JPH0513884B2 - - Google Patents

Info

Publication number
JPH0513884B2
JPH0513884B2 JP62232420A JP23242087A JPH0513884B2 JP H0513884 B2 JPH0513884 B2 JP H0513884B2 JP 62232420 A JP62232420 A JP 62232420A JP 23242087 A JP23242087 A JP 23242087A JP H0513884 B2 JPH0513884 B2 JP H0513884B2
Authority
JP
Japan
Prior art keywords
nitride
raw material
reaction
nitrogen
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62232420A
Other languages
Japanese (ja)
Other versions
JPS6476906A (en
Inventor
Yosha Kaieda
Tadashi Oie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
KYORITSU YOGYO GENRYO KK
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
KYORITSU YOGYO GENRYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO, KYORITSU YOGYO GENRYO KK filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP23242087A priority Critical patent/JPS6476906A/en
Publication of JPS6476906A publication Critical patent/JPS6476906A/en
Publication of JPH0513884B2 publication Critical patent/JPH0513884B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化物の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing nitrides.

〔従来の技術〕[Conventional technology]

一般に、窒化物に対して、各種の産業分野にお
いて様々な実用化が進められているが、これらの
実用化が進展するためには更に窒化物の性能を向
上させ、その製造原価も低減させる必要がある。
In general, nitrides are being put to practical use in various industrial fields, but in order for these practical applications to progress, it is necessary to further improve the performance of nitrides and reduce their manufacturing costs. There is.

一方、窒化物の性能と用途は多用であるため、
その性能向上の方策は単一ではあり得ないが、一
般に性能向上のためには次の3通りの方策があ
る。
On the other hand, the performance and applications of nitrides are versatile;
Although there is no single method for improving performance, there are generally three methods for improving performance.

(1) 窒化物中の不純物を低減させる。(1) Reduce impurities in nitride.

(2) 窒化物中の窒素の組成比を精密に制御する。(2) Precisely control the composition ratio of nitrogen in nitride.

(3) 窒化物中の各元素の偏析を減少させる。(3) Reduce segregation of each element in nitride.

また、製造原価の低減のためには、次の方策が
ある。
In addition, the following measures can be taken to reduce manufacturing costs.

(1) 製造時の窒化物への転換率を向上させる。(1) Improve the conversion rate to nitride during manufacturing.

このような性能向上と製造原価の低減を図るた
めに、種々の窒化物の製造方法が提案されてい
る。
In order to improve performance and reduce manufacturing costs, various methods for manufacturing nitrides have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、現在は、窒化物は主として水素
やアンモニアの共存下の窒素気流中で反応させる
直接窒化法、酸化物還元法、気相合成法、イミ
ド・アミド分解法などで製造しているので、原料
の正確な配合が困難で、化学量論的組成が不正確
になりやすく、偏析を起こしやすいものであり、
窒化物への転換率が低いので、同一の製造プロセ
スを何度か繰返す必要があつた。
However, currently, nitrides are mainly produced by direct nitriding, which involves reacting in a nitrogen stream in the coexistence of hydrogen or ammonia, oxide reduction, gas phase synthesis, imide/amide decomposition, etc. It is difficult to formulate accurately, the stoichiometric composition is likely to be inaccurate, and segregation is likely to occur.
Because of the low conversion to nitride, it was necessary to repeat the same manufacturing process several times.

本発明はこれらの点に鑑みてなされたものであ
り、特性を向上させた窒化物を製することがで
き、その製造工程も容易であり、窒化物への転換
率も100%と高いという窒化物の製造方法を提供
することを目的とする。
The present invention was made in view of these points, and it is possible to produce nitride with improved properties, the manufacturing process is easy, and the conversion rate to nitride is as high as 100%. The purpose is to provide a method for manufacturing products.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の窒化物の製造方法は、窒素原料として
の液体窒素と、窒素以外の原料元素粉末とを合成
反応させて窒化物を製造する窒化物の製造方法に
おいて、前記窒素以外の原料元素粉末と最終生成
物である窒化物とを反応終了後の原料混合粉末全
体が100%の窒化物となる割合で混合した原料混
合粉末を、多孔質または人工的に多数の孔を開け
た金属製または耐火性容器に挿入して前記液体窒
素中に置き、この原料混合粉末の一部に外部より
入熱して液体窒素との合成反応を開始させ、その
合成反応によつて生じる反応生成熱によつてその
合成反応を前記原料混合粉末全体へ伝播進行させ
て自己伝播高温合成法により合成して、窒化物を
製することを特徴とする。
The method for producing a nitride of the present invention is a method for producing a nitride in which a nitride is produced by a synthetic reaction between liquid nitrogen as a nitrogen raw material and powder of a raw material element other than nitrogen. The raw material mixed powder is mixed with the final product nitride in such a ratio that the entire raw material mixed powder after the reaction is 100% nitride, and is made of porous or artificially-perforated metal or refractory material. A part of the raw material mixed powder is heated from the outside to start a synthesis reaction with the liquid nitrogen, and the reaction heat generated by the synthesis reaction causes the mixture to react with the liquid nitrogen. The method is characterized in that the synthesis reaction is propagated throughout the raw material mixed powder and synthesized by a self-propagating high temperature synthesis method to produce a nitride.

〔作用〕[Effect]

本発明によれば、窒素以外の原料元素粉末と最
終生成物である窒化物とを反応終了後の原料混合
粉末全体が100%の窒化物となる割合で混合した
原料混合粉末を、多孔質または人工的に多数の孔
を開けた金属製または耐火性容器に挿入して液体
窒素中に入れ、その原料混合粉末の一部に外部か
ら入熱して液体窒素との合成反応を開始させる
と、入熱による熱によつて合成反応開始点付近の
液体窒素が瞬時に窒素ガスとなり、この窒素ガス
と原料混合粉末中の窒素以外の原料元素粉末とが
反応して窒化物が合成される。この合成反応によ
つて発生した反応生成熱が反応部に隣接している
未反応の原料混合粉末と液体窒素を加熱してこの
部分の液体窒素を瞬時に窒素ガスとし、この窒素
ガスと原料混合粉末中の窒素以外の原料元素粉末
とを合成反応させ、更にこの部分で発生した反応
生成熱が次の隣接している未反応の原料混合粉末
と液体窒素を加熱するいわゆる自己伝播を生じ、
ついには原料混合粉末全体が高温で窒素原料の液
体窒素と合成される自己伝播高温合成が生じて、
全体が所望の窒化物とされる。
According to the present invention, a porous or If you insert it into a metal or fireproof container with many artificial holes and place it in liquid nitrogen, heat some of the raw material mixture powder from the outside to start a synthesis reaction with the liquid nitrogen. Due to heat, liquid nitrogen in the vicinity of the synthesis reaction start point instantaneously turns into nitrogen gas, and this nitrogen gas reacts with the raw material element powder other than nitrogen in the raw material mixed powder to synthesize a nitride. The reaction heat generated by this synthesis reaction heats the unreacted raw material mixed powder and liquid nitrogen adjacent to the reaction part, and the liquid nitrogen in this part instantly turns into nitrogen gas, and this nitrogen gas and raw materials are mixed. A synthetic reaction is performed with the raw material element powder other than nitrogen in the powder, and the reaction generated heat generated in this part heats the next adjacent unreacted raw material mixed powder and liquid nitrogen, causing so-called self-propagation.
Eventually, a self-propagating high-temperature synthesis occurs in which the entire raw material mixed powder is synthesized with the nitrogen raw material liquid nitrogen at high temperature.
The whole is made into the desired nitride.

〔実施例〕〔Example〕

本発明は本発明者らによる鋭意研究によつてな
されたものである。
The present invention was achieved through intensive research by the inventors.

すなわち、研究の結果、合成する時に反応生成
熱を発生する窒化物を、自己伝播高温合成法を用
いて合成させる際に、窒素以外の原料元素粉末と
最終生成物である窒化物とを混合した原料混合粉
末を金属製または耐火性容器に充填して、液体窒
素中に置いて、その原料混合粉末の一部を強熱す
ると、合成反応開始点付近の液体窒素が瞬時に窒
素ガスとなり、この窒素ガスと原料混合粉末中の
窒素以外の原料元素粉末とが反応して窒化物が合
成される合成反応が発生するとともに、その反応
生成熱が、隣接部分の原料混合粉末と液体窒素を
加熱してこの部分の液体窒素を瞬時に窒素ガスと
し、この窒素ガスと原料混合粉末中の窒素以外の
原料元素粉末とを合成反応させ、更に、この部分
の反応生成熱が次の隣接部分を加熱させるいわゆ
る自己伝播が発生し、ついには試料全体が高温で
合成される自己伝播高温合成が生じるという合成
反応の現象と、次のような効果が発生することが
究明された。
Specifically, research has shown that when synthesizing nitrides, which generate reaction heat during synthesis, using the self-propagating high-temperature synthesis method, raw material element powders other than nitrogen are mixed with the final product, nitrides. When the raw material mixed powder is filled into a metal or fireproof container and placed in liquid nitrogen, and a portion of the raw material mixed powder is ignited, the liquid nitrogen near the starting point of the synthesis reaction instantly turns into nitrogen gas. A synthesis reaction occurs in which nitrides are synthesized by the reaction between nitrogen gas and raw material element powder other than nitrogen in the raw material mixed powder, and the heat produced by the reaction heats the raw material mixed powder and liquid nitrogen in the adjacent parts. The liquid nitrogen in the lever part is instantly turned into nitrogen gas, and this nitrogen gas and the raw material element powder other than nitrogen in the raw material mixed powder are subjected to a synthetic reaction, and the heat generated by the reaction in this part heats the next adjacent part. It was discovered that so-called self-propagation occurs, and the phenomenon of self-propagating high-temperature synthesis in which the entire sample is finally synthesized at a high temperature occurs, and that the following effects occur.

(1) 窒素以外の原料元素粉末に最終生成物である
窒化物を混合しないで前述の液体窒素中での自
己伝播高温合成を行なわせると、反応生成熱が
大きくなり過ぎて原料元素粉末全体の表面部分
が溶融凝固して原料元素粉末全体の内部に液体
窒素または窒素ガスが侵入しずらくなり、窒化
物への転換率が低くなる。しかし、最初に原料
元素粉末に最終生成物である窒化物を混合して
おくと、反応生成熱が小さくなり、溶融凝固す
る割合が下がり、原料混合粉末全体の内部にま
で液体窒素または窒素ガスが十分に侵入して、
自己伝播高温合成法による窒化物への転換率が
上昇する。従つて、最初に混合する最終生成物
である窒化物を混合割合を適切に選択すること
により、自己伝播高温合成法による窒化物への
転換率を100%とすることができる。
(1) If the above-mentioned self-propagating high-temperature synthesis in liquid nitrogen is performed without mixing the final product nitride with the raw material element powder other than nitrogen, the heat generated by the reaction becomes too large and the entire raw material element powder is The surface portion is melted and solidified, making it difficult for liquid nitrogen or nitrogen gas to penetrate into the entire raw material element powder, resulting in a low conversion rate to nitride. However, if nitride, which is the final product, is mixed with the raw material element powder first, the heat generated by the reaction will be reduced, the rate of melting and solidification will be reduced, and liquid nitrogen or nitrogen gas will penetrate into the entire raw material mixed powder. Penetrate enough;
The conversion rate to nitrides is increased by self-propagating high temperature synthesis method. Therefore, by appropriately selecting the mixing ratio of nitride, which is the final product to be mixed first, it is possible to achieve a conversion rate of 100% to nitride by the self-propagating high temperature synthesis method.

(2) 原料混合粉末を挿入する金属製または耐火性
容器として多孔質または人工的に多数の孔を開
けた容器を使用することにより、原料混合粉末
全体の内部にまで液体窒素の侵入が容易にな
り、最終生成物である窒化物への転換率を上昇
させることができる。
(2) By using a porous or artificially perforated container made of metal or a fire-resistant container into which the raw material mixed powder is inserted, liquid nitrogen can easily penetrate into the entire raw material mixed powder. As a result, the conversion rate to the final product, nitride, can be increased.

(3) 液体窒素中で、反応するので、雰囲気中の酸
素による汚染がなく、合成された窒化物中の酸
素の含有量は原料混合粉末と同等かそれ以下で
ある。
(3) Since the reaction takes place in liquid nitrogen, there is no contamination by oxygen in the atmosphere, and the oxygen content in the synthesized nitride is equal to or lower than that of the raw material mixed powder.

(4) 窒素原料として、高圧窒素ガスを使用しない
ので、作業環境が安全である。また高価な高圧
ガス機器を使用しなくてすむので、製造コスト
の低減を図ることができる。
(4) Since high-pressure nitrogen gas is not used as a nitrogen raw material, the working environment is safe. Furthermore, since there is no need to use expensive high-pressure gas equipment, manufacturing costs can be reduced.

本発明は、これらの知見に基づいてなされたも
のである。
The present invention has been made based on these findings.

以下、本発明の製造工程を第1図および第2図
について説明する。
Hereinafter, the manufacturing process of the present invention will be explained with reference to FIGS. 1 and 2.

第1図は製造装置の一例を示し、第2図は合成
反応の伝播状態を示している。
FIG. 1 shows an example of the manufacturing apparatus, and FIG. 2 shows the propagation state of the synthesis reaction.

まず、目的とする窒化物の窒素以外の原料元素
粉末と最終生成物である窒化物粉末とを反応終了
後の原料混合粉末全体が100%の窒化物となる割
合となるように秤量する。次に、秤量した原料元
素粉末と窒化物粉末とを、ボールミル、乳鉢その
他の適当な混合機で十分に混合する。そして、第
1図に示すように、十分に混合した原料混合粉末
4を適当な金属製または耐火性の多孔質または人
工的に多数の孔を開けた容器3に入れ、この容器
3と共に保冷容器1内の液体窒素2中に挿入す
る。次に、この原料混合粉末4の一端にタングス
テン線や、ニクロム線のような点火用の抵抗加熱
線5を接触させるか、数mm程度離して設置する。
そして、点火用の抵抗加熱線5に数A〜数100A
の電流を流して、点火用の抵抗加熱線5の近傍の
原料混合粉末4の一端を強熱して、合成反応を開
始させる。
First, the raw material element powder other than nitrogen for the desired nitride and the final product nitride powder are weighed so that the entire raw material mixed powder after the reaction is 100% nitride. Next, the weighed raw material element powder and nitride powder are thoroughly mixed in a ball mill, mortar, or other suitable mixer. Then, as shown in FIG. 1, the sufficiently mixed raw material mixed powder 4 is placed in a suitable metal or fire-resistant porous or artificially perforated container 3, and the container 3 is placed in a cold storage container together with the container 3. Insert into liquid nitrogen 2 in 1. Next, a resistance heating wire 5 for ignition, such as a tungsten wire or a nichrome wire, is brought into contact with one end of this raw material mixed powder 4, or placed at a distance of several mm.
Then, several A to several hundred A are applied to the resistance heating wire 5 for ignition.
A current is applied to ignite one end of the raw material mixed powder 4 near the resistance heating wire 5 for ignition, thereby starting a synthesis reaction.

この合成反応の過程を第2図により説明する
と、点火用の抵抗加熱線5によつて一端部の点火
点で強熱された原料混合粉末4は、合成反応する
ことにより符号4aに示す窒化物となると同時
に、符号4bに示す反応帯で大量の反応生成熱を
発生して、符号4cに示す隣接した部分を加熱し
て加熱帯とし、合成反応させる。この自己伝播高
温合成法による反応過程が原料の一端の点火点か
ら他端まで第2図太矢印方向に伝播して、符号4
dに示す未反応部分をすべて符号4aに示す窒化
物に変換して、原料混合粉末4の全体が合成され
て窒化物とされる。この合成が終了したら、数分
間液体窒素中に放置し続け、窒化物が所定の温度
まで冷却した時点で、第1図の保冷容器1から合
成された窒化物を容器3と一緒に取り出す。次い
で、必要ならば、次回の製造のために、新たな原
料混合粉末4を容器3に挿入し、保冷容器1無い
に装填する。
The process of this synthesis reaction will be explained with reference to FIG. 2. The raw material mixed powder 4 ignited at the ignition point at one end by the resistance heating wire 5 for ignition undergoes a synthesis reaction to produce nitrides as shown by reference numeral 4a. At the same time, a large amount of reaction generated heat is generated in the reaction zone 4b, and the adjacent portion 4c is heated to form a heating zone, thereby causing a synthesis reaction. The reaction process by this self-propagating high-temperature synthesis method propagates from the ignition point of one end of the raw materials to the other end in the direction of the bold arrow in Figure 2.
All unreacted portions shown in d are converted into nitrides shown in 4a, and the entire raw material mixed powder 4 is synthesized into nitrides. After this synthesis is completed, the nitride is left in liquid nitrogen for several minutes, and when the nitride has cooled to a predetermined temperature, the synthesized nitride is taken out from the cold storage container 1 shown in FIG. 1 together with the container 3. Next, if necessary, a new raw material mixed powder 4 is inserted into the container 3 and loaded into the cold storage container 1 for the next production.

本製造法によつて製造した多くの窒化物の中か
ら幾つかの好適な実施例を以下に詳しく説明す
る。
Among the many nitrides produced by this production method, some preferred embodiments will be described in detail below.

実施例 1 酸素含有量0.1重量%で、平均粒径20μmのTi粉
末と、酸素含有量0.08重量%で、平均粒径10μm
のTiN粉末を種々のモル分率(%)で秤量し、
混合した。これらの原料混合粉末を1Kgずつ、耐
火性材料のカオウールで出来た多孔質の容器もし
くは、人工的に多数の孔を開けた黒鉛製の容器な
どに入れ、第1図に示す液体窒素中での窒化物製
造用自己伝播高温合成装置に取付けて、液体窒素
中で第1図の点火用の抵抗加熱線5の一例である
タングステンヒータに電圧35Vで40Aの電流を3
秒間流して点火した。点火後は第2図に示す反応
帯4bは4mm/secの速度で伝播し、原料混合粉末
4の全体の合成が終了した。合成した窒化物
(TiN)を化学分析したところ最終的な製品の窒
化物中の酸素含有量は、0.08重量%であつた。ま
た、製造後のTiNへの転換率を原料混合粉末中
に混合したTiNのモル分率(%)に対して示し
たのが第3図である。即ち、第3図に示すよう
に、第1図の容器3の材質、多孔質の程度及び人
工的な孔の数と面積などによつて異なるが、原料
元素粉末中に約40〜80モル分率(%)のTiNを
混合してから本発明による製造法で製造すると
100%の転換率でTiNが得られた。
Example 1 Ti powder with an oxygen content of 0.1% by weight and an average particle size of 20 μm, and a Ti powder with an oxygen content of 0.08% by weight and an average particle size of 10 μm.
Weigh TiN powder at various mole fractions (%),
Mixed. 1 kg of each of these raw material mixed powders was placed in a porous container made of fire-resistant Kao wool or a graphite container with many artificial holes, and then heated in liquid nitrogen as shown in Figure 1. It is attached to a self-propagating high-temperature synthesis apparatus for nitride production, and a current of 40 A at a voltage of 35 V is applied to a tungsten heater, which is an example of the resistance heating wire 5 for ignition shown in Fig. 1, in liquid nitrogen.
I let it flow for a second and ignited it. After ignition, the reaction zone 4b shown in FIG. 2 propagated at a speed of 4 mm/sec, and the entire synthesis of the raw material mixed powder 4 was completed. Chemical analysis of the synthesized nitride (TiN) revealed that the oxygen content in the final product was 0.08% by weight. Further, FIG. 3 shows the conversion rate to TiN after production versus the mole fraction (%) of TiN mixed in the raw material mixed powder. That is, as shown in FIG. 3, approximately 40 to 80 moles of raw material element powder is contained in the raw material element powder, although it varies depending on the material of the container 3 in FIG. 1, the degree of porosity, and the number and area of artificial pores. When manufactured by the manufacturing method according to the present invention after mixing TiN in
TiN was obtained with 100% conversion.

実施例 2 平均酸素含有量0.1重量%で平均粒径20μmの
Zr、Hf、V、Nb、Ta、Cr、B、Al、Si、Sc、
Nd、Y、Pr、Feの各粉末と、酸素含有量0.08重
量%で平均粒径10μmのそれぞれの最終窒化物
(例えばZrならばZrN)を、Zr、Hf、Vの場合は
20モル分率(%)、Nb、Ta、Cr、Bの場合は40
モル分率(%)、Al、Si、Scの場合は60モル分率
(%)、Nd、Y、Pr、Feの場合は80モル分率
(%)の混入率で窒化物を混合した。この原料混
合粉末を1Kgずつ、人工的に多数の孔を開けた黒
鉛製の容器に入れ、第1図に示す液体窒素中での
窒化物製造用自己伝播高温合成装置に取付けて、
液体窒素中で第1図の点火用の抵抗加熱線5の一
例であるタングステンヒータに電圧35Vで40Aの
電流を3秒間流して点火した。点火後は第2図に
示す反応帯4bは約5mm/secの速度で伝播し、
原料混合粉末4の全体の合成が終了した。合成し
た窒化物を化学分析したところ最終的な製品の窒
化物中の酸素含有量は、0.08重量%であつた。ま
た製造した窒化物をそれぞれ重量測定、化学分
析、X線回折によつて調べたところ、窒化物はそ
れぞれZrN、HfN、VN、NbN、TaN、CrN、
BN、AIN、Si3N4、ScN、NdN、YN、PrN、
Fe3N、Fe4N、Fe8Nの組成に正確に合成され、
窒化物への転換率は100%であつた。
Example 2 An average particle size of 20 μm with an average oxygen content of 0.1% by weight
Zr, Hf, V, Nb, Ta, Cr, B, Al, Si, Sc,
Nd, Y, Pr, and Fe powders and their respective final nitrides (for example, ZrN for Zr) with an oxygen content of 0.08% by weight and an average particle size of 10 μm, and for Zr, Hf, and V,
20 mole fraction (%), 40 for Nb, Ta, Cr, B
Nitride was mixed at a mole fraction (%) of 60 mole fraction (%) for Al, Si, and Sc, and 80 mole fraction (%) for Nd, Y, Pr, and Fe. 1 kg each of this raw material mixed powder was placed in a graphite container with a large number of holes artificially made, and the mixture was installed in a self-propagating high temperature synthesis device for producing nitrides in liquid nitrogen as shown in Figure 1.
In liquid nitrogen, a tungsten heater, which is an example of the resistance heating wire 5 for ignition shown in FIG. 1, was ignited by passing a current of 40 A at a voltage of 35 V for 3 seconds. After ignition, the reaction zone 4b shown in Figure 2 propagates at a speed of about 5 mm/sec,
The entire synthesis of the raw material mixed powder 4 has been completed. Chemical analysis of the synthesized nitride revealed that the oxygen content in the final product was 0.08% by weight. In addition, when the produced nitrides were examined by weight measurement, chemical analysis, and X-ray diffraction, it was found that the nitrides were ZrN, HfN, VN, NbN, TaN, CrN,
BN , AIN, Si3N4 , ScN, NdN, YN, PrN,
Synthesized accurately to the composition of Fe 3 N, Fe 4 N, and Fe 8 N,
The conversion rate to nitride was 100%.

なお、原料混合粉末中における最終窒化物割合
は、前記各実施例の場合も含めて約20〜80モル分
率(%)の範囲で、各最終窒化物を良好に製造す
ることができた。
In addition, the final nitride ratio in the raw material mixed powder was in the range of about 20 to 80 mole fraction (%), including the cases of each of the above-mentioned Examples, and each final nitride could be produced satisfactorily.

また、本発明は前記各実施例以外の窒化物を製
造する場合にも同様にして適用することができ
る。
Furthermore, the present invention can be similarly applied to the production of nitrides other than those of the above embodiments.

〔発明の効果〕〔Effect of the invention〕

このように本発明の窒化物の製造方法は構成さ
れ作用するものであるから、含有酸素量が少な
く、窒素と窒素以外の元素の組成比が正確であ
る。また、窒化物への転換率が100%と高く、製
造も従来に比べて容易なものとなり、コストも低
廉となる等の効果を奏する。
Since the nitride manufacturing method of the present invention is constructed and operates in this manner, the amount of oxygen contained is small and the composition ratio of nitrogen and elements other than nitrogen is accurate. In addition, the conversion rate to nitride is as high as 100%, and manufacturing is easier than conventional methods, resulting in lower costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液体窒素中での窒化物製造用自己伝播
高温合成装置の概略図、第2図は原料混合粉末に
おける合成反応の熱伝播状態を示す説明図、第3
図は原料混合粉末中に混合したTiNのモル分率
(%)に対する製造後のTiNへの転換率を示す説
明図である。 1……保冷容器、2……液体窒素、3……金属
製または耐火製の多孔質または人工的に多数の孔
を開けた容器、4……原料混合粉末、4a……窒
化物、4b……反応帯、4c……加熱帯、4d…
…未反応部分、5……点火用の抵抗加熱線。
Figure 1 is a schematic diagram of a self-propagating high temperature synthesis apparatus for producing nitrides in liquid nitrogen, Figure 2 is an explanatory diagram showing the heat propagation state of the synthesis reaction in the raw material mixed powder, and Figure 3
The figure is an explanatory diagram showing the conversion rate to TiN after production with respect to the molar fraction (%) of TiN mixed in the raw material mixed powder. 1...Cold container, 2...Liquid nitrogen, 3...Porous or artificially perforated container made of metal or fireproof, 4...Raw material mixed powder, 4a...Nitride, 4b... ...Reaction zone, 4c...Heating zone, 4d...
...Unreacted portion, 5...Resistance heating wire for ignition.

Claims (1)

【特許請求の範囲】 1 窒素原料としての液体窒素と、窒素以外の原
料元素粉末とを合成反応させて窒化物を製造する
窒化物の製造方法において、前記窒素以外の原料
元素粉末と最終生成物である窒化物とを反応終了
後の原料混合粉末全体が100%の窒化物となる割
合で混合した原料混合粉末を、多孔質または人工
的に多数の孔を開けた金属製または耐火性容器に
挿入して前記液体窒素中に置き、この原料混合粉
末の一部に外部より入熱して液体窒素と合成反応
を開始させ、その合成反応によつて生じる反応生
成熱によつてその合成反応を前記原料混合粉末全
体に渡つて伝播進行させる自己伝播高温合成法に
より合成して、窒化物を製造することを特徴とす
る窒化物の製造方法。 2 製造する窒化物は窒化チタン(TiN)、窒化
ジルコニウム(ZrN)、窒化ハフニウム(HfN)、
窒化バナジウム(VN)、窒化ニオブ(NbN)、
窒化タンタル(TaN)、窒化クロム(CrN)、窒
化ホウ素(BN)、窒化アルミニウム(AlN)、窒
化ケイ素(Si3N4)、窒化スカンジウム(ScN)、
窒化ネオジム(NdN)、窒化イツトリウム
(YN)、窒化プラセオジム(PrN)、窒化鉄(Fe3
N,Fe4N,Fe8N)であることを特徴とする特
許請求の範囲第1項記載の窒化物の製造方法。
[Scope of Claims] 1. A method for producing a nitride in which a nitride is produced by a synthetic reaction between liquid nitrogen as a nitrogen raw material and powder of a raw material element other than nitrogen, wherein the raw material element powder other than nitrogen and the final product are The raw material mixed powder is mixed with the nitride at a ratio such that the entire raw material mixed powder after the reaction is 100% nitride, and is placed in a porous or artificially made metal or fireproof container with many holes. A part of this raw material mixed powder is heated from the outside to start a synthesis reaction with the liquid nitrogen, and the synthesis reaction is carried out by the reaction generated heat generated by the synthesis reaction. A method for producing a nitride, characterized in that the nitride is synthesized by a self-propagating high-temperature synthesis method that propagates throughout the entire raw material mixed powder. 2 The nitrides produced are titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN),
Vanadium nitride (VN), niobium nitride (NbN),
Tantalum nitride (TaN), chromium nitride (CrN), boron nitride (BN), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), scandium nitride (ScN),
Neodymium nitride (NdN), yttrium nitride (YN), praseodymium nitride (PrN), iron nitride ( Fe3
2. The method for producing a nitride according to claim 1, wherein the nitride is N, Fe 4 N, Fe 8 N).
JP23242087A 1987-09-18 1987-09-18 Production of nitride Granted JPS6476906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23242087A JPS6476906A (en) 1987-09-18 1987-09-18 Production of nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23242087A JPS6476906A (en) 1987-09-18 1987-09-18 Production of nitride

Publications (2)

Publication Number Publication Date
JPS6476906A JPS6476906A (en) 1989-03-23
JPH0513884B2 true JPH0513884B2 (en) 1993-02-23

Family

ID=16938977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23242087A Granted JPS6476906A (en) 1987-09-18 1987-09-18 Production of nitride

Country Status (1)

Country Link
JP (1) JPS6476906A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065845C (en) * 1998-03-09 2001-05-16 冶金工业部钢铁研究总院 Process for preparing high-purity superfine aluminium nitride powder by self-spreading high-temp synthesis
KR100490481B1 (en) * 2002-01-26 2005-05-17 충남대학교산학협력단 Titanium nitride manufacturing method
CN103159190B (en) * 2013-03-11 2016-01-20 烟台同立高科新材料股份有限公司 A kind of superpure nitrogen compound raw powder's production technology
CN109411177B (en) 2018-12-11 2019-12-24 江南大学 Method for preparing gamma' -Fe4N soft magnetic material by liquid nitrogen high-speed ball milling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627441A (en) * 1979-08-14 1981-03-17 Matsushita Electric Ind Co Ltd Printer unit
JPS6221702A (en) * 1985-07-19 1987-01-30 Mitsue Koizumi Production of titanium nitride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627441A (en) * 1979-08-14 1981-03-17 Matsushita Electric Ind Co Ltd Printer unit
JPS6221702A (en) * 1985-07-19 1987-01-30 Mitsue Koizumi Production of titanium nitride

Also Published As

Publication number Publication date
JPS6476906A (en) 1989-03-23

Similar Documents

Publication Publication Date Title
Deevi Self-propagating high-temperature synthesis of molybdenum disilicide
Yi et al. Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds
Borovinskaya Chemical classes of the SHS processes and materials
Toniolo et al. Synthesis of alumina powders by the glycine–nitrate combustion process
Xinghong et al. Self-propagating high temperature combustion synthesis of TiB/Ti composites
US20060150769A1 (en) Preparation of alloys by the armstrong method
Bertolino et al. Combustion synthesis of Zr–Si intermetallic compounds
Li et al. Thermodynamic and lattice parameter calculation of TiCx produced from Al-Ti-C powders by laser igniting self-propagating high-temperature synthesis
Zheng et al. Microstructure and mechanical properties of h-BN–SiC ceramic composites prepared by in situ combustion synthesis
JPS63214342A (en) Preparation of compound
JPH0513884B2 (en)
Gaus et al. Alumina–Aluminide Alloys (3A) technology: II, modeling of TixAly–Al2O3 composites formation
Peng et al. Fabrication of β-Si3N4 whiskers by combustion synthesis with MgSiN2 as additives
Chang et al. Kinetics and mechanisms for nitridation of floating aluminum powder
Rossetti et al. Kinetic interpretation of α-and β-Si 3 N 4 formation from oxide-free high-purity silicon powder
Matsuura et al. Reactive casting of Ni–Al–Fe ternary intermetallic alloys
Khusid et al. Limits of the self-propagating high-temperature synthesis wave propagation in eutectic composite materials
JPH0468241B2 (en)
Kata et al. Induction-field-activated self-propagating high-temperature synthesis of AlN–SiC solid solutions in the Si 3 N 4–Al–C system
JP4578009B2 (en) Method for producing nitrogen-containing inorganic compound
Mansurov et al. SHS of composite ceramics from mechanochemically treated and thermally carbonized SiO 2 powders
Zhang et al. Microstructure of germanium quenched from the undercooled melt at high pressures
Acker et al. Formation of transition metal silicides by solid–gas reactions: thermodynamic and kinetic considerations
Low Self-propagating high-temperature synthesis of zirconium diboride ceramics
Matsuura et al. Reactive casting of B2-ordered Ni-Al-Co ternary intermetallic alloys