal decomposition at such a temperature and does not hinder the adhesion is not actually required. However, when a fabric such as a woven or knitted fabric is made of polyimide fibers alone, an oil agent or a sizing agent may be used for the purpose of improving handleability, and the fabric may be removed in the scouring step. In that case, it is necessary to select a material that can be easily removed. Usually, in a spinning process or a drawing process, a small amount of anion activator such as potassium oleyl phosphate as an antistatic agent is added to a polyether-based oil agent having a molecular weight of about 1000 to 2000, which is a copolymer of propylene oxide and ethylene oxide. Is used as an oiling agent, and if such an oiling agent is washed with an ordinary solvent or detergent, then the solvent or detergent is removed with warm water, and then dehydration and drying are sufficiently performed by a scouring step. It can be removed. Also, if the sizing agent is one that is usually used, it can be removed in the scouring step as well.

【0024】以上のように紡糸あるいはさらに延伸する
ことによって得られる本発明のポリイミド繊維は、マル
チフィラメントで用いる場合、単繊維デニールを1〜4
0de、好ましくは1〜5deの範囲にして、糸総デニ
ールを強化繊維の糸総デニールに適当に合わせるように
すればよい。単繊維デニールが1de未満の場合には、
紡糸延伸あるいはその後の工程で、毛羽や単繊維切れが
発生しやすくなり、また成型溶融時の気泡抜けが悪くな
る場合がある。40deを超える場合には布帛にした場
合のドレープ性が低下したり、強化繊維の混合糸を得る
場合に均一な混合糸が得にくくなったり、また成型溶融
時に母材樹脂が強化繊維間に侵入し難くなったりする。
また糸総デニールについては、成型品における強化繊維
の体積分率、すなわち成型品の体積(重量を密度で割っ
た値)に対する強化繊維の体積(重量を密度で割った
値)の比率が40〜70%の範囲が好ましいので、この
体積分率が得やすいように併用される強化繊維の糸総デ
ニールにあわせて適宜設定すればよい。
The polyimide fiber of the present invention obtained by spinning or further drawing as described above has a single fiber denier of 1 to 4 when used as a multifilament.
The total yarn denier may be appropriately set to the total yarn denier of the reinforcing fiber by setting it to 0 de, preferably 1 to 5 de. If the single fiber denier is less than 1 de,
In the spinning drawing or the subsequent steps, fluff and single fiber breakage are likely to occur, and air bubbles may be lost during molding and melting. If it exceeds 40 de, the drape property of a fabric is deteriorated, it is difficult to obtain a uniform mixed yarn when a mixed yarn of reinforcing fibers is obtained, and the base material resin penetrates between the reinforcing fibers during molding and melting. It becomes difficult to do.
Regarding the total yarn denier, the volume fraction of the reinforcing fibers in the molded product, that is, the ratio of the volume of the reinforcing fibers (value of weight divided by density) to the volume of the molded product (value of weight divided by density) is 40 to Since the range of 70% is preferable, it may be appropriately set according to the total denier of yarns of the reinforcing fibers used together so that this volume fraction can be easily obtained.

【0025】[0025]

【実施例】以下、実施例を挙げて本発明を具体例に説明
するが、本発明はその主旨を超えないかぎり、以下の実
施例に限定されるものでない。なお、実施例における各
物性は下記の方法で測定したものである。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. In addition, each physical property in an Example is measured by the following method.

【0026】1.溶融粘度(MV) 島津(株)製高化式フローテスターを用い、試料5g、
ノズル寸法0.5mmφ×4mm、ドラム回転数1rp
m、荷重10〜100kg、温度400℃の条件で測定
し、溶融粘度(MV)を算出した。次いで、両対数グラ
フを用いて、粘度(MV)と剪断速度との関係をグラフ
化し、剪断速度100sec-1の溶融粘度を読み取っ
た。
1. Melt Viscosity (MV) Using a high-performance flow tester manufactured by Shimadzu Corporation, sample 5 g,
Nozzle size 0.5mmφ × 4mm, drum rotation speed 1rp
m, a load of 10 to 100 kg, and a temperature of 400 ° C. were measured, and the melt viscosity (MV) was calculated. Then, using a logarithmic log graph, the relationship between the viscosity (MV) and the shear rate was graphed, and the melt viscosity at a shear rate of 100 sec −1 was read.

【0027】2.引張試験 オリエンテック(株)製“テンシロン”RTM―100
型引張試験機を用い、室温25℃湿度60%で試長20
cm、引張り速度200mm/分で測定した。
2. Tensile test "Tensilon" RTM-100 manufactured by Orientec Co., Ltd.
Using a die tensile tester, test length 20 at room temperature 25 ° C and humidity 60%
cm, and the pulling speed was 200 mm / min.

【0028】3.結晶化度(Xρ) 軽液にn―ヘプタン、重液に四塩化炭素を用いて作成し
た密度勾配管により、25℃における繊維の密度を測定
し、下記式にて算出した。
3. Crystallinity (Xρ) The density of the fiber at 25 ° C was measured with a density gradient tube prepared by using n-heptane as the light liquid and carbon tetrachloride as the heavy liquid, and calculated by the following formula.

【0029】 Xρ=(ρ−ρa)ρc/{ρc−ρ)・ρ} ρ :サンプルの密度 ρc:結晶部の密度(1.420g/cm3 ) ρa:非晶部の密度(1.330g/cm3 Xρ = (ρ−ρa) ρc / {ρc−ρ) · ρ} ρ: Density of sample ρc: Density of crystalline part (1.420 g / cm 3 ) ρa: Density of amorphous part (1.330 g) / Cm 3 )

【0030】4.曲げ強度 JIS K6911に準ずる方法で測定した。4. Bending strength It was measured by a method according to JIS K6911.

【0031】ポリイミド(三井東圧化学(株)製NEW
―TPI)のチップを熱風乾燥機中250℃で15時間
乾燥した。このチップを用い420℃で溶融し孔径0.
4mmで48ホールの吐出孔を有する紡糸口金から22
g/分の吐出量で押出して、1000m/分の速度で巻
取り、200de/24filのマルチフィラメントを
得た。但し、実施例8,9及び比較例8,9について
は、さらに延伸を行うため、延伸後のデニールが200
de/24filとなるよう吐出量を変えて紡糸を行っ
た。表1にポリマーの溶融粘度(MV)、紡糸口金温
度、加熱筒の長さ及び雰囲気温度とそのときの紡糸調
子、延伸条件、得られた繊維の破断伸度、結晶化度、更
に、この繊維を母材樹脂として用いた成型品の3点曲げ
強度を示した。
Polyimide (NEW manufactured by Mitsui Toatsu Chemicals, Inc.)
-TPI) chips were dried in a hot air dryer at 250 ° C for 15 hours. Using this chip, it was melted at 420 ° C. and the pore size was 0.1
22 from a spinneret with a discharge hole of 4 holes at 4 mm
It was extruded at a discharge rate of g / min and wound at a speed of 1000 m / min to obtain a multifilament of 200 de / 24 fil. However, in Examples 8 and 9 and Comparative Examples 8 and 9, the denier after stretching was 200 because the stretching was further performed.
Spinning was carried out by changing the discharge amount so that it became de / 24 fil. Table 1 shows the melt viscosity (MV) of the polymer, the spinneret temperature, the length of the heating cylinder and the ambient temperature and the spinning condition at that time, the drawing conditions, the breaking elongation of the obtained fiber, the crystallinity, and the fiber. The three-point bending strength of a molded product using as a base material resin is shown.

【0032】成型は、紡糸またはさらに延伸して得られ
たポリイミド繊維を平織物に製織し、この織物10枚と
東レ製炭素繊維トレカT―300平織物9枚とを交互に
積層した後、圧縮加熱成型機により、25kg/cm2
の圧力で挟圧し、挟圧した状態で室温から430℃まで
15分間で昇温し、430℃の温度で20分保った後、
150℃まで20分間で冷却した。この間圧力は25k
g/cm2 に保った。得られた平板状の成型物をJIS
K6911の測定法により3点曲げ強度を求めた。
Molding is carried out by weaving a polyimide fiber obtained by spinning or further drawing into a plain woven fabric, alternately laminating 10 sheets of this woven fabric and 9 sheets of Toray carbon fiber trading card T-300 plain woven fabric, and then compressing. 25kg / cm2 by heat molding machine
After pressing for 15 minutes at room temperature from the room temperature to 430 ° C. and holding at the temperature of 430 ° C. for 20 minutes,
Cooled to 150 ° C. in 20 minutes. During this time, the pressure is 25k
It was kept at g / cm 2 . The obtained flat plate shaped product is JIS
Three-point bending strength was determined by the measuring method of K6911.

【0033】なお紡糸調子は、2時間の連続運転で糸切
れが0回を○、1〜2回を△、3回以上を×とした。
The spinning condition was 0 when the number of yarn breakages was 0 during continuous operation for 2 hours, Δ was 1 to 2 times, and 3 was more than 3 times.

【0034】表1から明らかなように、本発明にかかる
熱可塑性ポリイミド繊維を母材樹脂として用いた実施例
1〜10では、高い曲げ強度を示すのに対し、破断伸度
が高く配向度の低い比較例7では、低い曲げ強度しか得
られず、逆に破断伸度が低い配向の高い比較例8及び、
結晶化度の高い比較例9では炭素繊維間への樹脂の侵入
が十分でなく空隙が見られ、曲げ強度も低いものしか得
られないことがわかる。
As is clear from Table 1, in Examples 1 to 10 in which the thermoplastic polyimide fiber according to the present invention was used as the matrix resin, high flexural strength was exhibited, while high elongation at break and high degree of orientation were observed. In Comparative Example 7 which is low, only low bending strength is obtained, and conversely, Comparative Example 8 in which the elongation at break is low and
It can be seen that in Comparative Example 9 having a high degree of crystallinity, the resin does not sufficiently penetrate between the carbon fibers, voids are observed, and only a resin having a low bending strength is obtained.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明の熱可塑性ポリイミド繊維は、強
化繊維として用いられる炭素繊維やセラミックス繊維と
混繊したり、単独で織編物等の布帛にしたり、強化繊維
と交織して織物にしたり、フィラメントワインディング
法により強化繊維とともに巻き付けたりする方法等によ
り、成型品母材樹脂用熱可塑性繊維として好適に使用さ
れ、反りや歪がなく、強度に優れ、且つ耐熱性の良好な
成型品(複合体)を得ることができる。また、従来の熱
硬化性樹脂と複合した成型品と比較して、熱可塑ポリイ
ミドの特性が生かされた、難燃性、低吸湿性、力学的特
性(曲げ強度、圧縮強度)及び耐疲労性にも優れている
といった特徴を有する。
EFFECT OF THE INVENTION The thermoplastic polyimide fiber of the present invention can be mixed with carbon fiber or ceramic fiber used as a reinforcing fiber, or can be used alone as a woven or knitted fabric, or can be woven with a reinforcing fiber to form a woven fabric, Molded product that is suitable for use as a thermoplastic fiber for molded product matrix resin, has excellent strength and good heat resistance (composite product) ) Can be obtained. In addition, compared with conventional molded products that are combined with thermosetting resins, the properties of thermoplastic polyimide have been utilized to make them flame-retardant, low moisture absorption, mechanical properties (bending strength, compression strength) and fatigue resistance. It also has the feature of being excellent.

【0037】したがって、これらの特性を生かして宇宙
・航空分野における一次構造材料として用いることがで
き、また防炎・難燃性の特性を生かして航空機等の内装
材にも好適に用いることができる。
Therefore, it can be used as a primary structural material in the fields of space and aviation by taking advantage of these characteristics, and can also be suitably used as an interior material for aircraft etc. by taking advantage of the characteristics of flameproofness and flame retardancy. ..

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】繰り返し単位の85モル%以上が下記単位
であり、 【化1】 温度400℃剪断速度100sec-1での溶融粘度(M
V)が7000ポイズ以下である熱可塑性ポリイミドか
らなる繊維であって、破断伸度(EL)が50〜120
%、結晶化度(Xρ)が20%以下であることを特徴と
する成型品母材樹脂用ポリイミド繊維。
1. The following units account for 85 mol% or more of repeating units: Melt viscosity at a temperature of 400 ° C and a shear rate of 100 sec -1 (M
V) a fiber made of a thermoplastic polyimide having a poise of 7,000 poise or less, and an elongation at break (EL) of 50 to 120.
%, And the crystallinity (Xρ) is 20% or less, a polyimide fiber for molded product base material resin.
JP33151991A 1991-11-21 1991-11-21 Polyimide fiber for matrix resin for molding Pending JPH05140337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33151991A JPH05140337A (en) 1991-11-21 1991-11-21 Polyimide fiber for matrix resin for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33151991A JPH05140337A (en) 1991-11-21 1991-11-21 Polyimide fiber for matrix resin for molding

Publications (1)

Publication Number Publication Date
JPH05140337A true JPH05140337A (en) 1993-06-08

Family

ID=18244559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33151991A Pending JPH05140337A (en) 1991-11-21 1991-11-21 Polyimide fiber for matrix resin for molding

Country Status (1)

Country Link
JP (1) JPH05140337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8218795B2 (en) 2004-10-21 2012-07-10 Shure Incorporated Methods for forming and using thin film ribbon microphone elements and the like
WO2014208671A1 (en) * 2013-06-28 2014-12-31 株式会社クラレ Flame-retardant nonwoven fabric, molded article, and composite laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8218795B2 (en) 2004-10-21 2012-07-10 Shure Incorporated Methods for forming and using thin film ribbon microphone elements and the like
WO2014208671A1 (en) * 2013-06-28 2014-12-31 株式会社クラレ Flame-retardant nonwoven fabric, molded article, and composite laminate
JPWO2014208671A1 (en) * 2013-06-28 2017-02-23 株式会社クラレ Flame retardant nonwoven fabric, molded body and composite laminate
US9963810B2 (en) 2013-06-28 2018-05-08 Kuraray Co., Ltd. Flame retardant nonwoven fabric, formed product, and composite stack

Similar Documents

Publication Publication Date Title
Wu et al. A new cellulose based carbon fiber from a lyocell precursor
KR0143889B1 (en) Aramid monofilament and method for obtaining same
WO2007018136A1 (en) Flame-resistant fiber, carbon fiber, and processes for the production of both
JPH04228613A (en) Polyketone fiber and its manufacture
RU2315827C2 (en) Articles comprising fibers and/or fibrids, fibers and fibrids, and method for producing the same
EP0392558B1 (en) Process for making oriented, shaped articles of para- aramid/thermally-consolidatable polymer blends
CN110249083B (en) Method for producing polyetherketoneketone fibers
JPH05140337A (en) Polyimide fiber for matrix resin for molding
TW202122451A (en) Polyesters with ultra-high flowability and superior stability and meltblown fibers thereof
JP7334623B2 (en) Copolymer polyphenylene sulfide fiber
KR101467588B1 (en) Nonwoven web comprising polyarenazole microfibers and process for making same
EP0359692A2 (en) Solution spinning process
JP3539577B2 (en) Fiber reinforced composite material
CN109477248B (en) Polyolefin fiber and method for producing same
JPH08504007A (en) Low denier polybenzazole fiber and method for producing the same
JP3073083B2 (en) Fibrous polyimide resin molding for reinforcing composite materials
MX2009001101A (en) Polyarenazole microfilaments and process for making same.
US5702547A (en) Article reinforced by aramid monofilament having a slightly structured skin
JP3508876B2 (en) High modulus polybenzazole fiber
US5061425A (en) Solution spinning process for producing a polyethylene terephthalate filament
JPH08509268A (en) PPD-T fiber showing high elongation
JPH0343216Y2 (en)
JPH07310231A (en) Porous and light-weight polyethylene terephthalate fiber
JP3235868B2 (en) Core-sheath composite fiber
JPS6059163A (en) Production of aromatic polyamide nonwoven cloth