JPH0514001B2 - - Google Patents

Info

Publication number
JPH0514001B2
JPH0514001B2 JP58079726A JP7972683A JPH0514001B2 JP H0514001 B2 JPH0514001 B2 JP H0514001B2 JP 58079726 A JP58079726 A JP 58079726A JP 7972683 A JP7972683 A JP 7972683A JP H0514001 B2 JPH0514001 B2 JP H0514001B2
Authority
JP
Japan
Prior art keywords
tooth
sizing
sintered metal
tooth profile
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58079726A
Other languages
Japanese (ja)
Other versions
JPS59205405A (en
Inventor
Takashi Koiso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7972683A priority Critical patent/JPS59205405A/en
Publication of JPS59205405A publication Critical patent/JPS59205405A/en
Publication of JPH0514001B2 publication Critical patent/JPH0514001B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • B22F5/085Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs with helical contours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (イ) 技術分野 焼結金属製ギヤーの内径精度向上のためのサイ
ジング方法の改良に関する。 (ロ) 従来技術とその問題点 焼結金属製ギヤーにおいて内径または歯車精度
が厳しい場合には、サイジングを行うのが一般的
である。この方法としては外側の金型(ダイ)
を円形とし、上下パンチにより加圧する方法、
ダイを歯形形状とする方法および内径サイジン
グのため球を内径に通す方法の3通りの方法があ
る。これらの方法をヘリカルギヤー(はすば歯
車)に利用する場合には、歯がねじれているため
に各種の問題点が出てくる。これらの方法につい
て第1図、第2図を用いて詳細に説明する。第1
図において1はダイ、2は下パンチ、3はコアー
ロツド、4はヘリカルギヤーの歯部、5は焼結金
属、6は上パンチを示す。上記の方法をヘリカ
ルギヤーに用いた場合製品と金型の位置合わせが
困難なため一般的に使用されていない。またの
方法を用いた場合には、上パンチと下パンチによ
る加圧力によつて、歯形誤差、歯筋誤差が大きく
なり、歩留りが悪くなつてしまう。しかもこの傾
向はヘリカルギヤーのネジレ角が大きくなればな
るほど著しい。この理由は金型ダイで歯形の部分
が支持されていないためであり、これらをさらに
改良するためには第2図に示す方法が検討されて
いる。この方法は焼結金属5の中心穴部に球7を
通過させることによつて中心径の寸法精度を向上
する方法である。この方法を用いた場合は、同じ
製品であつても、焼結時の寸法バラツキによつ
て、通過させる球の直径を決定する必要があり、
このため内径公差が厳しい場合には用いる球の種
類は膨大なものとなる。さらに詳細に言えば、焼
結時の寸法バラツキに応じて、球通過後の内径の
スプリングバツクを考慮に入れた選択が必要とな
る。これらの問題点を解決するためのサイジング
方法は多くの分野で検討されているが、いまだに
良好な方法が行われていない。 (ハ) 発明の開示 本願発明はかかる問題点を改良するために提案
するものであり第3,4,5図により詳細に説明
する。図中の番号は、第1図に示すものと同じで
ある。第3図に示す上パンチ6、および下パンチ
2の焼結金属との接触面は、ヘリカルギヤーの歯
部には接触しない構造となつており、このような
構造の上、下パンチによつて焼結金属を加圧する
ことによつて、中心径の寸法精度の向上を計ると
同時に歯部の歯筋誤差、歯形誤差の小さい焼結金
属製ヘリカルギヤーを得ることができる。第4図
には、本願の別の応用例を示す。この場合には、
焼結金属自体の中心穴近辺に突部を設けることに
よつて第3図に示す方法と同等の効果が得られる
ものである。即ち本願発明の要旨は、第5図に示
すように、焼結金属製ヘリカルギヤーのサイジン
グ方法において、上下パンチと焼結金属との接触
部9を、歯底径8より0.5mm以上離した状態で行
うことを特徴とするサイジング方法を提供するも
のである。この場合、ダイの断面形状としては歯
形部がなく、端に歯底径より0.5mm以上離れてい
ればよく、円形、楕円形、長方形およびその組み
合わせを用いることができる。また、歯部は外周
面にあつても、内周面にあつてもよい。このよう
な方法によりヘリカルギヤーの出し入れが容易
で、精度の良いサイジング方法を提供することが
できる。 (ニ) 実施例 Cu:2重量%、C:0.8重量%、残部Feよりな
る粉末を型押密度6.8Kg/cm3に調整して表1に示
す歯車仕様をもつたヘリカルギヤーに成形し、吸
熱型変成ガス(原料ブタン)雰囲気中で1150℃
1H焼結した後サイジングをおこなつた。サイジ
ング方法として従来方法の如く上、下パンチを
フラツトにしたものと本発明の如く上、下パン
チに凸を設けた第3図の方法の2通りをおこなつ
た。その結果得られた焼結金属製ヘリカルギヤー
の歯形誤差と歯筋誤差を第6図に示す。第6図中
A,Bは従来方法による歯筋、歯形誤差を示し、
C,Dは本発明の方法によつて得られた歯筋、歯
形誤差を示す。従来方法と本発明の方法を比較す
ると歯形誤差はさほど変化ないが、歯筋誤差は著
しく異なつていることがわかる。即ち従来方法で
は、上、下パンチによる加圧が歯部にまで影響
し、歯筋誤差0.016〜0.030mm、歯形誤差0.008mmと
なつているのに対し、本発明方法は上、下パンチ
による加圧が歯部に影響をおよぼさず、歯筋誤差
0.002〜0.003mm、歯形誤差0.006〜0.008mmと良好
な歯車精度を示している。このようにして本発明
は焼結金属製ヘリカルギヤーのサイジング方法に
よつて精度のよい安価な量産性に富んだ方法を提
供することが出来る。 【表】
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field The present invention relates to an improvement in a sizing method for improving the inner diameter accuracy of a sintered metal gear. (b) Prior art and its problems When the inner diameter or gear accuracy of a sintered metal gear is critical, sizing is generally performed. For this method, the outer mold (die)
A method of making it circular and applying pressure with upper and lower punches,
There are three methods: making the die tooth-shaped and passing a ball through the inner diameter for inner diameter sizing. When these methods are applied to helical gears, various problems arise because the teeth are twisted. These methods will be explained in detail using FIGS. 1 and 2. 1st
In the figure, 1 is a die, 2 is a lower punch, 3 is a core rod, 4 is a tooth of a helical gear, 5 is a sintered metal, and 6 is an upper punch. When the above method is used for helical gears, it is difficult to align the product and the mold, so it is not generally used. If the other method is used, the pressure applied by the upper punch and the lower punch increases tooth profile errors and tooth trace errors, resulting in poor yield. Moreover, this tendency becomes more pronounced as the helix angle of the helical gear increases. The reason for this is that the tooth profile portion is not supported by the mold die, and in order to further improve this, the method shown in FIG. 2 is being considered. This method improves the dimensional accuracy of the center diameter by passing the ball 7 through the center hole of the sintered metal 5. When using this method, even if the product is the same, it is necessary to determine the diameter of the sphere to be passed depending on the dimensional variation during sintering.
For this reason, when the inner diameter tolerance is strict, a huge variety of balls can be used. More specifically, it is necessary to make a selection that takes into account the spring back of the inner diameter after the ball has passed, depending on the dimensional variation during sintering. Sizing methods to solve these problems have been studied in many fields, but no good method has yet been developed. (C) Disclosure of the Invention The present invention is proposed to improve these problems, and will be explained in detail with reference to FIGS. 3, 4, and 5. The numbers in the figure are the same as those shown in FIG. The contact surfaces of the upper punch 6 and the lower punch 2 shown in FIG. By pressurizing the sintered metal, it is possible to improve the dimensional accuracy of the center diameter and at the same time obtain a sintered metal helical gear with small tooth line errors and tooth profile errors in the tooth portion. FIG. 4 shows another application example of the present application. In this case,
By providing a protrusion near the center hole of the sintered metal itself, the same effect as the method shown in FIG. 3 can be obtained. That is, the gist of the present invention is that, as shown in FIG. 5, in the sizing method for a sintered metal helical gear, the contact portion 9 between the upper and lower punches and the sintered metal is separated by 0.5 mm or more from the tooth bottom diameter 8. The present invention provides a sizing method characterized in that the sizing method is carried out in the following manner. In this case, the cross-sectional shape of the die may be circular, oval, rectangular, or a combination thereof, as long as there is no tooth profile and the end is 0.5 mm or more away from the tooth bottom diameter. Moreover, the tooth portion may be located on the outer circumferential surface or the inner circumferential surface. Such a method makes it easy to put in and take out the helical gear, and it is possible to provide a highly accurate sizing method. (d) Example A powder consisting of Cu: 2% by weight, C: 0.8% by weight, and the balance Fe was adjusted to a pressing density of 6.8 kg/cm 3 and molded into a helical gear having the gear specifications shown in Table 1. 1150℃ in an endothermic modified gas (raw material butane) atmosphere
Sizing was performed after 1H sintering. Two sizing methods were used: the conventional method in which the upper and lower punches were made flat, and the method shown in FIG. 3 in which the upper and lower punches were provided with convexities as in the present invention. FIG. 6 shows the tooth profile error and tooth trace error of the sintered metal helical gear obtained as a result. In Fig. 6, A and B show the tooth trace and tooth profile errors by the conventional method,
C and D show tooth trace and tooth profile errors obtained by the method of the present invention. Comparing the conventional method and the method of the present invention, it can be seen that although the tooth profile error does not change much, the tooth trace error is significantly different. In other words, in the conventional method, the pressure applied by the upper and lower punches affects the tooth part, resulting in a tooth trace error of 0.016 to 0.030 mm and a tooth profile error of 0.008 mm, whereas the method of the present invention applies pressure by the upper and lower punches. Pressure does not affect the tooth area, resulting in tooth trace error
Good gear accuracy is shown with 0.002 to 0.003 mm and tooth profile error of 0.006 to 0.008 mm. In this manner, the present invention can provide a method for sizing a sintered metal helical gear that is highly accurate, inexpensive, and highly suitable for mass production. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来方法による焼結金属のサ
イジング方法を示す。第3,4,5図は本願発明
のヘリカルギヤーのサイジング方法を示す。第6
図は本願発明によつて得た歯筋、歯形誤差の本願
実施例と、比較例の精度を示す。図中の各番号の
意味は下記の通りである。 1……ダイ、2……下パンチ、3……コアロツ
ド、4……ヘリカルギヤーの歯部、5……焼結金
属、6……上パンチ、A……従来方法による歯筋
誤差、B……従来方法による歯形誤差、C……本
発明による歯筋誤差、D……本発明による歯形誤
差。
1 and 2 show a conventional method for sizing sintered metal. 3, 4, and 5 show a method for sizing a helical gear according to the present invention. 6th
The figure shows the accuracy of tooth trace and tooth profile errors obtained according to the present invention and a comparative example. The meaning of each number in the figure is as follows. 1...Die, 2...Lower punch, 3...Core rod, 4...Helical gear teeth, 5...Sintered metal, 6...Upper punch, A...Tooth trace error by conventional method, B... ...Tooth profile error by conventional method, C... Tooth track error by the present invention, D... Tooth profile error by the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 焼結金属製はすば歯車のサイジング方法にお
いて、当該サイジング金型のダイ内面又はコアロ
ツド外面を歯形部のない単純断面形状とし、かつ
当該金型の上下パンチと当該製品の接触面の形状
の組み合せにより、該接触部が歯底径より0.5mm
以上離れた状態で加圧成形することによつて、高
い歯車歯形精度がえられることを特徴とするはす
ば歯車のサイジング方法。
1. In the sizing method for sintered metal helical gears, the inner surface of the die or the outer surface of the core rod of the sizing mold has a simple cross-sectional shape with no tooth profile, and the shape of the contact surface between the upper and lower punches of the mold and the product is Due to the combination, the contact part is 0.5mm from the tooth root diameter.
A sizing method for helical gears, characterized in that high gear tooth profile accuracy can be obtained by pressure forming the gears in a state where they are spaced apart from each other.
JP7972683A 1983-05-07 1983-05-07 Method for sizing helical gear Granted JPS59205405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7972683A JPS59205405A (en) 1983-05-07 1983-05-07 Method for sizing helical gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7972683A JPS59205405A (en) 1983-05-07 1983-05-07 Method for sizing helical gear

Publications (2)

Publication Number Publication Date
JPS59205405A JPS59205405A (en) 1984-11-21
JPH0514001B2 true JPH0514001B2 (en) 1993-02-24

Family

ID=13698201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7972683A Granted JPS59205405A (en) 1983-05-07 1983-05-07 Method for sizing helical gear

Country Status (1)

Country Link
JP (1) JPS59205405A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105312553A (en) * 2014-06-23 2016-02-10 重庆道宇机电制造有限公司 Powder metallurgy helical gear and manufacturing process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747803A (en) * 1980-09-05 1982-03-18 Toyota Motor Corp Die for chamfering and sizing of tooth surface of gear

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747803A (en) * 1980-09-05 1982-03-18 Toyota Motor Corp Die for chamfering and sizing of tooth surface of gear

Also Published As

Publication number Publication date
JPS59205405A (en) 1984-11-21

Similar Documents

Publication Publication Date Title
JPS61502736A (en) Forging method
JPS6289545A (en) Manufacture of parts for compressor
JPH0514001B2 (en)
JPS629642B2 (en)
CN109500253A (en) A kind of outer band punching die of nuclear fuel assembly grid spacer
US2246931A (en) Method of fabricating connecting leads
US2365083A (en) Gold-filled wire
CN208178213U (en) A kind of hardware dies keeping hole precision
US2016241A (en) Button
JPS5884618A (en) Annular flange plate fitted with fourfold boss part and its manufacture
US4143537A (en) Method for the manufacture of loud speakers
DE2636339A1 (en) METHOD AND DEVICE FOR MANUFACTURING OBJECTS FROM POWDER-MADE MATERIAL
JPS59101255A (en) Manufacture of annular body having projected part
US3168117A (en) Method of making terminal lead
JPS5836641B2 (en) Method for manufacturing powder sintered articles
JPH08206767A (en) Metal part and its manufacture
CN116475420A (en) Processing technology of high-precision oil pump gear with tooth direction modification
JPH0224615Y2 (en)
JPS62151502A (en) Production of sintered bearing material
JPS5893537A (en) Manufacture of variable rack for steering device
JP2913513B2 (en) Method for producing pellets for nuclear fuel
JPS58122147A (en) Forming method of rack
US2053481A (en) Method of making buckle frames
JPS5794438A (en) Manufacture for aluminium wheel rim
US3227194A (en) Terminal making apparatus