JPH05139385A - Resistance reducing device for aircraft - Google Patents

Resistance reducing device for aircraft

Info

Publication number
JPH05139385A
JPH05139385A JP30326691A JP30326691A JPH05139385A JP H05139385 A JPH05139385 A JP H05139385A JP 30326691 A JP30326691 A JP 30326691A JP 30326691 A JP30326691 A JP 30326691A JP H05139385 A JPH05139385 A JP H05139385A
Authority
JP
Japan
Prior art keywords
aircraft
engine
pipe
main aerofoil
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30326691A
Other languages
Japanese (ja)
Inventor
Yoshitoki Shingou
美可 新郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30326691A priority Critical patent/JPH05139385A/en
Publication of JPH05139385A publication Critical patent/JPH05139385A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To aspirate air around a main aerofoil to reduce the loss of horse power by drilling plural number of holes on the main aerofoil outside plate of an aircraft, and making these holes communicate with a pressure regulating chamber and moreover the pressure regulating chamber communicate with a high speed air flow discharged from an engine through a pipe. CONSTITUTION:The tip of a pipe 7 extending from a nacelle 8 is inserted in a high speed air flow generated by the engine 2 of an aircraft 1 to form an exhaust port 9. The other end of the pipe 7 is communicatingly connected to a pressure regulating chamber 5 provided in the main aerofoil of the aircraft, and pressure variation following slight fluctuation caused by the engine 2 in a air flow at the exhaust port 9 can thereby be absorbed. An intake port 6 opened on the front side of a main aerofoil outer plate is connected to the pressure regulating chamber 5 to aspirate a turbulent air flow around the main aerofoil for preventing an increase in resistance caused by the main aerofoil covered with a turbulent flow boundary layer. In addition, an actuator is provided between the nacelle 8 and a pipe having the exhaust port 9 to make a distance between the exhaust port 9 and the central axis of the engine 2 variable for controlling the quantity of exhaust air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は航空機に適用される抵抗
低減装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drag reduction device applied to an aircraft.

【0002】[0002]

【従来の技術】従来の航空機抵抗低減装置の例を図4に
示す。
2. Description of the Related Art An example of a conventional aircraft drag reduction device is shown in FIG.

【0003】図において、航空機1のエンジン2の発生
する馬力の一部をギア・ボックス3により取り出し、こ
の馬力で減圧ポンプ4を駆動する。減圧ポンプ4は、圧
力調整室5内の空気を管7を介して吸出して減圧する。
圧力調整室5は、航空機1の主翼外板に開けられた吸入
口6につながっており、主翼まわりの乱れた空気を吸入
し、飛行中の航空機の抵抗を低減する。
In the figure, a part of horsepower generated by an engine 2 of an aircraft 1 is taken out by a gear box 3 and the decompression pump 4 is driven by this horsepower. The decompression pump 4 sucks the air in the pressure adjustment chamber 5 through the pipe 7 to reduce the pressure.
The pressure adjusting chamber 5 is connected to an intake port 6 formed in the outer skin of the main wing of the aircraft 1, sucks in turbulent air around the main wing, and reduces the resistance of the aircraft during flight.

【0004】[0004]

【発明が解決しようとする課題】上記従来の航空機の抵
抗低減装置には解決すべき次の課題があった。
The above-described conventional aircraft drag reduction device has the following problems to be solved.

【0005】即ち、従来の航空機抵抗低減装置は、エン
ジンの発生した馬力をギア・ボックスで取り出し、さら
に減圧ポンプを使用して主翼まわりの空気を吸入するた
め、ギア・ボックス、減圧ポンプでの馬力損失が大き
い。また、減圧ポンプを搭載するため、機体重量も大き
くなる。
That is, in the conventional aircraft drag reduction device, the horsepower generated by the engine is taken out by the gear box and the air around the main wing is sucked by using the decompression pump. Therefore, the horsepower at the gear box and the decompression pump is reduced. The loss is large. In addition, since the decompression pump is installed, the weight of the machine becomes large.

【0006】本発明は、より簡素な装置によって主翼ま
わりの空気を吸入することにより、馬力損失を低減し、
かつ機体重量を軽量化することを目的とする。
The present invention reduces the horsepower loss by sucking the air around the main wing with a simpler device,
In addition, the purpose is to reduce the weight of the aircraft.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題の解決
手段として、航空機の主翼外板に開けられた複数の穴
と、同穴と管を介して連通された圧力調整室と、同圧力
調整室に一端を連通され他端を航空機エンジンが排出す
る高速気流中に開放された管とを具備してなることを特
徴とする航空機の抵抗低減装置を提供しようとするもの
である。
Means for Solving the Problems As a means for solving the above problems, the present invention provides a plurality of holes formed in an outer wing skin of an aircraft, a pressure adjusting chamber communicating with the holes through a pipe, and the same pressure. It is an object of the present invention to provide a drag reduction device for an aircraft, which comprises a pipe having one end connected to the adjustment chamber and the other end open to the high-speed airflow discharged from the aircraft engine.

【0008】[0008]

【作用】本発明は上記のように構成されるので次の作用
を有する。
Since the present invention is constructed as described above, it has the following actions.

【0009】即ち、航空機の主翼外板に開けられた複数
の穴を、圧力調整室を介して、エンジン排気流中と管で
連通させることになるため、航空機のまわりの静圧差を
利用して主翼まわりの空気を吸入し、乱流境界層の形成
を抑制する。即ち、航空機のエンジンが発生する高速気
流は、航空機のまわりで最も気流速度が速い所であり、
同時に、最も静圧の低い所である。従って、管を用い
て、この高速気流の中と他の場所を結べば、空気は、エ
ンジンの高速気流側へ吸い出される。本発明はこの作用
を用いて航空機主翼まわりの乱れた空気を吸入してエン
ジンの高速気流中に捨てることにより、航空機主翼が乱
流境界層でおおわれるのを防ぎ、飛行中の航空機に働く
抵抗を低減する。
That is, since a plurality of holes formed in the outer wing skin of the aircraft are made to communicate with the inside of the engine exhaust flow by pipes through the pressure adjusting chamber, the static pressure difference around the aircraft is utilized. Intakes air around the main wing to suppress the formation of turbulent boundary layers. That is, the high-speed airflow generated by the aircraft engine is where the airflow velocity is the fastest around the aircraft,
At the same time, it has the lowest static pressure. Therefore, if a pipe is used to connect the inside of this high-speed airflow to another place, the air is sucked into the high-speed airflow side of the engine. The present invention uses this action to suck in the turbulent air around the wing of the aircraft and discard it in the high-speed airflow of the engine, thereby preventing the wing of the aircraft from being covered with a turbulent boundary layer, and acting on the aircraft in flight. To reduce.

【0010】なお、圧力調整室は圧力変動の均圧化を行
なう。
The pressure adjusting chamber equalizes pressure fluctuations.

【0011】[0011]

【実施例】本発明の第1実施例を図1及び図2を用いて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS.

【0012】なお、従来例と同様の構成部材には同符号
を付し、必要ある場合を除き説明を省略する。
The same components as those of the conventional example are designated by the same reference numerals, and the description thereof will be omitted unless necessary.

【0013】本発明の第1実施例に係る全体構成を図1
に示す。図は本実施例を多発機に適用した場合の例で、
右側は航空機の右舷の透視的平面図、左側は、たとえば
主翼に装備されたエンジン等の側断面図である。航空機
1のエンジン2がつくりだす高速気流中にナセル8から
伸びた管の先端部を入れ、吸出口9とする。この吸出口
9は、管7で航空機主翼内に設けられた圧力調整室5と
結ぶ。圧力調整室5は、適当な大きさの空洞であり、エ
ンジン2のつくりだす気流の細かな変動にともなう吸出
口9の圧力変化を吸収する。圧力調整室5は、主翼外板
に開けられた吸入口6につながれており、主翼まわりの
乱れた気流を吸入し、主翼が乱流境界層におおわれて抵
抗が増加するのを防止する。第1実施例に係る吸出量制
御機構を図2に示す。エンジン2がつくりだす高速気流
の速度は、エンジン2の中心軸に近いほど速い。すなわ
ち、エンジン中心軸に吸出口9を近づけるほど主翼まわ
りの空気の吸入量は増加する。そこで、ナセル8と、吸
出口9を有する管の間にアクチュエータ10を設け、管
の途中に球状の継ぎ手11を設けて、吸出口9とエンジ
ン2の中心軸との距離を変えられるようにし、吸出量制
御機構とした。
FIG. 1 shows the overall configuration according to the first embodiment of the present invention.
Shown in. The figure is an example when this embodiment is applied to multiple generators,
The right side is a perspective plan view of the starboard side of the aircraft, and the left side is a side sectional view of, for example, an engine mounted on the main wing. The tip of the pipe extending from the nacelle 8 is put into the high-speed airflow produced by the engine 2 of the aircraft 1 to form the suction port 9. This suction port 9 is connected by a pipe 7 to a pressure adjusting chamber 5 provided in the main wing of the aircraft. The pressure adjusting chamber 5 is a hollow of an appropriate size, and absorbs the pressure change of the suction port 9 due to the fine fluctuation of the air flow produced by the engine 2. The pressure adjusting chamber 5 is connected to an intake port 6 opened in the outer plate of the main wing, sucks the turbulent air flow around the main wing, and prevents the main wing from being covered by the turbulent boundary layer and increasing the resistance. The suction amount control mechanism according to the first embodiment is shown in FIG. The velocity of the high-speed airflow generated by the engine 2 is higher as it is closer to the central axis of the engine 2. That is, as the suction port 9 is brought closer to the center axis of the engine, the intake amount of air around the main wing increases. Therefore, an actuator 10 is provided between the nacelle 8 and the pipe having the suction port 9, and a spherical joint 11 is provided in the middle of the pipe so that the distance between the suction port 9 and the center axis of the engine 2 can be changed. A suction amount control mechanism was used.

【0014】なお、図2の右端は左端の図に対応する気
流速度分布を示す。
The right end of FIG. 2 shows the air velocity distribution corresponding to the left end drawing.

【0015】次に本発明の第2実施例を図3により説明
する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0016】図3は第2実施例の図で(a)は航空機1
全体で示した斜視図、(b)は(a)の囲いBの詳細
図、(c)は(a)の後部(図の右端)の側断面図及び
それに対応した排気速度分布図である。
FIG. 3 is a diagram of the second embodiment (a) is an aircraft 1
FIG. 3 is a perspective view showing the whole, (b) is a detailed view of the enclosure B of (a), (c) is a side sectional view of the rear part (right end of the figure) of (a) and an exhaust velocity distribution diagram corresponding thereto.

【0017】第1実施例では吸出口9を多発機のナセル
8の後方直近に位置させたのに対し、第2実施例では胴
体内にエンジンを装備し、尾部に可変ノズルを有する型
式の航空機の可変ノズル後方のジェット流の中に吸出口
9aを位置させることのできる例で、7aは吸出口9a
と圧力調整室5との間を連通する管、9aはジェット流
の内側、即ち、静圧の低い領域と、その外方の機体速度
とほぼ同等の流速を有する静圧の比較的高い領域との間
を両矢印で示すように継ぎ手11aによって回動可能な
吸出口、11aはたとえば内部を中空にしたボールジョ
イント型式によって回動及び流体の流通可能な継ぎ手で
ある。なお、吸出口9aは図3(b)に示すように先端
を両削として動圧がかからないよう配慮されている。
In the first embodiment, the suction port 9 is located immediately behind the nacelle 8 of the multi-engine machine, whereas in the second embodiment, the aircraft is equipped with an engine and has a variable nozzle at its tail. 7a is an example in which the suction port 9a can be positioned in the jet flow behind the variable nozzle of FIG.
And a pipe 9a for communicating between the pressure control chamber 5 and the inside of the jet flow, that is, a region where the static pressure is low, and a region where the static pressure is relatively high outside the region where the static pressure is almost the same as the airframe velocity. As indicated by a double-headed arrow, a suction port which can be rotated by a joint 11a, and 11a is, for example, a joint which can be rotated and fluid can flow by a ball joint type having a hollow inside. As shown in FIG. 3 (b), the suction port 9a is designed so that no dynamic pressure is applied by cutting the tip.

【0018】その他の構成は第1実施例と同様である。The other structure is the same as that of the first embodiment.

【0019】機体速度よりも流速の早いエンジン排気
(ジェット流)近傍は他の部分よりも静圧が低い。従っ
て、この流れの中に吸出口9aを置くことにより、一
層、能率的に吸入口6からの吸込みを行なうことがで
き、主翼まわりの乱流境界層の発達を効果的に防止する
ことができる。なお、静圧の調整は、図3(c)の円弧
矢印のように静圧減の位置から静圧増の位置へむかって
何程の回動角(吸出口9aの遠近距離)をとるかによっ
て行なう。
The static pressure near the engine exhaust (jet flow), which has a higher flow velocity than the body speed, is lower than the other parts. Therefore, by placing the suction port 9a in this flow, the suction from the suction port 6 can be performed more efficiently, and the development of the turbulent boundary layer around the main wing can be effectively prevented. .. Note that, for the adjustment of the static pressure, how much rotation angle (distance of the suction port 9a) is taken from the static pressure decreasing position to the static pressure increasing position as indicated by the arc arrow in FIG. 3 (c). By.

【0020】以上の通り、第1、第2実施例によれば、
減圧ポンプ等を用いることなく、主翼面近傍の乱流形成
を抑止できるので、馬力損失がなく、かつ、軽量簡便な
抵抗低減装置が得られるという利点がある。
As described above, according to the first and second embodiments,
Since it is possible to suppress the formation of turbulent flow in the vicinity of the main wing surface without using a decompression pump or the like, there is an advantage that there is no horsepower loss and a lightweight and simple drag reduction device can be obtained.

【0021】[0021]

【発明の効果】本発明は上記のように構成されるので次
の効果を有する。
Since the present invention is constructed as described above, it has the following effects.

【0022】即ち、本発明は、ギア・ボックス等により
エンジンの馬力を費すことなく、航空機主翼まわりの乱
れた空気を吸い出し、飛行中の航空機に作用する抵抗を
低減する。また、減圧ポンプが不要であるため機体の軽
量化に寄与する。
That is, according to the present invention, the turbulent air around the main wing of the aircraft is sucked out without reducing the horsepower of the engine by the gear box or the like, and the resistance acting on the aircraft in flight is reduced. Further, since the decompression pump is unnecessary, it contributes to weight reduction of the machine body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る全体構成の図、FIG. 1 is a diagram of an overall configuration according to a first embodiment of the present invention,

【図2】第1実施例に係る吸出量制御機構の側断面図、FIG. 2 is a side sectional view of the suction amount control mechanism according to the first embodiment,

【図3】本発明の第2実施例に係る図で、(a)は全体
斜視図、(b)は(a)の囲いBの詳細図、(c)は
(a)の航空機1の尾部の側断面図、
3A and 3B are diagrams according to a second embodiment of the present invention, where FIG. 3A is an overall perspective view, FIG. 3B is a detailed view of the enclosure B in FIG. 3A, and FIG. 3C is a tail portion of the aircraft 1 in FIG. 3A. Side sectional view of

【図4】従来例を図1に対応させて示した図である。FIG. 4 is a diagram showing a conventional example corresponding to FIG. 1.

【符号の説明】[Explanation of symbols]

1 航空機 2 エンジン 5 圧力調整室 6 吸入口 7,7a 管 8 ナセル 9,9a 吸出口 10 アクチュエータ 11,11a 継ぎ手 1 Aircraft 2 Engine 5 Pressure Control Chamber 6 Suction Port 7,7a Pipe 8 Nacelle 9,9a Suction Port 10 Actuator 11,11a Joint

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 航空機の主翼外板に開けられた複数の穴
と、同穴と管を介して連通された圧力調整室と、同圧力
調整室に一端を連通され他端を航空機エンジンが排出す
る高速気流中に開放された管とを具備してなることを特
徴とする航空機の抵抗低減装置。
1. A plurality of holes formed in an outer wing skin of an aircraft, a pressure adjusting chamber communicating with the holes through a pipe, one end communicating with the pressure adjusting chamber, and the other end ejected by an aircraft engine. A device for reducing drag of an aircraft, comprising: a pipe opened to a high-speed air flow.
JP30326691A 1991-11-19 1991-11-19 Resistance reducing device for aircraft Withdrawn JPH05139385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30326691A JPH05139385A (en) 1991-11-19 1991-11-19 Resistance reducing device for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30326691A JPH05139385A (en) 1991-11-19 1991-11-19 Resistance reducing device for aircraft

Publications (1)

Publication Number Publication Date
JPH05139385A true JPH05139385A (en) 1993-06-08

Family

ID=17918893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30326691A Withdrawn JPH05139385A (en) 1991-11-19 1991-11-19 Resistance reducing device for aircraft

Country Status (1)

Country Link
JP (1) JPH05139385A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537084A (en) * 2004-05-13 2007-12-20 エアバス・ドイチュラント・ゲーエムベーハー Aircraft having a fluid pipe system
JP2011506185A (en) * 2007-12-20 2011-03-03 エアバス・オペレーションズ・ゲーエムベーハー Aircraft cooling system
CN117818871A (en) * 2024-03-04 2024-04-05 中国空气动力研究与发展中心高速空气动力研究所 Application method of passive mixed laminar flow nacelle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537084A (en) * 2004-05-13 2007-12-20 エアバス・ドイチュラント・ゲーエムベーハー Aircraft having a fluid pipe system
US7988102B2 (en) 2004-05-13 2011-08-02 Airbus Deutschland Gmbh Aircraft with a fluid-duct-system
JP2011506185A (en) * 2007-12-20 2011-03-03 エアバス・オペレーションズ・ゲーエムベーハー Aircraft cooling system
CN117818871A (en) * 2024-03-04 2024-04-05 中国空气动力研究与发展中心高速空气动力研究所 Application method of passive mixed laminar flow nacelle

Similar Documents

Publication Publication Date Title
US3178131A (en) Aircraft wing structure
JP5092143B2 (en) High bypass ratio turbofan jet engine
US5016837A (en) Venturi enhanced airfoil
US8561935B2 (en) STOL and/or VTOL aircraft
US5158251A (en) Aerodynamic surface tip vortex attenuation system
US4892269A (en) Spinner ducted exhaust for pusher turboprop engines
JP7061061B2 (en) Aircraft with rear fairing propulsion system with inflow stator with blowout function
US10371095B2 (en) Nacelle-integrated air-driven augmentor fan for increasing propulsor bypass ratio and efficiency
US6755374B1 (en) Anti-Torque and yaw-control system for a rotary-wing aircraft
CN206466161U (en) Duct heat dissipation structure
WO2018196882A1 (en) Aerial vehicle producing larger lift by reducing fluid drag
US4579300A (en) Internal wing aircraft
JPH0321730B2 (en)
JPS62240434A (en) Gas turbine engine
JPH05139385A (en) Resistance reducing device for aircraft
US2961192A (en) Jet propelled aircraft
CN101823554A (en) Loading airplane
US4555079A (en) Multiple jet blowing around the blunt trailing edge of a circulation controlled airfoil
JP3212692B2 (en) Rotor blade boundary layer controller
WO2018196810A1 (en) Aircraft gaining greater propulsion and lift from fluid continuity
US3023981A (en) Airplane equipped with a gas turbine propelling and lifting unit
IT9048545A1 (en) COMPOSITE HELICOPTER.
JPH08133188A (en) Resistance reducing device for wing
US6138946A (en) Device for lift and to reduce resistance to aircraft advance
JPS58164499A (en) Controller for boundary layer of movable plane of aircraft

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204