JPH0513984B2 - - Google Patents

Info

Publication number
JPH0513984B2
JPH0513984B2 JP61212397A JP21239786A JPH0513984B2 JP H0513984 B2 JPH0513984 B2 JP H0513984B2 JP 61212397 A JP61212397 A JP 61212397A JP 21239786 A JP21239786 A JP 21239786A JP H0513984 B2 JPH0513984 B2 JP H0513984B2
Authority
JP
Japan
Prior art keywords
parts
resin
weight
vee
tpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61212397A
Other languages
Japanese (ja)
Other versions
JPS6368654A (en
Inventor
Masashi Kinoshita
Takuji Hirose
Shuichi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP61212397A priority Critical patent/JPS6368654A/en
Publication of JPS6368654A publication Critical patent/JPS6368654A/en
Publication of JPH0513984B2 publication Critical patent/JPH0513984B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は軟質ポリ塩化ビニル系樹脂(PVCと
略す)組成物に関するもであり、特にPVCとポ
リウレタンを混合して成る加工性、非移行性、耐
寒性、ブロツキング性等に優れた軟質PVC組成
物に関するものである。 〔従来技術及びその問題点〕 PVCをジオクチルフタレート(DOPと略す)
等のフタル酸エステル誘導体をはじめとする各種
液状可塑剤により可塑化した軟質PVC組成物は
加工の容易な汎用プラスチツクとして電線被覆
材、包装材料、レザー、チユーブ等、広く用いら
れている。しかし精密機器用電線被覆材、カメラ
のケース用レザー、食品用ホース等に軟質PVC
を用いる場合、液状可塑剤が移行したり、揮発し
たりして、電子部品の性能を低下させたり、カメ
ラのレンズを曇らせたりした。そのためPVCの
加工性を保持しながら液状可塑剤を含まない非揮
発性、非移行性の軟質PVC組成物が望まれてい
た。 そこで、非揮発性、非移行性の軟質PVC組成
物をつくるため、揮発したり、移行するおそれの
ない高分子可塑剤としてアクリロニトリル・ブタ
ジエンラバー、塩素化ポリエチレン、エチレン・
酢酸ビニル共重合体(EVAと略す)、熱可塑性ポ
リウレタン(TPUと略す)等の適用が試みられ
ている。電線被覆材、医用材料等耐油性、耐寒性
が必要なものにはTPUとのブレンド物が優れて
おり、実用化されている(特公昭52−36896号)。 ところがTPUのなかでも比較的溶融粘度の低
い低分子量TPUを用いてPVCとブレンドした透
明なシートは、混練時ロール面などの成形機に粘
着して加工性が悪いだけでなく、得られた成形品
シートが粘着性がありシート等を重ねておくとく
つついてしまい、無理にはがそうとするとシート
が破断することがあつた。逆に比較的溶融粘度の
高い高分子量TPUを用いてPVCとブレンドした
場合にはPVCの分解を生じない温度範囲では
TPUが溶融しにくいため相溶した成形品シート
が得られなかつたり、無理に成形しても白濁した
フイツシユアイの多いシートしか得られなかつ
た。又TPUを塩化ビニル単量体に溶解してグラ
フト重合することも行われているがこの場合も該
TPUが塩化ビニル単量体に溶解できる必要があ
るため低分子量TPUが用いられるため上記の溶
融粘度の低いTPUをブレンドした場合と同様の
欠点があつた。 〔問題点を解決するための手段〕 かかる状況下本発明者らは上記の如き欠点のな
い軟質PVC系樹脂組成物を得るため鋭意研究し
た結果、PVCとTPUをブレンドする際ビニルエ
ステルエチレン系樹脂(VEEと略す)を併用す
ること、なかんずくVEEの存在下で溶解度係数
(SP値と略す)が8.5〜15のビニル単量体を重合
することによつて得られた改質VEEを併用する
ことにより、PVCとTPU及び改質VEEが容易に
成形加工でき、得られた成形品シートは非移行性
であり、耐寒性、耐油性、非粘着性の優れた透明
で柔軟な成形品が得られることを見い出し本発明
に至つた。 即ち、本発明は(A)ポリ塩化ビニル、 (B)分子量1000〜5000のポリヒドロキシ化合物、
ポリイソシアネート化合物及び鎖伸長剤とから得
られるもので、その溶融粘度が170℃で104〜106
ポイズである熱可塑性ポリウレタン、とからなる
ポリマー組成物100重量部と、(C)改質ビニルエス
テル・エチレン系樹脂5〜50重量部とからなり、
該樹脂(C)がビニルエステル・エチレン共重合体
100重量部の存在下で、(メタ)アクリル酸及びそ
のアルキルエステル、スチレンから選ばれる極性
ビニル単量体5〜50重量部を該共重合体に共重合
することによつて得られたもので(C−1)、し
かもその溶解度係数が8.5〜15である(C−2)
ことを特徴とする軟質ポリ塩化ビニル系樹脂組成
物を提供するものである。 本発明で用いる(A)成分としては塩化ビニルの単
独重合体及び酢酸ビニルなどのビニルエステル、
エチレンなどのオレフイン、アクリル酸、メタク
リル酸などのアルキルエステル、塩化ビニリデン
などの塩化ビニルと共重合可能な単量体を30重量
%(以下%と略す)以下の割合で含有してなる塩
化ビニルとの共重合体、更にはエチレン・酢酸ビ
ニル共重合体、塩素化ポリエチレン、熱可塑ポリ
ウレンに塩化ビニルを付加した塩化ビニル・グラ
フト共重合体等がある。懸濁重合、乳化重合ある
いは塊状重合法のいずれの製造法であつてもよい
が本発明においては重合度が600〜1800の範囲の
PVCがよい。PVCの重合度が600未満の場合、組
成物の強度が低く、又粘着性が大きい、逆に1800
を越えるとTPU及びVEEとの相溶化が難しく、
不透明でフイツシユアイが多くなる。 (B)成分のTPUとしては、ポリヒドロキシル化
合物とポリイソシアネート化合物との反応物とし
て得られたものである。その際ポリイソシアネー
トは、脂肪族及び芳香族イソシアネートの任意の
種類でよいが例えば1,4−テトラメチレンジイ
ソシアネート、1,6−ヘキサメチレンジイソシ
アネート、4,4′−ジフエニルメタンジイソシア
ネートなどが挙げられる。 ポリヒドロキシ化合物としては、例えばヘキサ
ヒドロテレフタル酸、フタル酸、イソフタル酸、
テレフタル酸、アジピン酸、アゼライン酸、セバ
チン酸などの芳香族及び脂肪族ジカルボン酸及び
これらの酸エステル、酸ハライドと1,4−ブタ
ンジオール、1,6−ヘキサンジオール、1,3
−プロピレンジオール、1,3−ブチレンジオー
ル、ネオペンチルジオールなどの脂肪族ジオール
との縮合反応、又は、ε−カプロラクトン、γ−
ブチロラクトンなどの開環重合により得られるポ
リエステルジオールポリプロピレングライコー
ル、ポリテトラメチレングライコールなどのポリ
エーテルジオール及びポリカーボネートジオー
ル、ポリアミドポリエステルポリオール、ポリチ
オエーテルなどが挙げられる。鎖伸長剤として
は、例えばエチレングリコール、1,4−ブタン
ジオール、1,6−ヘキサンジオール、エタノー
ルアミン、エチレンジアミン、N−メチルジエタ
ノールアミンなどの多価アルコール類、アミン
類、アミノアルコール類又は水が用いられる。こ
のポリヒドロキシ化合物の分子量は、耐寒性及び
加工性の点から好ましくは1000〜5000、より好ま
しくは1000〜4000の比較的高分子量のものが良
く、又該TPUの溶融粘度は170℃で104〜106ポイ
ズ(高化式フローテスタにより測定)のものが良
い。 (C)成分の改質VEEとしては、ギ酸ビニル、酢
酸ビニル、バーサチツク酸ビニル等のビニルエス
テルとエチレンとの共重合体が挙げられる。好ま
しくは加工性、非粘着性、透明性などの点から
VEEの存在下、溶解度係数8.5〜15の極性ビニル
単量体を重合して得られるものである。該VEE
(C)は加工性、透明性、耐油性の点からSP値が8.5
〜15(特にビニルエステル量が40〜80%)好まし
くは8.7〜9.7の共重合体が好ましく、極性ビニル
単量体はSP値が8.5〜15であり、具体的には例え
ばエチルアクリレート、エチルアクリレート、メ
チルメタアクリレートなどのアクリル酸、メタア
クリル酸及びそのアルキルエステル、スチレン、
α−メチルスチレン等の芳香族ビニル等があり、
又これらのビニル単量体を1種以上混合して用い
てもよい。該単量体の添加量は改質VEE(C)の5
〜50%の範囲が好ましい。 上記改質VEEに対する数値の限定は軟質PVC
組成物の加工性、透明性、強度、耐油性、耐寒性
及び非粘着性などの物性のバランスから決つてく
るものであり、VEEのビニルエステル量が少く
なるとSP値が8.5未満に低下し、PVC組成物の加
工性、透明性、耐油性が悪くなり、ビニルエステ
ル量が多くなつてSP値が15よりも高くなると耐
寒性、加工性、非粘着性が悪くなる。 改質VEE(C)の添加量はPVC(A)とTPU(B)との合
計量100部に対して5〜50部が適当である。5部
より少ないと相溶化剤として効果がなく、50部よ
り多いと耐寒性、強度が悪くなる。改質VEE(C)
は溶液重合、懸濁重合、塊状重合等各種の重合法
が可能であるが組成物の強度や非粘着性の点から
高分子量化が可能な乳化重合が好ましい。 改質VEE(C)はVEEの存在下でビニル単量体を
重合することによつて得られる。重合方法として
は溶融状態、溶融状態での重合等一般的な手法を
用いることができるが例えば次のように行われ
る。 VEEラテツクスに懸濁重合に使用される分散
剤例えばポリビニルアルコール、ポリビニルピロ
リドン、メチルセルロースなどの有機分散剤、リ
ン酸カルシウム、炭酸カルシウム、酸化マグネシ
ウムなどの有機分散剤を添加した後、溶解度係数
8.5〜15の極性ビニル単量体を添加し、VEE粒子
に単量体を吸収させた後、昇温してラジカル開始
剤により重合を行う。重合温度は用いるラジカル
開始剤による異るが60〜130℃が一般的である。
生成した懸濁状態の改質VEE(C)を水より分離し、
洗浄・乾燥する。その際粘着防止剤を用いてもよ
い。例えばワツクス、シリコンオイル、シリカ、
炭酸カルシウム、酸化マグネシウム、ステアリン
酸カルシウム等有機・無機化合物があり、0.1〜
10部添加できる。又改質VEE(C)の溶融粘度は、
170℃で103〜105ポイズであることが望ましい。
尚、本発明の溶解度係数は、Encyclopedia of
Polymer Seience and Technlogy(Wiley−
Inter−Seience社発行)の記載に基づくものであ
る。又、多成分系ポリマーの溶解度係数は加生成
を仮定して算出した。 又本発明の主旨を損わない範囲で他のポリマー
可塑剤、液状可塑剤を併用してもよい。更に上記
以外に安定剤、充填剤、滑剤、着色剤、酸化防止
剤、紫外線吸収剤、難燃剤、架橋剤、なども適宜
必要に応じて添加できる。 本発明の組成物の成形は、通常のバンバリー、
ロール、押出加工、射出成形などで行われる。 〔発明の効果〕 本発明の軟質PVC系樹脂組成物は非移行性、
耐寒性、強度に優れるばかりでなく、従来の
PVCとTPUとの混合物或いは又本発明範囲外の
ポリマー併用では得られなかつた成形加工性に優
れフイツシユアイの発生が少なく、透明で、しか
も粘着性の少ない成形品を提供できるものであ
る。 以上により本発明の組成物で作られた成形品は
非移行性、耐寒性及び粘着性が問題となる機器内
配線用電線被覆材、消防ホース等として或いは又
透明性、非移行性及び粘着性が重視される精密機
器用包装材料、血液パツク、カテーテル、バンド
エイドなどの医用材料、など広い分野に応用でき
る。 〔実施例〕 次の本発明の特徴を更に明確にするため実施例
を挙げて具体的に説明する。なお参考例、実施
例、比較例中の部数及び%は全て重量基準であ
る。 参考例 1 VEEの製造 2オートクレーブにラウリル硫酸ソーダ5
部、メチルセルロース1.5部を溶解した蒸留水
805.5部を仕込み、更に酢酸ビニル500部、エチレ
ン560部(過剰率143%)を仕込み、10%過流酸カ
リウム水溶液20部を滴下しながら45℃で4時間反
応し、固形分875部のエチレン酢酸ビニル共重合
体を含むラテツクスを得た。塩化カルシウム水溶
液を添加して80℃で1時間熟成後ポリマーを水相
から分離した後50℃で20時間乾燥して830部の
VEE(樹脂と称す)を得た。VEEのSP値は8.74
(ビニルエステル量56%)であり、170℃の溶融粘
度は8.5×103ポイズであつた。 参考例2 改質VEEの製造 参考例1のエチレン酢酸ビニル共重合体ラテツ
クス(樹脂)445部(固形物200部)にリン酸カ
ルシウム4部及び蒸留水を添加して固形分が20%
の水性分散液とし、これにベンゾイルパーオキサ
イド1.0部を溶解させたメチルメタクリレート
(SP値9.4)50部を室温で添加し、撹拌しながら
1時間保ち、ビニル単量体をラテツクス粒子に吸
収させた。続いて75℃に昇温し4時間反応させ、
更に90℃に昇温し2時間保つた。 温度を下げて撹拌を停止したところ粒子径0.2
〜0.5mmのビーズ状の沈殿物が得られ、水洗乾燥
したところ238部改質VEE(C)(樹脂と称す)を
得た。改質VEE(C)のSP値は8.87であり、溶融粘
度は170℃で1.5×104ポイズであつた。 参考例 3 改質VEEの製造 参考例2においてメチルメタクリレート50部の
代りにベンゾイルパーオキサイド0.8部を溶解さ
せたエチルアクリレート(SP値9.2)30部及びア
クリロニトリル(SP値15)10部とした以外は参
考例2と同様にして粒子径0.1〜0.3mmのビーズ状
沈殿物を得て水洗乾燥したところ225部の改質
VEE(樹脂と称す)を得た。改質VEEのSP値
は8.70であり、溶融粘度は170℃で1.1×104ポイズ
であつた。 参考例 4 改質VEEの製造 参考例2において酢酸ビニル・エチレン共重合
体の代りにバーサチツク酸ビニル・エチレン共重
合体(SP値8.6、溶融粘度3.8×103ポイズ)を使
用し、又メチルメタクリレートの代りにメチルア
クリレート(SP値9.7を使用した以外は参考例2
と同様にして241部の改質VEE(樹脂と称す)
を得た。改質VEEのSP値は8.82であり、溶融粘
度は170℃で9.1×103ポイズであつた。 参考例 5 市販品である酢酸ビニル含量28%、メルトイン
デツクス15のエチレン酢酸ビニル共重合体(SP
値8.3、樹脂と称す)を用いた。 実施例 1 重合度1100のPVC100部、分子量2000のブタン
ジオール・アジピン酸ポリエステルジオールと
1,4−ブタンジオール及びヘキサメチレンジイ
ソシアネートとをモル比で1:3:1に反応させ
て得られた170℃での溶融粘度が7.5×105ポイズ
のTPU40部及び樹脂30部、更に脂肪酸金属塩
系安定剤(グレツクMP−568C;大日本インキ化
学(株)製)3部を6インチミキシングロール用いて
180℃で10分間混練した。 ロール混練の際加工性として次の項目について
評価した。 (1) 混和性;試験配合物を6インチ二本ロールで
混練する際配合物が5分以内にロールに巻きつ
かせ、10分間で混練できたら実用上問題ないの
で合格とした。 (2) ロール粘着性;試験配合物を6インチ二本ロ
ールで混練する際配合物を全てロールに巻きつ
かせた後、ヘラにより剥離可能なら実用上問題
ないので合格とした。 (3) フイツシユアイ;混練シート(0.5mm厚)を
10×10cmに切取り、180℃で30分間ギヤーオー
ブン内で熱処理した後黒褐色化した斑点の数を
測定し、1個以下なら合格とした。 次いでプレス成形機を用いて180℃で100Kg/cm2
の圧力で5分間プレス成形し、1mm厚のシートを
得た。得られたシートにつき下記物性を評価し
た。 (1) 抗張力;JIS K−6723に準じて測定し、180
Kg/cm2以上あれば実用上問題ないので合格とし
た。 (2) 破断伸度;JIS K−6723に準じて測定し、
250%以上あれば実用上問題ないので合格とし
た。 (3) 耐油性;JIS K−6723に準じて測定し、70℃
×24時間の試験後の伸度残率が85%以上なら実
用上問題ないので合格とした。 (4) 透明性;ナトリウム光を用いて全光透過率を
測定し、60%以上なら実用上問題ないので合格
とした。 (5) 移行性;シートをポリスチレン板にはさみ、
70℃で0.5Kg/cm2の荷重をかけて24時間放置後
ポリスチレンへの移行物の有無を観察した。移
行の痕跡がないものを合格とした。 (6) 耐寒性;JIS K−6723に準じて測定し、−20
℃以下なら実用上問題ないので合格とした。 (7) 非粘着性;10×15cmの2枚のシートを貼合せ
た後、23℃で30Kg/cm2の圧力をかけて1分間プ
レスし、貼合せシートから2cm巾の短冊状試片
を作成した。得られた試片を引張速度500mm/
分の条件で180度剥離試験し、5Kg/2cm2以下
を合格とした。 (8) 耐熱性;JIS K−6723に準じて測定し、100
℃×120時間試験後の伸度残率が85%以上なら
実用上問題ないので合格とした。 実施例 2 実施例1において樹脂30部を50部とした以外
は実施例1と同様に行つたものを実施例2として
結果を表1に示す。 実施例 3 実施例2において樹脂の代りに樹脂とした
以外は実施例2同様に行つたものを実施例3とし
て結果を表1に示す。 実施例 4 実施例2において樹脂の代りに樹脂とした
以外は実施例2と同様に行つたものを実施例4と
して結果を表1に示す。 実施例 5 実施例2において用いたTPUの代りに分子量
1000のポリテトラメチレングライコールと1,4
ブタンジオール及び4,4′−ジフエニルメタンジ
イソシアネートとをモル比で1:3:1に反応さ
せて得られた170℃での溶融粘度が6.5×105ポイ
ズのTPU70部とした以外は実施例2と同様に行
つたものを実施例5として結果を表1に示す。 比較例 1 実施例2においてTPU及び樹脂の代りにジ
オクチルフタレート40部とした以外は実施例2と
同様に行つたものを比較例1として結果を表1に
示す。 比較例 2 実施例2において樹脂50部を除いた以外は実
施例2と同様に行つたものを比較例2として結果
を表1に示す。 比較例 3 実施例2において用いたTPUの代りに分子量
2000のブタンジオール−アジピン酸ポリエステル
とヘキサメチレンジイソシアネートをモル比で
1:1に反応させて得られた170℃での溶融粘度
が1.5×103ポイズのTPUを用いて又樹脂50部を
除いた以外は実施例2と同様に行つたものを比較
例3として結果を表1に示す。 比較例 4 実施例1において用いたTPU40部を除き、又
樹脂30部を樹脂85部とした以外は実施例1と
同様に行つたものを比較例4として結果を表1に
示す。 比較例 5 実施例2において樹脂50部の代りに樹脂50
部とした以外は実施例2と同様に行つたものを比
較例5として結果を表1に示す。 比較例 6 実施例2において用いたTPUの代りに分子量
2000のブタンジオール・アジピン酸ポリエステル
と1,4ブタンジオール及び4,4′−ジフエニル
メタンジイソシアネートとをモル比で1:4:1
に反応させて得られた170℃での溶融粘度が2.5×
107ポイズのTPU70部を用いて又樹脂50部を除
いた以外は実施例2と同様に行つたものを比較例
6として結果を表1に示す。
[Industrial Application Field] The present invention relates to a soft polyvinyl chloride resin (abbreviated as PVC) composition, and in particular, it relates to a soft polyvinyl chloride resin (abbreviated as PVC) composition, and in particular, it has properties such as processability, non-migration property, cold resistance, blocking property, etc. made of a mixture of PVC and polyurethane. This invention relates to a soft PVC composition with excellent properties. [Prior art and its problems] PVC is dioctyl phthalate (abbreviated as DOP)
Soft PVC compositions plasticized with various liquid plasticizers, including phthalate ester derivatives, are widely used as general-purpose plastics that are easy to process, such as wire covering materials, packaging materials, leather, tubes, etc. However, soft PVC is used in wire sheathing materials for precision equipment, leather for camera cases, food hoses, etc.
When using liquid plasticizers, the liquid plasticizer migrated or evaporated, reducing the performance of electronic components and fogging camera lenses. Therefore, there has been a desire for a non-volatile, non-migratory soft PVC composition that does not contain a liquid plasticizer while retaining the processability of PVC. Therefore, in order to create a non-volatile, non-migrating soft PVC composition, we used acrylonitrile-butadiene rubber, chlorinated polyethylene, ethylene-
Attempts have been made to apply vinyl acetate copolymer (abbreviated as EVA), thermoplastic polyurethane (abbreviated as TPU), etc. Blends with TPU are excellent for things that require oil resistance and cold resistance, such as electric wire covering materials and medical materials, and have been put into practical use (Special Publication No. 36896/1983). However, a transparent sheet made by blending low molecular weight TPU with PVC, which has a relatively low melt viscosity among TPUs, not only has poor processability because it sticks to the molding machine such as the roll surface during kneading, but also has poor processability. The product sheet was sticky and would stick if you stacked the sheets, etc., and the sheet would break if you tried to force it off. On the other hand, when high molecular weight TPU with relatively high melt viscosity is used and blended with PVC, the temperature range where PVC decomposition does not occur is
Because TPU is difficult to melt, it is not possible to obtain a molded product sheet that is compatible with the TPU, and even if it is forcibly molded, only a cloudy sheet with many fish eyes can be obtained. Graft polymerization has also been carried out by dissolving TPU in vinyl chloride monomer, but in this case as well,
Because TPU needs to be soluble in the vinyl chloride monomer, low molecular weight TPU is used, resulting in the same drawbacks as when blending TPU with low melt viscosity described above. [Means for Solving the Problems] Under such circumstances, the present inventors conducted extensive research in order to obtain a soft PVC resin composition free from the above-mentioned drawbacks. (abbreviated as VEE), in particular with modified VEE obtained by polymerizing vinyl monomers with a solubility coefficient (abbreviated as SP value) of 8.5 to 15 in the presence of VEE. With this method, PVC, TPU, and modified VEE can be easily molded, and the resulting molded product sheet is non-migration, and transparent and flexible molded products with excellent cold resistance, oil resistance, and non-adhesion can be obtained. This discovery led to the present invention. That is, the present invention provides (A) polyvinyl chloride, (B) a polyhydroxy compound having a molecular weight of 1000 to 5000,
It is obtained from a polyisocyanate compound and a chain extender, and its melt viscosity is 10 4 to 10 6 at 170°C.
100 parts by weight of a polymer composition consisting of a thermoplastic polyurethane, and (C) 5 to 50 parts by weight of a modified vinyl ester/ethylene resin,
The resin (C) is a vinyl ester/ethylene copolymer
It is obtained by copolymerizing 5 to 50 parts by weight of a polar vinyl monomer selected from (meth)acrylic acid, its alkyl ester, and styrene into the copolymer in the presence of 100 parts by weight. (C-1), and its solubility coefficient is 8.5 to 15 (C-2)
The present invention provides a flexible polyvinyl chloride resin composition characterized by the following. Component (A) used in the present invention includes vinyl chloride homopolymers and vinyl esters such as vinyl acetate,
Vinyl chloride containing olefins such as ethylene, alkyl esters such as acrylic acid and methacrylic acid, and monomers copolymerizable with vinyl chloride such as vinylidene chloride in a proportion of 30% by weight or less (hereinafter abbreviated as %). In addition, there are copolymers of ethylene/vinyl acetate, chlorinated polyethylene, and vinyl chloride/graft copolymers in which vinyl chloride is added to thermoplastic polyurethane. Any production method such as suspension polymerization, emulsion polymerization or bulk polymerization may be used, but in the present invention, polymerization with a degree of polymerization in the range of 600 to 1800 is used.
PVC is better. If the polymerization degree of PVC is less than 600, the strength of the composition will be low and the adhesiveness will be high;
If it exceeds, it is difficult to make it compatible with TPU and VEE.
It is opaque and has many black eyes. The TPU of component (B) is obtained as a reaction product of a polyhydroxyl compound and a polyisocyanate compound. The polyisocyanate may be any type of aliphatic and aromatic isocyanate, such as 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and the like. Examples of polyhydroxy compounds include hexahydroterephthalic acid, phthalic acid, isophthalic acid,
Aromatic and aliphatic dicarboxylic acids such as terephthalic acid, adipic acid, azelaic acid, sebacic acid and their acid esters, acid halides and 1,4-butanediol, 1,6-hexanediol, 1,3
- Condensation reaction with aliphatic diols such as propylene diol, 1,3-butylene diol, neopentyl diol, or ε-caprolactone, γ-
Examples include polyester diols obtained by ring-opening polymerization of butyrolactone, polyether diols such as polypropylene glycol, polytetramethylene glycol, polycarbonate diols, polyamide polyester polyols, polythioethers, and the like. As the chain extender, for example, polyhydric alcohols such as ethylene glycol, 1,4-butanediol, 1,6-hexanediol, ethanolamine, ethylenediamine, N-methyldiethanolamine, amines, amino alcohols, or water are used. It will be done. The polyhydroxy compound preferably has a relatively high molecular weight of 1000 to 5000, more preferably 1000 to 4000, from the viewpoint of cold resistance and processability, and the melt viscosity of the TPU is 10 4 at 170°C. ~10 6 poise (measured with Koka type flow tester) is good. Examples of the modified VEE of component (C) include copolymers of ethylene and vinyl esters such as vinyl formate, vinyl acetate, and vinyl versatate. Preferably from the viewpoint of processability, non-stickiness, transparency, etc.
It is obtained by polymerizing polar vinyl monomers with a solubility coefficient of 8.5 to 15 in the presence of VEE. Applicable VEE
(C) has an SP value of 8.5 in terms of workability, transparency, and oil resistance.
~15 (in particular, the amount of vinyl ester is 40 to 80%), preferably a copolymer of 8.7 to 9.7, and the polar vinyl monomer has an SP value of 8.5 to 15, specifically, for example, ethyl acrylate, ethyl acrylate , acrylic acid such as methyl methacrylate, methacrylic acid and its alkyl esters, styrene,
There are aromatic vinyls such as α-methylstyrene, etc.
Also, one or more of these vinyl monomers may be used in combination. The amount of the monomer added is 5% of the modified VEE (C).
A range of ~50% is preferred. The numerical limitations for the modified VEE above are for soft PVC
It is determined by the balance of physical properties such as processability, transparency, strength, oil resistance, cold resistance, and non-adhesiveness of the composition, and as the amount of vinyl ester in VEE decreases, the SP value decreases to less than 8.5. Processability, transparency, and oil resistance of the PVC composition deteriorate, and when the amount of vinyl ester increases and the SP value becomes higher than 15, cold resistance, processability, and non-stick properties deteriorate. The appropriate amount of modified VEE (C) to be added is 5 to 50 parts per 100 parts of the total amount of PVC (A) and TPU (B). If it is less than 5 parts, it will not be effective as a compatibilizer, and if it is more than 50 parts, cold resistance and strength will deteriorate. Modified VEE(C)
Although various polymerization methods such as solution polymerization, suspension polymerization, and bulk polymerization are possible, emulsion polymerization is preferred because it can increase the molecular weight of the composition from the viewpoint of strength and non-adhesiveness. Modified VEE (C) is obtained by polymerizing vinyl monomers in the presence of VEE. As the polymerization method, general methods such as polymerization in a molten state or in a molten state can be used, and for example, it is carried out as follows. After adding dispersants used in suspension polymerization to VEE latex, such as organic dispersants such as polyvinyl alcohol, polyvinylpyrrolidone, and methylcellulose, and organic dispersants such as calcium phosphate, calcium carbonate, and magnesium oxide, the solubility coefficient
After adding a polar vinyl monomer of 8.5 to 15 and allowing the VEE particles to absorb the monomer, the temperature is raised and polymerization is performed using a radical initiator. The polymerization temperature varies depending on the radical initiator used, but is generally 60 to 130°C.
Separate the generated suspended modified VEE (C) from water,
Wash and dry. In this case, an anti-blocking agent may be used. For example, wax, silicone oil, silica,
There are organic and inorganic compounds such as calcium carbonate, magnesium oxide, and calcium stearate.
10 parts can be added. In addition, the melt viscosity of modified VEE (C) is
It is desirable that the temperature is 10 3 to 10 5 poise at 170°C.
In addition, the solubility coefficient of the present invention is based on the Encyclopedia of
Polymer Science and Technology (Wiley-
(Published by Inter-Seience). In addition, the solubility coefficient of the multicomponent polymer was calculated assuming additive formation. Further, other polymer plasticizers and liquid plasticizers may be used in combination without departing from the spirit of the present invention. Furthermore, in addition to the above, stabilizers, fillers, lubricants, colorants, antioxidants, ultraviolet absorbers, flame retardants, crosslinking agents, and the like may be added as appropriate and necessary. The composition of the present invention can be molded using conventional Banbury,
This is done by rolling, extrusion, injection molding, etc. [Effects of the invention] The flexible PVC resin composition of the present invention has non-migration,
Not only is it excellent in cold resistance and strength, but it is also superior to conventional
It is possible to provide a molded product that is excellent in moldability, has less fish eyes, is transparent, and has less stickiness, which could not be obtained with a mixture of PVC and TPU or a combination of polymers outside the scope of the present invention. As described above, molded products made from the composition of the present invention can be used as wire coating materials for internal wiring, fire hoses, etc. where non-migration, cold resistance and adhesiveness are problems, or can be used as transparency, non-migration and adhesiveness. It can be applied to a wide range of fields, including packaging materials for precision equipment where safety is important, and medical materials such as blood packs, catheters, and Band-Aids. [Example] In order to further clarify the following characteristics of the present invention, the present invention will be specifically explained by giving examples. Note that all parts and percentages in Reference Examples, Examples, and Comparative Examples are based on weight. Reference example 1 Production of VEE 2 Sodium lauryl sulfate in autoclave 5
1.5 parts of methylcellulose dissolved in distilled water
Further, 500 parts of vinyl acetate and 560 parts of ethylene (excess rate 143%) were added, and 20 parts of a 10% potassium persulfate aqueous solution was added dropwise to react at 45°C for 4 hours to produce ethylene with a solid content of 875 parts. A latex containing a vinyl acetate copolymer was obtained. After adding an aqueous calcium chloride solution and aging at 80°C for 1 hour, the polymer was separated from the aqueous phase and dried at 50°C for 20 hours to give 830 parts.
VEE (referred to as resin) was obtained. VEE's SP value is 8.74
(vinyl ester amount: 56%), and the melt viscosity at 170°C was 8.5×10 3 poise. Reference Example 2 Production of modified VEE 4 parts of calcium phosphate and distilled water were added to 445 parts (200 parts of solids) of the ethylene vinyl acetate copolymer latex (resin) of Reference Example 1 to make the solid content 20%.
To this aqueous dispersion was added 50 parts of methyl methacrylate (SP value 9.4) in which 1.0 part of benzoyl peroxide was dissolved at room temperature, and the mixture was kept under stirring for 1 hour to allow the vinyl monomer to be absorbed into the latex particles. . Subsequently, the temperature was raised to 75°C and reacted for 4 hours.
The temperature was further raised to 90°C and kept for 2 hours. When the temperature was lowered and stirring was stopped, the particle size was 0.2.
A bead-like precipitate of ~0.5 mm was obtained, which was washed with water and dried to obtain 238 parts of modified VEE (C) (referred to as resin). The SP value of modified VEE (C) was 8.87, and the melt viscosity was 1.5×10 4 poise at 170°C. Reference Example 3 Production of modified VEE Except for Reference Example 2, 50 parts of methyl methacrylate was replaced with 30 parts of ethyl acrylate (SP value 9.2) in which 0.8 parts of benzoyl peroxide was dissolved and 10 parts of acrylonitrile (SP value 15). Bead-like precipitates with a particle size of 0.1 to 0.3 mm were obtained in the same manner as in Reference Example 2, washed with water and dried, resulting in 225 parts of modified
VEE (referred to as resin) was obtained. The modified VEE had an SP value of 8.70 and a melt viscosity of 1.1×10 4 poise at 170°C. Reference Example 4 Production of modified VEE In Reference Example 2, vinyl versatate/ethylene copolymer (SP value 8.6, melt viscosity 3.8×10 3 poise) was used instead of vinyl acetate/ethylene copolymer, and methyl methacrylate was used instead of vinyl acetate/ethylene copolymer. Reference example 2 except that methyl acrylate (SP value 9.7 was used instead of
Similarly, 241 parts of modified VEE (referred to as resin)
I got it. The modified VEE had an SP value of 8.82 and a melt viscosity of 9.1×10 3 poise at 170°C. Reference Example 5 Commercially available ethylene vinyl acetate copolymer (SP) with a vinyl acetate content of 28% and a melt index of 15.
value 8.3, referred to as resin) was used. Example 1 170°C obtained by reacting 100 parts of PVC with a degree of polymerization of 1100, butanediol/adipate polyester diol with a molecular weight of 2000, and 1,4-butanediol and hexamethylene diisocyanate in a molar ratio of 1:3:1. Using a 6-inch mixing roll, 40 parts of TPU with a melt viscosity of 7.5 x 10 5 poise, 30 parts of resin, and 3 parts of a fatty acid metal salt stabilizer (Gretsu MP-568C; manufactured by Dainippon Ink Chemical Co., Ltd.) were added.
The mixture was kneaded at 180°C for 10 minutes. The following items were evaluated as workability during roll kneading. (1) Miscibility: When the test compound was kneaded with two 6-inch rolls, if the compound could be wrapped around the rolls within 5 minutes and kneaded in 10 minutes, there would be no practical problem and the test was passed. (2) Roll tackiness: When kneading the test compound with two 6-inch rolls, if the compound can be peeled off with a spatula after being wrapped around the rolls, there is no practical problem, so it was passed. (3) Kneading sheet (0.5mm thick)
It was cut into 10 x 10 cm pieces, heat-treated in a gear oven at 180°C for 30 minutes, and then the number of dark brown spots was measured, and if it was less than 1, it was considered to have passed. Then, using a press molding machine at 180℃, 100Kg/cm 2
Press molding was carried out for 5 minutes at a pressure of 1 mm to obtain a sheet with a thickness of 1 mm. The following physical properties of the obtained sheet were evaluated. (1) Tensile strength: Measured according to JIS K-6723, 180
If Kg/cm 2 or more, there is no practical problem, so it was passed. (2) Elongation at break: Measured according to JIS K-6723,
If it is 250% or higher, there is no practical problem, so it was considered a pass. (3) Oil resistance; measured according to JIS K-6723, 70℃
If the residual elongation after the 24-hour test is 85% or more, there is no practical problem, so the test was considered to have passed. (4) Transparency: The total light transmittance was measured using sodium light, and if it was 60% or more, there would be no practical problem, so it was passed. (5) Migration; sandwich the sheet between polystyrene plates,
After being left at 70°C for 24 hours under a load of 0.5 kg/cm 2 , the presence or absence of substances transferred to polystyrene was observed. Those with no traces of migration were considered to have passed. (6) Cold resistance: -20 measured according to JIS K-6723
If the temperature is below ℃, there is no practical problem, so it was passed. (7) Non-adhesive: After laminating two sheets of 10 x 15 cm, press at 23℃ for 1 minute with a pressure of 30 kg/cm 2 , and cut a 2 cm wide strip-shaped specimen from the laminated sheet. Created. The obtained specimen was pulled at a speed of 500mm/
A 180 degree peel test was carried out under the conditions of 5 kg/2 cm 2 or less, and a value of 5 kg/2 cm 2 or less was considered to be a pass. (8) Heat resistance; measured according to JIS K-6723, 100
If the residual elongation after the 120-hour test at ℃ is 85% or more, there is no problem in practical use, so the test was passed. Example 2 Example 2 was conducted in the same manner as Example 1, except that 50 parts of the resin was changed from 30 parts in Example 1. The results are shown in Table 1. Example 3 Example 3 was conducted in the same manner as Example 2 except that resin was used instead of resin in Example 2, and the results are shown in Table 1. Example 4 Example 4 was conducted in the same manner as Example 2 except that resin was used instead of resin in Example 2, and the results are shown in Table 1. Example 5 Molecular weight instead of TPU used in Example 2
1000 polytetramethylene glycol and 1,4
Examples except that 70 parts of TPU with a melt viscosity at 170°C of 6.5×10 5 poise was obtained by reacting butanediol and 4,4′-diphenylmethane diisocyanate in a molar ratio of 1:3:1. Example 5 was carried out in the same manner as in Example 2, and the results are shown in Table 1. Comparative Example 1 Comparative Example 1 was carried out in the same manner as Example 2 except that 40 parts of dioctyl phthalate was used instead of TPU and resin. The results are shown in Table 1. Comparative Example 2 Comparative Example 2 was prepared in the same manner as in Example 2 except that 50 parts of the resin was removed, and the results are shown in Table 1. Comparative Example 3 Molecular weight instead of TPU used in Example 2
2000 butanediol-adipate polyester and hexamethylene diisocyanate were reacted in a molar ratio of 1:1 using TPU with a melt viscosity of 1.5 x 103 poise at 170°C, and 50 parts of the resin was removed. Comparative Example 3 was carried out in the same manner as in Example 2 except for this, and the results are shown in Table 1. Comparative Example 4 Comparative Example 4 was carried out in the same manner as Example 1 except that 40 parts of TPU used in Example 1 was used and 85 parts of resin was used instead of 30 parts of resin. The results are shown in Table 1. Comparative Example 5 50 parts of resin was used instead of 50 parts of resin in Example 2.
The results are shown in Table 1 as Comparative Example 5, which was carried out in the same manner as in Example 2 except that Comparative Example 6 Molecular weight instead of TPU used in Example 2
2000 butanediol/adipate polyester and 1,4 butanediol and 4,4'-diphenylmethane diisocyanate in a molar ratio of 1:4:1.
The melt viscosity at 170℃ obtained by reacting with
Comparative Example 6 was prepared in the same manner as in Example 2, except that 70 parts of 107 poise TPU was used and 50 parts of the resin was removed. The results are shown in Table 1.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) ポリ塩化ビニル、 (B) 分子量1000〜5000のポリヒドロキシ化合物、
ポリイソシアネート化合物及び鎖伸長剤とから
得られるもので、その溶融粘度が170℃で104
106ポイズである熱可塑性ポリウレタン、 とからなるポリマー組成物100重量部と、 (C) C改質ビニルエステル・エチレン系樹脂5〜
50重量部とからなり、 該樹脂(C)がビニルエステル・エチレン共重合体
100重量部の存在下で、(メタ)アクリル酸及びそ
のアルキルエステル、スチレンから選ばれる極性
ビニル単量体5〜50重量部を該共重合体に共重合
することによつて得られたもので(C−1)、し
かもその溶解度係数が8.5〜15である(C−2) ことを特徴とする軟質ポリ塩化ビニル系樹脂組成
物。 2 ポリ塩化ビニル(A)が、30重量%以下の共重合
成分を含有してなり、重合度600〜1800であるこ
とを特徴とする特許請求の範囲第1項記載の組成
物。 3 改質ビニルエステル・エチレン系樹脂(C)が、
170℃で溶融粘度103〜105ポイズであることを特
徴とする特許請求の範囲第1項記載の組成物。
[Claims] 1 (A) polyvinyl chloride, (B) a polyhydroxy compound with a molecular weight of 1000 to 5000,
It is obtained from a polyisocyanate compound and a chain extender, and its melt viscosity is 10 4 to 170°C.
100 parts by weight of a polymer composition consisting of a thermoplastic polyurethane having a molecular weight of 10 6 poise, and (C) 5 to 5 parts of a C-modified vinyl ester/ethylene resin.
50 parts by weight, and the resin (C) is a vinyl ester/ethylene copolymer.
It is obtained by copolymerizing 5 to 50 parts by weight of a polar vinyl monomer selected from (meth)acrylic acid, its alkyl ester, and styrene into the copolymer in the presence of 100 parts by weight. (C-1) and (C-2) a soft polyvinyl chloride resin composition having a solubility coefficient of 8.5 to 15. 2. The composition according to claim 1, wherein the polyvinyl chloride (A) contains 30% by weight or less of a copolymer component and has a degree of polymerization of 600 to 1,800. 3 Modified vinyl ester/ethylene resin (C) is
The composition according to claim 1, which has a melt viscosity of 10 3 to 10 5 poise at 170°C.
JP61212397A 1986-09-09 1986-09-09 Non-rigid polyvinyl chloride resin composition Granted JPS6368654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212397A JPS6368654A (en) 1986-09-09 1986-09-09 Non-rigid polyvinyl chloride resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212397A JPS6368654A (en) 1986-09-09 1986-09-09 Non-rigid polyvinyl chloride resin composition

Publications (2)

Publication Number Publication Date
JPS6368654A JPS6368654A (en) 1988-03-28
JPH0513984B2 true JPH0513984B2 (en) 1993-02-23

Family

ID=16621908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212397A Granted JPS6368654A (en) 1986-09-09 1986-09-09 Non-rigid polyvinyl chloride resin composition

Country Status (1)

Country Link
JP (1) JPS6368654A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124773B2 (en) * 2019-03-20 2022-08-24 Mcppイノベーション合同会社 Resin composition for wire coating material and insulated wire
EP4320189A1 (en) * 2021-04-07 2024-02-14 Braskem S.A. Thermoplastic urethanes containing compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599942A (en) * 1979-01-23 1980-07-30 Shin Etsu Polymer Co Ltd Flame-retardant resin composition
JPS58162649A (en) * 1982-03-24 1983-09-27 Sumitomo Bakelite Co Ltd Vinyl chloride resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599942A (en) * 1979-01-23 1980-07-30 Shin Etsu Polymer Co Ltd Flame-retardant resin composition
JPS58162649A (en) * 1982-03-24 1983-09-27 Sumitomo Bakelite Co Ltd Vinyl chloride resin composition

Also Published As

Publication number Publication date
JPS6368654A (en) 1988-03-28

Similar Documents

Publication Publication Date Title
US4148846A (en) Acrylic modifiers for polycarbonamides
AU607077B2 (en) Thermoplastic resinous compositions
KR100967594B1 (en) Polymeric Films
JPH0513984B2 (en)
JPH0618967B2 (en) Soft polymer alloy
JPH0315648B2 (en)
JPH038386B2 (en)
WO2000036009A1 (en) POLY ε-CAPROLACTONE PLASTICIZERS AND VINYLIC POLYMER COMPOSITIONS PLASTIFIED THEREWITH
JPS58162649A (en) Vinyl chloride resin composition
JPH09100385A (en) Acrylic resin composition for calendering
US4871801A (en) Reactive polyvinyl chloride and polymer products made therefrom
JPS59182834A (en) Automobile part
JPS6162547A (en) Vinyl chloride resin composition and its production
JPH037704B2 (en)
GB2107326A (en) Soft thermoplastic resin and its production and use
JPH0229448A (en) Halogenated thermoplastic resin composition
JP4353790B2 (en) Thermoplastic polyurethane elastomer composition
JP3279729B2 (en) Thermoplastic urethane elastomer composition
JPS6323221B2 (en)
JPS6341558A (en) Resin composition
JPS59161418A (en) Preparation of thermoplastic resin
JP3091209B2 (en) PVC film
JPH0524921B2 (en)
JPS62257953A (en) Production of vinyl chloride resin composition
JPS5993712A (en) Flexible vinyl chloride resin material for medical use