JPH05139397A - Radiating structure of rotating shaft - Google Patents

Radiating structure of rotating shaft

Info

Publication number
JPH05139397A
JPH05139397A JP3307477A JP30747791A JPH05139397A JP H05139397 A JPH05139397 A JP H05139397A JP 3307477 A JP3307477 A JP 3307477A JP 30747791 A JP30747791 A JP 30747791A JP H05139397 A JPH05139397 A JP H05139397A
Authority
JP
Japan
Prior art keywords
rotating shaft
housing
heat
heat dissipation
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3307477A
Other languages
Japanese (ja)
Inventor
Hiroshi Tomita
博史 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3307477A priority Critical patent/JPH05139397A/en
Publication of JPH05139397A publication Critical patent/JPH05139397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To precisely support a rotating shaft without influence due to the variation of environmental temperature by uniforming a temperature difference between the rotating shaft and a housing. CONSTITUTION:Plural number of radiating plates 13 are provided at fixed intervals on the middle part of a rotating shaft 10, and plural number of radiating plates 14 severally provided face-to-face to the radiating plates 13 on the rotating shaft 10 are provided at fixed intervals in a housing 12 where the middle part of the rotating shaft 10 is rotatably accommodated through bearings 11. Thus mutual heat transfer among the above components is executed through the radiating action of the radiating plates 13, 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば人工衛星等の
宇宙航行体に搭載される太陽電池パドルの回転伝達機構
やアンテナ駆動装置等の真空環境に用いられる回転伝達
機構に係り、特に、その回転軸の放熱構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation transmission mechanism of a solar cell paddle mounted on a spacecraft such as an artificial satellite and a rotation transmission mechanism used in a vacuum environment such as an antenna driving device, The present invention relates to a heat dissipation structure for a rotating shaft.

【0002】[0002]

【従来の技術】一般に、この種の回転伝達機構は、図3
に示すように回転軸1の一端が図示しない駆動源に連結
され、他端が図示しない駆動対象に連結される。そし
て、この回転軸1の中間部は、軸受2を介してハウジン
グ3内に収容され、このハウジング3が真空環境である
宇宙環境にさらされる。回転軸1とハウジング3の間も
真空になる。
2. Description of the Related Art Generally, this type of rotation transmission mechanism is shown in FIG.
As shown in, one end of the rotary shaft 1 is connected to a drive source (not shown), and the other end is connected to a drive target (not shown). The intermediate portion of the rotary shaft 1 is housed in the housing 3 via the bearing 2, and the housing 3 is exposed to the space environment which is a vacuum environment. A vacuum is also created between the rotary shaft 1 and the housing 3.

【0003】ところが、上記回転伝達機構では、宇宙環
境にさらされるハウジング3が加熱あるいは冷却され
て、その周囲温度が大きく変化すると、地上環境と異な
り真空環境であることにより、空気による熱の伝達が困
難なために、ハウジング3と回転軸1との温度差が非常
に大きくなり、軸受2による高精度な支持が困難とな
る。
However, in the above rotation transmission mechanism, when the housing 3 exposed to the space environment is heated or cooled and its ambient temperature changes greatly, heat transfer by air due to the vacuum environment unlike the ground environment. Since it is difficult, the temperature difference between the housing 3 and the rotary shaft 1 becomes very large, and it becomes difficult to support the bearing 2 with high accuracy.

【0004】そこで、熱対策として、例えば軸受2を、
回転軸1が高温で、ハウジング3が低温となる場合を想
定して設計すると、相互の温度差が小さい時や、回転軸
1の温度が低い時に、軸受2の内部隙間が大きくなり、
高精度な支持が困難となる。このため、このような宇宙
環境で使用する回転伝達機構にあっては、その軸受2を
製作するのに、環境温度を考慮した熱設計が必要とな
り、その製作が非常に面倒なものとなっていた。さら
に、回転軸1とハウジング3の材料の熱膨脹率の違いに
よって複雑な変形が生じる。
Therefore, as a measure against heat, for example, the bearing 2 is
Designing assuming that the rotating shaft 1 is at high temperature and the housing 3 is at low temperature, the internal clearance of the bearing 2 becomes large when the temperature difference between them is small or when the temperature of the rotating shaft 1 is low.
High-precision support becomes difficult. Therefore, in the rotation transmission mechanism used in such a space environment, a thermal design considering the ambient temperature is required to manufacture the bearing 2, and the manufacturing thereof is very troublesome. It was Further, a complicated deformation occurs due to the difference in the coefficient of thermal expansion between the materials of the rotating shaft 1 and the housing 3.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、宇
宙用回転伝達機構にあっては、環境温度変化に影響を受
けないように設計しなければならないために、その製作
が非常に面倒であるという問題を有していた。
As described above, since the space rotation transmission mechanism must be designed so as not to be affected by the environmental temperature change, its manufacture is very troublesome. Had the problem of being.

【0006】この発明は上記の事情に鑑みてなされたも
ので、回転軸とハウジングとの温度差の均一化を図り、
回転軸の高精度な支持を実現し得るようにした回転軸の
放熱構造を提供することを目的とする。
The present invention has been made in view of the above circumstances, and aims to make the temperature difference between the rotary shaft and the housing uniform.
It is an object of the present invention to provide a heat dissipation structure for a rotating shaft that can realize highly accurate support of the rotating shaft.

【0007】[0007]

【課題を解決するための手段】この発明は、一端が駆動
源に連結され、他端が駆動対象に連結される中間部に複
数の放熱板が所定の間隔に設けられた回転軸と、この回
転軸の中間部が軸受を介して回転自在に収容されてなる
もので、内部に前記回転軸の放熱板に面対向に対設され
る複数の放熱板が所定の間隔に設けられた真空環境にさ
らされるハウジングとを備えて回転軸の放熱構造を構成
したものである。
SUMMARY OF THE INVENTION According to the present invention, there is provided a rotating shaft having a plurality of heat radiating plates provided at predetermined intervals in an intermediate portion of which one end is connected to a drive source and the other end is connected to a drive target. A vacuum environment in which a middle portion of a rotating shaft is rotatably accommodated through a bearing, and a plurality of heat radiating plates facing the heat radiating plate of the rotating shaft are provided inside at a predetermined interval. And a housing that is exposed to the heat radiation structure of the rotating shaft.

【0008】[0008]

【作用】上記構成によれば、回転軸とハウジングは、相
互の放熱板が対向されて十分な対向面積が確保されるこ
とにより、回転軸の回転にともなって、相互の放熱板の
放射作用により、熱量が高温側から低温側に熱伝達さ
れ、相互の温度差が均一化される。
According to the above construction, since the heat dissipation plates of the rotary shaft and the housing are opposed to each other to secure a sufficient facing area, the radiation effects of the heat dissipation plates are caused by the rotation of the rotary shaft. The amount of heat is transferred from the high temperature side to the low temperature side, and the mutual temperature difference is made uniform.

【0009】[0009]

【実施例】以下、この発明の実施例について、図面を参
照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】図1はこの発明の一実施例に係る回転軸の
放熱構造を示すもので、図中10は回転軸で、その一端
が図示しない駆動モータに連結され、その他端が図示し
ないアンテナ駆動機構等の駆動対象に連結される。回転
軸の中間部は軸受11を介してハウジング12内に収容
される。回転軸10には複数のリング状の放熱板13
が、回転軸10の軸方向に対して所定の間隔を有して略
直交するように立設されて固着される。
FIG. 1 shows a heat dissipating structure for a rotary shaft according to an embodiment of the present invention. In the figure, 10 is a rotary shaft, one end of which is connected to a drive motor (not shown) and the other end of which is an antenna drive (not shown). It is connected to a drive target such as a mechanism. The intermediate portion of the rotating shaft is housed in the housing 12 via the bearing 11. The rotary shaft 10 has a plurality of ring-shaped heat dissipation plates 13
, Are erected and fixed so as to be substantially orthogonal to the axial direction of the rotating shaft 10 with a predetermined interval.

【0011】上記ハウジング12内にはリング状の複数
の放熱板14が回転軸10の放熱板13に対向して所定
の間隔を有して固着される。これら複数の放熱板14は
回転軸10の放熱板13間にそれぞれ介在され、該回転
軸10の放熱板13に面対向に対設される。
A plurality of ring-shaped heat dissipation plates 14 are fixed in the housing 12 so as to face the heat dissipation plates 13 of the rotary shaft 10 at predetermined intervals. The plurality of heat radiating plates 14 are respectively interposed between the heat radiating plates 13 of the rotary shaft 10 and face the heat radiating plate 13 of the rotary shaft 10 so as to face each other.

【0012】上記構成において、回転軸10及びハウジ
ング12の熱量は、相互の放熱板13,14が面対向に
対設されていることにより、回転軸10の回転に影響を
与えることなく、相互の放熱板13,14の放射作用に
より、高温側から低温側に熱伝達される。これにより、
回転軸10及びハウジング12は、相互の温度差が均一
化される。
In the above structure, the heat amounts of the rotating shaft 10 and the housing 12 are mutually opposed without affecting the rotation of the rotating shaft 10 because the heat radiating plates 13 and 14 are opposed to each other. Heat is transferred from the high temperature side to the low temperature side by the radiation effect of the heat dissipation plates 13 and 14. This allows
The rotating shaft 10 and the housing 12 have a uniform temperature difference.

【0013】また、上記回転軸10及びハウジング12
は各放熱板13,14に黒色塗装を施すことにより、そ
の放射率及び吸収率の向上が図れて、放射特性が向上さ
れ、さらに良好な放射特性を得ることが可能となる。
Further, the rotating shaft 10 and the housing 12
By applying black coating to each of the heat dissipation plates 13 and 14, the emissivity and absorptivity of the heat dissipation plates 13 and 14 can be improved, the emission characteristics can be improved, and more excellent emission characteristics can be obtained.

【0014】このように、上記回転軸の放熱構造は、回
転軸10の中間部に複数の放熱板13を所定の間隔に設
け、この回転軸10の中間部が軸受11を介して回転自
在に収容されるハウジング12内に回転軸10の放熱板
13に面対向に対設される複数の放熱板14を所定の間
隔に設けることにより、これら放熱板13,14の放射
作用により相互間の熱伝達を行うように構成した。これ
によれば、回転軸10及びハウジング12は、相互の放
熱板13,14が対向されて十分な対向面積が確保され
ることにより、相互の放熱板13,14の放射作用によ
り、熱量が高温側から低温側に熱伝達され、相互の温度
差が均一化されるため、軸受11の内部隙間を最小限ま
で狭くすることが可能となることにより、回転伝達機構
の高精度化が容易に図れる。
As described above, in the heat dissipation structure of the rotating shaft, the plurality of heat dissipation plates 13 are provided in the intermediate part of the rotating shaft 10 at predetermined intervals, and the intermediate part of the rotating shaft 10 is rotatable via the bearing 11. By disposing a plurality of heat radiating plates 14 facing the heat radiating plate 13 of the rotary shaft 10 in the housing 12 to be opposed to each other at a predetermined interval, the heat radiating action of these heat radiating plates 13 and 14 causes heat between the heat radiating plates 13 and 14. It is configured to communicate. According to this, the rotating shaft 10 and the housing 12 have a high amount of heat due to the radiation action of the heat sinks 13 and 14 because the heat sinks 13 and 14 face each other and a sufficient facing area is secured. Since the heat is transferred from the side to the low temperature side and the mutual temperature difference is made uniform, the internal clearance of the bearing 11 can be narrowed to the minimum, so that the precision of the rotation transmitting mechanism can be easily improved. ..

【0015】なお、この発明は上記実施例に限ることな
く、例えば図2に示すように構成しても良い。すなわ
ち、回転軸10aには支持金具15が軸方向と略直交す
る方向に立設して固着し、この支持金具15に略筒状を
した異径の複数の放熱板13aを軸方向と同心状に固着
する。そして、ハウジング12aには同様に略筒状をし
た異径の複数の放射板14aを回転軸10aの放熱板1
3aと面対向に対設するように軸方向と同心状に固着す
る。これにより、上記実施例と略同様に放熱板13a,
14a間の放射作用により、回転軸10aの回転駆動に
ともなって、回転軸10a及びハウジング12aの熱量
は、高温側から低温側に熱伝達が行われて温度差の均一
化が実現される。なお、この図2においても、回転軸1
0a及びハウジング12aの各放熱板13a,14aを
黒色塗装することにより、さらに放射特性の向上が図れ
て、良好か効果が期待される。よって、この発明は上記
実施例に限ることなく、その他、この発明の要旨を逸脱
しない範囲で種々の変形を実施し得ることは勿論のこと
である。
The present invention is not limited to the above embodiment, but may be constructed as shown in FIG. 2, for example. That is, the support fitting 15 is erected and fixed to the rotating shaft 10a in a direction substantially orthogonal to the axial direction, and a plurality of substantially cylindrical heat dissipation plates 13a having different diameters are concentric with the axial direction. Stick to. The housing 12a is also provided with a plurality of radiation plates 14a each having a substantially cylindrical shape and having different diameters.
3a is fixed concentrically with the axial direction so as to be opposed to 3a. As a result, the heat dissipation plate 13a,
Due to the radiation action between the rotating shafts 14a, the amount of heat of the rotating shaft 10a and the housing 12a is transferred from the high temperature side to the low temperature side with the rotational driving of the rotating shaft 10a, and the temperature difference is made uniform. In addition, also in FIG. 2, the rotary shaft 1
0a and the heat radiating plates 13a and 14a of the housing 12a are painted in black, the radiation characteristics can be further improved, and good or good effects are expected. Therefore, it is needless to say that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

【0016】[0016]

【発明の効果】以上詳述したように、この発明によれ
ば、回転軸とハウジングとの温度差の均一化を図り、回
転軸の高精度な支持を実現し得るようにした回転軸の放
熱構造を提供することができる。
As described above in detail, according to the present invention, the temperature difference between the rotating shaft and the housing is made uniform, and the rotating shaft is radiated in a highly accurate manner. A structure can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る回転軸の放熱構造を
示した図。
FIG. 1 is a diagram showing a heat dissipation structure of a rotating shaft according to an embodiment of the present invention.

【図2】この発明の他の実施例を示した図。FIG. 2 is a diagram showing another embodiment of the present invention.

【図3】従来の問題点を説明するために示した図。FIG. 3 is a diagram shown for explaining a conventional problem.

【符号の説明】[Explanation of symbols]

10,10a…回転軸、11,11a…軸受、12,1
2a…ハウジング、13,13a…放熱板、14,14
a…放熱板、15…支持金具。
10, 10a ... Rotating shaft, 11, 11a ... Bearing, 12, 1
2a ... Housing, 13, 13a ... Heat sink, 14, 14
a ... heat sink, 15 ... support metal fittings.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一端が駆動源に連結され、他端が駆動対
象に連結される中間部に複数の放熱板が所定の間隔に設
けられた回転軸と、 この回転軸の中間部が軸受を介して回転自在に収容され
てなるもので、内部に前記回転軸の放熱板に面対向に対
設される複数の放熱板が所定の間隔に設けられた真空環
境にさらされるハウジングとを具備したことを特徴とす
る回転軸の放熱構造。
1. A rotating shaft having a plurality of heat radiating plates provided at predetermined intervals in an intermediate part of which one end is connected to a drive source and the other end is connected to a driven object, and an intermediate part of the rotating shaft forms a bearing. The housing is rotatably accommodated through the inside of the housing and is provided with a housing which is exposed to a vacuum environment in which a plurality of heat radiation plates opposed to the heat radiation plate of the rotating shaft are provided at predetermined intervals. The heat dissipation structure of the rotating shaft.
【請求項2】 前記回転軸の放熱板及びハウジングの放
熱板はそれぞれ黒色塗装が施されてなることを特徴とす
る請求項1記載の回転軸の放熱構造。
2. The heat dissipation structure for a rotary shaft according to claim 1, wherein the heat dissipation plate for the rotary shaft and the heat dissipation plate for the housing are each painted black.
JP3307477A 1991-11-22 1991-11-22 Radiating structure of rotating shaft Pending JPH05139397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3307477A JPH05139397A (en) 1991-11-22 1991-11-22 Radiating structure of rotating shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3307477A JPH05139397A (en) 1991-11-22 1991-11-22 Radiating structure of rotating shaft

Publications (1)

Publication Number Publication Date
JPH05139397A true JPH05139397A (en) 1993-06-08

Family

ID=17969554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3307477A Pending JPH05139397A (en) 1991-11-22 1991-11-22 Radiating structure of rotating shaft

Country Status (1)

Country Link
JP (1) JPH05139397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539723A (en) * 2015-06-25 2016-12-28 Airspan Networks Inc A rotable antenna apparatus
US10028154B2 (en) 2015-06-25 2018-07-17 Airspan Networks Inc. Rotatable antenna apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539723A (en) * 2015-06-25 2016-12-28 Airspan Networks Inc A rotable antenna apparatus
US10028154B2 (en) 2015-06-25 2018-07-17 Airspan Networks Inc. Rotatable antenna apparatus
US10448264B2 (en) 2015-06-25 2019-10-15 Airspan Networks Inc. Rotatable antenna apparatus

Similar Documents

Publication Publication Date Title
US3749156A (en) Thermal control system for a spacecraft modular housing
Stephens et al. Spatially resolved magnetic field structure in the disk of a T Tauri star
JP4357780B2 (en) Phase change material and method and apparatus for cooling with heat pipe
Fang et al. Total solar irradiance monitor for Chinese FY-3A and FY-3B satellites–instrument design
CN111367330B (en) Airborne precision measurement instrument temperature control device based on heat pipe heat dissipation
JPH05139397A (en) Radiating structure of rotating shaft
Bicknell et al. EO-1 advanced land imager
US3205937A (en) Control of effective emissivity and absorptivity
US3515594A (en) Radiant energy driven orientation system
Pagano et al. CubeSat infrared atmospheric sounder technology development status
Walker et al. Demonstration of 220/280 GHz multichroic feedhorn-coupled TES polarimeter
Simon et al. The advanced actpol 27/39 ghz array
US5148860A (en) Thermal control apparatus for satellites and other spacecraft
US4175835A (en) Floating head laser mirror assembly
JPH10243609A (en) Cooling equipment for motor for vacuum
Gupta et al. IUCAA 2 meter telescope and its first light instrument IFOSC
Staguhn et al. Far-infrared imager and polarimeter for the Origins Space Telescope
Harford et al. Infrared Risley beam pointer
Greve et al. Calculated thermal behavior of ventilated high precision radio telescopes
Smetana et al. Designing the performance of a thick-film laser power detector by means of a heat-transfer analysis using finite-element method
KR100406062B1 (en) Fan Apparatus for Chamber of Handler
Alario Monogrove Heat Pipe Radiator Shuttle Flight Experiment: Design, Analysis, and Testing
JPH0354097A (en) Thermal louver device
US20240061081A1 (en) Optoelectronic sensor for detecting objects in a monitored area
Su et al. Structure design and thermal deformation simulation of spaceborne SAR antenna