JPH0513858A - Wavelength control equipment - Google Patents

Wavelength control equipment

Info

Publication number
JPH0513858A
JPH0513858A JP15910791A JP15910791A JPH0513858A JP H0513858 A JPH0513858 A JP H0513858A JP 15910791 A JP15910791 A JP 15910791A JP 15910791 A JP15910791 A JP 15910791A JP H0513858 A JPH0513858 A JP H0513858A
Authority
JP
Japan
Prior art keywords
temperature
wavelength
mercury lamp
cooling medium
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15910791A
Other languages
Japanese (ja)
Other versions
JP2821956B2 (en
Inventor
Osamu Wakabayashi
理 若林
Tomokazu Takahashi
知和 高橋
Kazu Mizoguchi
計 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP15910791A priority Critical patent/JP2821956B2/en
Publication of JPH0513858A publication Critical patent/JPH0513858A/en
Application granted granted Critical
Publication of JP2821956B2 publication Critical patent/JP2821956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize glass surface temperature by detecting the glass surface temperature of a low pressure mercury lamp, and making said temperature coincide with a set temperature. CONSTITUTION:One end of an optical fiber 24 is arranged on the surface of a glass tube 20 of a mercury lamp 7, a radiation thermometer 25 is arranged on the other end, and the temperature of the glass tube surface is detected. A tube 30 is arranged around the glass tube 20 to constitute a double tube structure, and cooling medium is circulated in the inside of the tube 30. The cooling medium is stored in a cooling medium vessel 31, the tube 30 and the cooling medium vessel 31 are connected by using a tube 32, and the cooling medium is circulated by a pump 33. A temperature sensor 34 and a heating cooling apparatus 35 are installed in the cooling medium vessel 31, and a temperature controller 36 performs the temperature control of the heating cooling apparatus 35 by using the detection value of the temperature sensor 34 as a feedback signal, so that the cooling medium is kept at a set temperature. Thereby the temperature of the glass tube surface of the mercury lamp 7 can be kept constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、基準光源として低圧
水銀ランプを用い、この基準光源から発生される基準光
とレーザ発振光とを波長検出器に入射しこの波長検出器
の検出出力に基ずき発振光の絶対波長を検出しこの検出
した絶対波長にしたがって発振光の波長を制御する波長
制御装置に関し、特に前記低圧水銀ランプの温度変動を
考慮した技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a low-pressure mercury lamp as a reference light source and makes reference light and laser oscillation light generated from the reference light source incident on a wavelength detector and detects the output based on the detection output of the wavelength detector. The present invention relates to a wavelength control device that detects the absolute wavelength of a squeezed light and controls the wavelength of the oscillated light according to the detected absolute wavelength, and more particularly to a technique that considers the temperature fluctuation of the low-pressure mercury lamp.

【0002】[0002]

【従来の技術】半導体装置製造用の縮小投影露光装置
(ステッパ)の光源としてエキシマレーザの利用が注目
されている。これはエキシマレーザの波長が短いことか
ら光露光の限界0.5μm以下に延ばせる可能性がある
こと、同じ解像度なら従来用いていた水銀ランプのg線
やi線に比較して焦点深度が深いこと、レンズの開口数
(NA)が小さくてすみ露光領域を大きくできること、
大きなパワーが得られることなどの多くの優れた利点が
期待できるからである。
2. Description of the Related Art The use of an excimer laser as a light source of a reduction projection exposure apparatus (stepper) for manufacturing a semiconductor device has attracted attention. This is because the wavelength of the excimer laser is short, so there is a possibility that it can be extended to the light exposure limit of 0.5 μm or less, and if the resolution is the same, the depth of focus is deeper than the g-line and i-line of the mercury lamp that was conventionally used. , That the numerical aperture (NA) of the lens is small and the exposure area can be enlarged.
This is because many excellent advantages such as large power can be expected.

【0003】ところで、エキシマレーザをステッパの光
源として用いる場合には、エキシマレーザの出力レーザ
光を狭帯域化する必要があり、この狭帯域化された出力
レーザ光の波長を高精度に安定化制御する必要がある。
By the way, when an excimer laser is used as a light source for a stepper, it is necessary to narrow the output laser light of the excimer laser, and the wavelength of the narrowed output laser light is controlled with high precision. There is a need to.

【0004】従来、狭帯域発振エキシマレーザの出力光
の波長線幅を計測したり、波長を検出したりする為にモ
ニタエタロンや回折光子を用いた分光器が用いられてい
る。モニタエタロンは部分反射ミラーを所定の空隙をあ
けて対向配置したエアギャップエタロンを用いて構成さ
れるもので、このエアギャップエタロンの透過波長は次
のように表される。
Conventionally, a spectroscope using a monitor etalon or a diffracted photon has been used to measure the wavelength line width of the output light of a narrow band oscillation excimer laser and detect the wavelength. The monitor etalon is constructed by using an air gap etalon in which partial reflection mirrors are opposed to each other with a predetermined gap therebetween, and the transmission wavelength of this air gap etalon is expressed as follows.

【0005】mλ=2nd・cosθ ただし、mは整数、dはエタロンの部分反射ミラー間の
屈折率、θはエタロンの法線と入射光の光軸のなす角度
である。
Mλ = 2nd · cos θ where m is an integer, d is the refractive index between the partial reflection mirrors of the etalon, and θ is the angle between the normal line of the etalon and the optical axis of the incident light.

【0006】この式より、n、d、mが一定とすれば、
波長が変化すると、θが変化することが判る。モニタエ
タロンではこの性質を利用して被検出光の波長を検出し
ている。ところで、上述したモニタエタロンにおいて、
エアギャップ内の圧力及び周囲温度が変化すると、波長
が一定でも上述した角度θが変化してしまう。そこで、
モニタエタロンを用いる場合、エアギャップ内の圧力及
び周囲温度を一定に制御して波長検出を行っていた。
From this equation, if n, d, and m are constant,
It can be seen that θ changes as the wavelength changes. The monitor etalon uses this property to detect the wavelength of the light to be detected. By the way, in the monitor etalon mentioned above,
When the pressure in the air gap and the ambient temperature change, the above-mentioned angle θ changes even if the wavelength is constant. Therefore,
When the monitor etalon is used, the wavelength is detected by controlling the pressure in the air gap and the ambient temperature to be constant.

【0007】しかし、エアギャップ内の圧力及び周囲温
度を高精度に制御することは困難であり、このため充分
な精度で絶対波長を検出することはできなかった。
However, it is difficult to control the pressure in the air gap and the ambient temperature with high precision, and therefore the absolute wavelength cannot be detected with sufficient precision.

【0008】そこで、被検出光とともに予め波長がわか
っている基準光(たとえばアルゴンレーザ光、鉄または
水銀ランプの発振線)をモニタエタロンに入射し、この
基準光に対する被検出光の相対波長を検出することによ
り被検出光の絶対波長を検出する装置が提案されてい
る。
Therefore, reference light whose wavelength is known in advance (for example, an argon laser light, an oscillation line of an iron or mercury lamp) is incident on the monitor etalon together with the detected light, and the relative wavelength of the detected light with respect to the reference light is detected. A device for detecting the absolute wavelength of the light to be detected by doing so has been proposed.

【0009】かかる装置においては、モニタエタロンの
透過光を直接CCDイメージセンサなどの光検出器の検
出面上に入射して、該光検出器の検出面上に干渉縞を形
成し、干渉縞の検出位置に基づき上記絶対波長を検出す
るようにしている。
In such an apparatus, the transmitted light of the monitor etalon is directly incident on the detection surface of a photodetector such as a CCD image sensor to form interference fringes on the detection surface of the photodetector, and The absolute wavelength is detected based on the detection position.

【0010】[0010]

【発明が解決しようとする課題】ところが、KrF狭帯
域エキシマレーザのモニタエタロンの上記基準光として
特に水銀ランプを使用する場合、図5(a)〜(c)に
示すように、数10本の発振線が重なり、しかも水銀ラ
ンプの温度によってスペクトル波形が変化し、被検出光
を高精度に検出できないという問題があった。図5は水
銀ランプのガラス表面温度Tによってスペクトル波形が
変化することを示すもので、これは水銀ランプの25
3.7nm線を使用する場合、顕著に現れる。
However, when a mercury lamp is particularly used as the reference light of the monitor etalon of the KrF narrow band excimer laser, as shown in FIGS. 5 (a) to 5 (c), several tens of lamps are used. There is a problem that the oscillation lines overlap and the spectrum waveform changes depending on the temperature of the mercury lamp, so that the detected light cannot be detected with high accuracy. Figure 5 shows that the spectrum waveform changes with the glass surface temperature T of the mercury lamp.
It appears prominently when using the 3.7 nm line.

【0011】すなわち、図5に示すように低圧水銀ラン
プの253.7nm線によって発生する干渉縞の形状が
水銀ランプのガラス表面の温度によって大きく変化する
ことと、この干渉縞の形状がガラス表面の温度に一義的
に対応することを本発明者らは発見した。
That is, as shown in FIG. 5, the shape of the interference fringes generated by the 253.7 nm line of the low-pressure mercury lamp greatly changes depending on the temperature of the glass surface of the mercury lamp, and the shape of the interference fringes of the glass surface changes. The inventors have found that the temperature is uniquely responded to.

【0012】この発明はこのような実情に鑑みてなされ
たもので、基準光のスペクトル波形を安定化し、出力レ
ーザ光の絶対波長を高精度に検出する事ができる波長制
御装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a wavelength control device capable of stabilizing the spectral waveform of the reference light and detecting the absolute wavelength of the output laser light with high accuracy. To aim.

【0013】[0013]

【課題を解決するための手段】この発明では、基準光源
として低圧水銀ランプを用い、この基準光源から発生さ
れる基準光とレーザ発振光とを波長検出器に入射しこの
波長検出器の検出出力に基ずき発振光の絶対波長を検出
しこの検出した絶対波長にしたがって発振光の波長を制
御する波長制御装置において、前記低圧水銀ランプのガ
ラス管表面の温度を検出する温度検出手段と、前記低圧
水銀ランプを加熱または冷却する加熱冷却手段と、前記
温度検出手段の出力に基づき前記加熱冷却手段を制御し
て前記水銀ランプの温度を所定の温度に保持する温度制
御手段とを具えるようにする。
According to the present invention, a low-pressure mercury lamp is used as a reference light source, and reference light and laser oscillation light generated from this reference light source are made incident on a wavelength detector, and the detection output of this wavelength detector. In the wavelength control device for detecting the absolute wavelength of the oscillated light based on the above, and controlling the wavelength of the oscillated light according to the detected absolute wavelength, the temperature detection means for detecting the temperature of the glass tube surface of the low-pressure mercury lamp, and A heating / cooling means for heating or cooling the low-pressure mercury lamp, and a temperature control means for controlling the heating / cooling means based on the output of the temperature detecting means to maintain the temperature of the mercury lamp at a predetermined temperature. To do.

【0014】[0014]

【作用】かかる本発明の構成によれば、低圧水銀ランプ
のガラス表面の温度を測定し、この測定値を設定温度に
一致させるよう加熱冷却手段を温度制御する事で、前記
低圧水銀ランプのガラス表面の温度を安定化させ、これ
によりスペクトル波形を安定化させ、出力レーザ光の絶
対波長を高精度に検出できるようにする。
According to the structure of the present invention, the glass surface of the low-pressure mercury lamp is measured by measuring the temperature of the glass surface of the low-pressure mercury lamp and controlling the temperature of the heating / cooling means so that the measured value matches the set temperature. The surface temperature is stabilized, whereby the spectrum waveform is stabilized, and the absolute wavelength of the output laser light can be detected with high accuracy.

【0015】[0015]

【実施例】以下、この発明を添付図面に示す実施例に従
って詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the embodiments shown in the accompanying drawings.

【0016】図1はこの発明の実施例を示すものであ
り、KrF狭帯域エキシマレーザ100はレーザチャン
バ1及び狭帯域化ユニット2で構成されている。狭帯域
化ユニット2内にはエタロンなどの波長選択素子を含ん
でいる。
FIG. 1 shows an embodiment of the present invention. A KrF narrow band excimer laser 100 is composed of a laser chamber 1 and a band narrowing unit 2. The band narrowing unit 2 includes a wavelength selection element such as an etalon.

【0017】レーザチャンバ1から出力されたKrFエ
キシマレーザ光は、狭帯域化ユニット2によって狭帯域
化された後、フロントミラー3、ビームスプリッタ4を
介して出射される。この出力レーザ光の一部はビームス
プリッタ4でモニタリングされ、ビームスプリッタ5を
介して波長検出器6に入力される。
The KrF excimer laser light output from the laser chamber 1 is narrowed by the narrowing unit 2 and then emitted through the front mirror 3 and the beam splitter 4. A part of the output laser light is monitored by the beam splitter 4 and input to the wavelength detector 6 via the beam splitter 5.

【0018】一方、基準光源としての低圧水銀ランプ7
より発生した基準光はバンドパスフィルタ8を介して波
長253.7の光のみが選択され、該選択した光がビー
ムスプリッタ5を介して波長検出器6に入力される。
On the other hand, a low-pressure mercury lamp 7 as a reference light source.
Only the light having the wavelength of 253.7 is selected as the reference light generated by the bandpass filter 8, and the selected light is input to the wavelength detector 6 through the beam splitter 5.

【0019】波長コントローラ8は波長検出器6の出力
に基づき予め波長の判っている基準光に対する被検出光
の相対波長を検出することにより被検出光の絶対波長を
検出し、この検出した絶対波長と設定波長との差がなく
なるようドライバ9を介して狭帯域化ユニット2内に配
置されているエタロンなどの波長選択素子の選択波長を
シフト制御する。
The wavelength controller 8 detects the absolute wavelength of the detected light by detecting the relative wavelength of the detected light with respect to the reference light whose wavelength is known in advance based on the output of the wavelength detector 6, and the detected absolute wavelength. And the selected wavelength of the wavelength selection element such as an etalon arranged in the band narrowing unit 2 is controlled via the driver 9 so as to eliminate the difference between the selected wavelength and the set wavelength.

【0020】ところで、この実施例においては、水銀ラ
ンプ7のガラス表面の温度を検出する温度センサ10
と、水銀ランプのガラス管表面の温度を加熱または冷却
する加熱冷却器11と、温度センサ10の出力に基づき
加熱冷却器11を駆動制御して水銀ランプのガラス管表
面の温度を恒温制御する温度コントローラ12を設ける
ようにしている。
By the way, in this embodiment, the temperature sensor 10 for detecting the temperature of the glass surface of the mercury lamp 7.
A heating and cooling device 11 for heating or cooling the temperature of the surface of the glass tube of the mercury lamp, and a temperature for driving and controlling the heating and cooling device 11 based on the output of the temperature sensor 10 to control the temperature of the surface of the glass tube of the mercury lamp to a constant temperature. The controller 12 is provided.

【0021】図2は、波長検出器6の具体例を示すもの
で、出力レーザ光のサンプリング光は、スリガラス13
aで散乱され、ビームスプリッタ5を介して、モニタエ
タロン13、集光レンズ14及び光位置検出器15で構
成される波長検出器6に入力される。
FIG. 2 shows a concrete example of the wavelength detector 6. The sampling light of the output laser light is ground glass 13
The light is scattered by a and is input to the wavelength detector 6 including the monitor etalon 13, the condenser lens 14, and the optical position detector 15 via the beam splitter 5.

【0022】一方、低圧水銀ランプ7より発生した基準
光はバンドパスフィルタ8を介して波長253.7の光
のみが選択され、該選択した光がビームスプリッタ5を
介してモニタエタロン13に入力される。
On the other hand, as the reference light generated from the low-pressure mercury lamp 7, only the light of wavelength 253.7 is selected through the bandpass filter 8, and the selected light is input into the monitor etalon 13 through the beam splitter 5. It

【0023】モニタエタロン13は内側の面が部分反射
ミラーとされた2枚の透明板13a,13bから構成さ
れ、エタロン13に対する入射光の角度に対応してそれ
ぞれ透過波長が異なるものである。
The monitor etalon 13 is composed of two transparent plates 13a and 13b whose inner surface is a partially reflecting mirror, and has different transmission wavelengths depending on the angle of incident light with respect to the etalon 13.

【0024】エタロン13を透過した光は集光レンズ1
4に入射される。この集光レンズ14は例えば、色収差
補正が施された色消しレンズであり、この色消し集光レ
ンズ14を経ることにより色収差が補正される。このよ
うな色消しレンズを用いているのは、KrFエキシマレ
ーザの波長(248.39nm)と基準光の波長(25
3.7nm)が多少異なるためである。なおこの集光レ
ンズとして凹面鏡を用いるようにしてもよい。
The light transmitted through the etalon 13 is a condenser lens 1.
It is incident on 4. The condenser lens 14 is, for example, an achromatic lens that has been subjected to chromatic aberration correction. By passing through the achromatic condenser lens 14, chromatic aberration is corrected. Such an achromatic lens is used because the wavelength of the KrF excimer laser (248.39 nm) and the wavelength of the reference light (25
(3.7 nm) is slightly different. A concave mirror may be used as the condenser lens.

【0025】光位置検出器15は集光レンズ14の焦点
上に配設された例えば1次元または2次元のイメージセ
ンサであり、集光レンズ14を経た光は光位置検出器1
5に結像され、この光位置検出器15の検出面上に基準
光の波長に対応した第1の干渉縞15aおよび被検出光
の波長に対応した第2の干渉縞15bを形成する。
The optical position detector 15 is, for example, a one-dimensional or two-dimensional image sensor disposed on the focal point of the condenser lens 14, and the light passing through the condenser lens 14 is the optical position detector 1.
5, the first interference fringes 15a corresponding to the wavelength of the reference light and the second interference fringes 15b corresponding to the wavelength of the detected light are formed on the detection surface of the optical position detector 15.

【0026】光位置検出器15からは上記第1及び第2
の干渉縞15a、15bの位置に対応する信号が波長コ
ントローラ8に入力される。
From the optical position detector 15, the above first and second
Signals corresponding to the positions of the interference fringes 15a and 15b are input to the wavelength controller 8.

【0027】波長コントローラ8では、これら干渉縞の
位置信号から被検出光(出力レーザ光)の絶対波長を検
出し、この検出絶対波長と設定波長(目標値)の差を計
算し、該計算値に応じて図示しない狭帯域化ユニット内
の波長選択素子(例えば、エタロンまたはグレーティン
グ)の角度等を変化させる。この結果、上記波長選択素
子を透過するエキシマレ−ザ光の波長がシフトされて、
設定波長(目標値)に固定されるこの図2の実施例にお
いては、水銀ランプ7のガラス表面に温度センサ10を
設けるとともに、水銀ランプ7のガラス管表面温度を安
定化するための手段としてファン16を設けて水銀ラン
プ7を冷却するようにしている。そしてこの場合は、温
度コントローラ12は温度センサ10の検出値をフィー
ドバック信号としてファン16の回転数を制御またはオ
ンオフを制御する事で水銀ランプ7のガラス管表面温度
を設定温度に保持するようにしている。
The wavelength controller 8 detects the absolute wavelength of the detected light (output laser light) from the position signals of these interference fringes, calculates the difference between the detected absolute wavelength and the set wavelength (target value), and calculates the calculated value. The angle of the wavelength selection element (eg, etalon or grating) in the band-narrowing unit (not shown) is changed in accordance with the above. As a result, the wavelength of the excimer laser light transmitted through the wavelength selection element is shifted,
In the embodiment of FIG. 2 in which the wavelength (target value) is fixed, a temperature sensor 10 is provided on the glass surface of the mercury lamp 7 and a fan is provided as a means for stabilizing the surface temperature of the glass tube of the mercury lamp 7. 16 is provided to cool the mercury lamp 7. In this case, the temperature controller 12 uses the detection value of the temperature sensor 10 as a feedback signal to control the number of revolutions of the fan 16 or to control the on / off of the fan to keep the surface temperature of the glass tube of the mercury lamp 7 at the set temperature. There is.

【0028】図3(a)〜(c)は、水銀ランプ7のガ
ラス管表面温度を検出する温度センサ10の具体例を示
すものである。そもそも水銀ランプ7は非常に強い紫外
線を放射するため有機物の接着剤を使用する事ができな
い。
3A to 3C show a specific example of the temperature sensor 10 for detecting the surface temperature of the glass tube of the mercury lamp 7. In the first place, the mercury lamp 7 radiates extremely strong ultraviolet rays, and therefore an organic adhesive cannot be used.

【0029】そこで、図3(a)の例では、水銀ランプ
7のガラス管20を金属21で挟持し、その金属21の
温度を温度センサ22で検出するようにしている。金属
21の例としては、熱伝導率の高い銅やアルミニウムな
どがある。なお、金属21の上方に切り欠け23を設け
て、ガラス管20と金属21の熱膨張率の違いによるガ
ラス管20の破損を防止するようにしている。
Therefore, in the example of FIG. 3A, the glass tube 20 of the mercury lamp 7 is sandwiched by the metal 21, and the temperature of the metal 21 is detected by the temperature sensor 22. Examples of the metal 21 include copper and aluminum having high thermal conductivity. A notch 23 is provided above the metal 21 to prevent damage to the glass tube 20 due to the difference in thermal expansion coefficient between the glass tube 20 and the metal 21.

【0030】図3(b)では、水銀ランプ7のガラス管
20の内部に温度センサ22を封入するようにしてい
る。
In FIG. 3B, the temperature sensor 22 is enclosed inside the glass tube 20 of the mercury lamp 7.

【0031】図3(c)では、水銀ランプ7のガラス管
20の表面に光ファイバ24のー端を配置し、他端に放
射温度計25を配置して、ガラス管表面の温度を検出す
るようにしている。勿論この場合光ファイバ24を設け
ずに放射温度計25をガラス管表面に直接配設するよう
にしてもよい。
In FIG. 3C, the end of the optical fiber 24 is arranged on the surface of the glass tube 20 of the mercury lamp 7, and the radiation thermometer 25 is arranged on the other end to detect the temperature of the surface of the glass tube. I am trying. Of course, in this case, the radiation thermometer 25 may be directly provided on the surface of the glass tube without providing the optical fiber 24.

【0032】図4は、水銀ランプ7のガラス管を加熱冷
却する加熱冷却器の具体例を示すものであり、ガラス管
20の周囲に管30を配設して2重管構成とし、この管
30内部に冷却媒体を循環させる。冷却媒体は冷却媒体
槽31に貯蔵され、管30と冷却媒体槽31との間を配
管32で連結し、ポンプ33によって冷却媒体を循環さ
せている。冷却媒体槽31内には、温度センサ34と加
熱冷却器35が設けられており、温度コントローラ36
が温度センサ34の検出値をフィードバック信号として
加熱冷却器35を温度制御する事で冷却媒体を設定温度
に保持することで、水銀ランプ7のガラス管表面の温度
を一定に保持するようにしている。なお、この場合は冷
却媒体の温度を検出しているが、ガラス管表面の温度を
直接検出するようにしてもよい。
FIG. 4 shows a concrete example of a heating / cooling device for heating and cooling the glass tube of the mercury lamp 7. A tube 30 is arranged around the glass tube 20 to form a double tube structure. A cooling medium is circulated inside 30. The cooling medium is stored in the cooling medium tank 31, the pipe 30 and the cooling medium tank 31 are connected by a pipe 32, and the cooling medium is circulated by a pump 33. A temperature sensor 34 and a heating / cooling device 35 are provided in the cooling medium tank 31, and a temperature controller 36 is provided.
Controls the temperature of the heating / cooling device 35 by using the detection value of the temperature sensor 34 as a feedback signal to keep the cooling medium at the set temperature, thereby keeping the temperature of the surface of the glass tube of the mercury lamp 7 constant. . Although the temperature of the cooling medium is detected in this case, the temperature of the surface of the glass tube may be directly detected.

【0033】[0033]

【発明の効果】以上説明したようにこの発明によれば、
波長検出用の基準光源としての低圧水銀ランプの温度を
検出し、その検出結果に基づいてガラス管表面を温度一
定制御をしているために、水銀ランプのガラス管表面の
温度を高精度に安定化させることができ、このため基準
光のスペクトル波形が非常に安定化され、基準光の波長
を高精度に検出することができる。そのため、出力レー
ザ光の絶対波長を高精度に検出でき、出力レーザ光の波
長制御を高精度になし得る。
As described above, according to the present invention,
The temperature of the low-pressure mercury lamp as the reference light source for wavelength detection is detected, and the temperature of the glass tube surface is controlled to be constant based on the detection result, so the temperature of the glass tube surface of the mercury lamp is stabilized with high accuracy. Therefore, the spectrum waveform of the reference light is extremely stabilized, and the wavelength of the reference light can be detected with high accuracy. Therefore, the absolute wavelength of the output laser light can be detected with high accuracy, and the wavelength of the output laser light can be controlled with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施例を示す図。FIG. 1 is a diagram showing an embodiment of the invention.

【図2】発明の他の実施例を示す図。FIG. 2 is a diagram showing another embodiment of the invention.

【図3】温度センサの具体例を示す図。FIG. 3 is a diagram showing a specific example of a temperature sensor.

【図4】加熱冷却器の具体例を示す図。FIG. 4 is a diagram showing a specific example of a heating / cooling device.

【図5】従来技術の不具合現象の説明図。FIG. 5 is an explanatory diagram of a defect phenomenon of the conventional technique.

【符号の説明】[Explanation of symbols]

1…レーザチャンバ 2…狭帯域化ユニット 3…フロントミラー 4…ビームスプリッタ 5…ビームスプリッタ 6…波長検出器 7…低圧水銀ランプ 8…波長コントローラ 9…ドライバ 10…温度センサ 11…加熱冷却ユニット 12…温度コントローラ 13…モニタエタロン 14…集光レンズ 15…光位置検出器 16…ファン 20…ガラス管 21…金属 100…KrF狭帯域エキシマレーザ 1 ... Laser chamber 2 ... Band narrowing unit 3 ... Front mirror 4 ... Beam splitter 5 ... Beam splitter 6 ... Wavelength detector 7 ... Low pressure mercury lamp 8 ... Wavelength controller 9 ... driver 10 ... Temperature sensor 11 ... Heating / cooling unit 12 ... Temperature controller 13 ... Monitor etalon 14 ... Condensing lens 15 ... Optical position detector 16 ... fan 20 ... Glass tube 21 ... Metal 100 ... KrF narrow band excimer laser

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】基準光源として低圧水銀ランプを用い、こ
の基準光源から発生される基準光とレーザ発振光とを波
長検出器に入射しこの波長検出器の検出出力に基ずき発
振光の絶対波長を検出しこの検出した絶対波長にしたが
って発振光の波長を制御する波長制御装置において、 前記低圧水銀ランプのガラス管表面の温度を検出する温
度検出手段と、 前記低圧水銀ランプのガラス管表面を加熱または冷却す
る加熱冷却手段と、 前記温度検出手段の出力に基づき前記加熱冷却手段を制
御して前記水銀ランプのガラス表面の温度を所定の温度
に保持する温度制御手段と、を具える波長制御装置。
1. A low-pressure mercury lamp is used as a reference light source, and reference light and laser oscillation light generated from this reference light source are made incident on a wavelength detector, and the absolute value of the oscillation light is detected based on the detection output of this wavelength detector. In the wavelength control device for detecting the wavelength and controlling the wavelength of the oscillated light according to the detected absolute wavelength, the temperature detection means for detecting the temperature of the glass tube surface of the low-pressure mercury lamp, the glass tube surface of the low-pressure mercury lamp Wavelength control comprising heating / cooling means for heating or cooling, and temperature control means for controlling the heating / cooling means based on the output of the temperature detecting means to maintain the temperature of the glass surface of the mercury lamp at a predetermined temperature. apparatus.
【請求項2】前記温度検出手段は、 前記低圧水銀ランプのガラス管表面を挟持する金属体
と、 この金属体の温度を検出する温度センサと、 を有する請求項1記載の波長制御装置。
2. The wavelength control device according to claim 1, wherein the temperature detecting means includes a metal body sandwiching a glass tube surface of the low-pressure mercury lamp, and a temperature sensor detecting a temperature of the metal body.
【請求項3】前記温度検出手段は、前記低圧水銀ランプ
のガラス管内に封入された温度センサである請求項1記
載の波長制御装置。
3. The wavelength control device according to claim 1, wherein the temperature detecting means is a temperature sensor enclosed in a glass tube of the low-pressure mercury lamp.
【請求項4】前記温度検出手段は放射温度計である請求
項1記載の波長制御装置。
4. The wavelength control device according to claim 1, wherein the temperature detecting means is a radiation thermometer.
【請求項5】前記加熱冷却手段はファンであり、前記温
度制御手段は前記ファンの回転数制御またはオンオフ制
御を行うことにより前記水銀ランプの温度を所定の温度
に保持する請求項1記載の波長制御装置。
5. The wavelength according to claim 1, wherein the heating / cooling means is a fan, and the temperature control means maintains the temperature of the mercury lamp at a predetermined temperature by controlling the rotation speed or on / off of the fan. Control device.
【請求項6】前記加熱冷却手段は、所定の冷却媒体を貯
蔵する冷却媒体槽と、 前記低圧水銀ランプのガラス管の周囲に配設されて前記
冷却媒体が流れる2重管と、前記冷却媒体槽と2重管の
間で前記冷却媒体を循環させるポンプと、前記冷却媒体
槽内で前記冷却媒体を加熱冷却する加熱冷却器とを有
し、 前記温度制御手段は前記加熱冷却器を温度制御する事で
前記水銀ランプの温度を所定の温度に保持する請求項1
記載の波長制御装置。
6. The heating / cooling means, a cooling medium tank for storing a predetermined cooling medium, a double tube arranged around the glass tube of the low-pressure mercury lamp and through which the cooling medium flows, and the cooling medium. It has a pump that circulates the cooling medium between the tank and the double pipe, and a heating cooler that heats and cools the cooling medium in the cooling medium tank, and the temperature control means controls the temperature of the heating cooler. The temperature of the mercury lamp is maintained at a predetermined temperature by carrying out
The wavelength control device described.
JP15910791A 1991-06-28 1991-06-28 Wavelength controller and low-pressure mercury lamp for wavelength controller Expired - Fee Related JP2821956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15910791A JP2821956B2 (en) 1991-06-28 1991-06-28 Wavelength controller and low-pressure mercury lamp for wavelength controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15910791A JP2821956B2 (en) 1991-06-28 1991-06-28 Wavelength controller and low-pressure mercury lamp for wavelength controller

Publications (2)

Publication Number Publication Date
JPH0513858A true JPH0513858A (en) 1993-01-22
JP2821956B2 JP2821956B2 (en) 1998-11-05

Family

ID=15686402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15910791A Expired - Fee Related JP2821956B2 (en) 1991-06-28 1991-06-28 Wavelength controller and low-pressure mercury lamp for wavelength controller

Country Status (1)

Country Link
JP (1) JP2821956B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951614A (en) * 1996-06-11 1999-09-14 Toyota Jidosha Kabushiki Kaisha Vehicle hybrid drive system control apparatus adapted to reduce transmission input torque upon transmission shifting, by using engine and/or motor/generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951614A (en) * 1996-06-11 1999-09-14 Toyota Jidosha Kabushiki Kaisha Vehicle hybrid drive system control apparatus adapted to reduce transmission input torque upon transmission shifting, by using engine and/or motor/generator

Also Published As

Publication number Publication date
JP2821956B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US5243614A (en) Wavelength stabilizer for narrow bandwidth laser
JP2631569B2 (en) Wavelength detector
JP3628017B2 (en) Imaging method and imaging apparatus
JPH10313143A (en) Narrow-band laser device
JP3690632B2 (en) Narrowband module inspection equipment
JPWO2020075548A1 (en) Microscopic differential optical device and microspectroscopic optical method
EP1111333A1 (en) Light source device, spectroscope comprising the light source device, and film thickness sensor
US20180323568A1 (en) Line narrowed laser apparatus
Kozlova et al. Tunable transportable spectroradiometer based on an acousto-optical tunable filter: Development and optical performance
JP2821956B2 (en) Wavelength controller and low-pressure mercury lamp for wavelength controller
US4035654A (en) Optical alignment sensor
JP5476482B2 (en) Catadioptric projection objective including catadioptric component and measuring device
JP2997956B2 (en) Wavelength detector
JP3219879B2 (en) Wavelength detector
JP2002526766A (en) Identification and concentration determination of contaminant species by measuring the output intensity of intracavity lasers
JPH08201286A (en) Optical measuring apparatus
KR20110081087A (en) Laser device
US6456361B1 (en) Method and instrument for measuring vacuum ultraviolet light beam, method of producing device and optical exposure apparatus
SE451409B (en) DEVICE FOR DETERMINING THE TEMPERATURE OF A METOBJECT BY DETECTING THE ELECTROMAGNETIC RADIATION EMITTED BY THE METOBJECT
JP2606146B2 (en) Spectrum measuring method and apparatus
Bazkır et al. High-accuracy optical power measurements by using electrical-substitution cryogenic radiometer
JP2007327904A (en) Reflectance measuring instrument
JPH01155673A (en) Laser wavelength control device
JPH057045A (en) Wavelength control equipment
JP2743234B2 (en) Wavelength control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070904

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090904

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090904

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100904

LAPS Cancellation because of no payment of annual fees