JPH05138355A - Consumable electrode gas shielded arc welding method and equipment - Google Patents

Consumable electrode gas shielded arc welding method and equipment

Info

Publication number
JPH05138355A
JPH05138355A JP31030391A JP31030391A JPH05138355A JP H05138355 A JPH05138355 A JP H05138355A JP 31030391 A JP31030391 A JP 31030391A JP 31030391 A JP31030391 A JP 31030391A JP H05138355 A JPH05138355 A JP H05138355A
Authority
JP
Japan
Prior art keywords
period
polarity
wire
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31030391A
Other languages
Japanese (ja)
Other versions
JP3162137B2 (en
Inventor
Tsuneo Mita
常夫 三田
Takayuki Kashima
孝之 鹿島
Tsuneo Shinada
常夫 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP31030391A priority Critical patent/JP3162137B2/en
Publication of JPH05138355A publication Critical patent/JPH05138355A/en
Application granted granted Critical
Publication of JP3162137B2 publication Critical patent/JP3162137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the consumable electrode gas shielded arc welding method and equipment capable of being applied to various works ranging from not only medium and thick plates but also a thin plate and to a joint having a large root gap. CONSTITUTION:A current IP higher than a critical current value of a wire and a current IB lower than the critical current value of the wire are supplied alternately in a period of time TP and in a period of time TB respectively. Both currents IP and IB allow the polarity of the wire to be plus in a period of time TDC in a period of time T, the current IP allows the polarity of the wire to be plus and the current IB allows the polarity of the wire to be minus in a remaining period of time TAC in the period of time T and the output to repeat alternately the period of time TDC and the period of time TAC is impressed between electrodes and base metals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、消耗電極を用いるガス
シ−ルドア−ク溶接方法およびその装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas shield arc welding method and apparatus using a consumable electrode.

【0002】[0002]

【従来の技術】特開昭56−165564号公報では溶
接電流を直流にしてプラス側を電極(以下、ワイヤとい
う)に、またマイナス側を母材に接続する。そして、パ
ルス電流値、パルス電流期間およびベ−ス電流値を所定
の値に保ち、ベ−ス電流期間をワイヤ送給量に略反比例
して変化させることにより、ワイヤ先端に形成される溶
滴をパルス電流に同期して溶融池へ移行させるガスシ−
ルドア−ク溶接方法が開示されている。この技術の場
合、母材への入熱が大きいから、溶込みが深く、余盛の
少ない溶接ビ−ドが得られる。そこで、比較的板厚が厚
いワ−クに適用すると良好な溶接結果が得られる。ま
た、特開平1−186279号公報では溶接電流を交流
とし、ワイヤ送給速度に対応した交流出力の周波数を定
め、ワイヤの材質や直径などに応じた通電期間および電
流値を持つ逆極性電流を通電して溶接するガスシ−ルド
ア−ク溶接方法および装置が開示されている。この技術
の場合、母材への入熱は比較的小さいから溶込みは比較
的浅いが、ワイヤの溶融量が多いため溶着量を大きくす
ることができる。そこで、薄板やル−トギャップが大き
い継手に適用すると良好な溶接結果が得られる。
2. Description of the Related Art In Japanese Unexamined Patent Publication (Kokai) No. 56-165564, a welding current is made direct current and a positive side is connected to an electrode (hereinafter referred to as a wire) and a negative side is connected to a base material. Then, the pulse current value, the pulse current period, and the base current value are maintained at predetermined values, and the base current period is changed substantially in inverse proportion to the wire feed amount, so that the droplet formed on the tip of the wire. Gas sheet that transfers the gas to the molten pool in synchronization with the pulse current
A method for rudder welding is disclosed. In the case of this technique, since the heat input to the base metal is large, a weld bead with a deep penetration and a small excess can be obtained. Therefore, when applied to a work having a relatively large plate thickness, good welding results can be obtained. Further, in Japanese Unexamined Patent Publication No. 1-186279, the welding current is set to an alternating current, the frequency of the alternating current output corresponding to the wire feeding speed is determined, and a reverse polarity current having a conduction period and a current value according to the material and diameter of the wire is set. A gas shield arc welding method and device for welding by energizing is disclosed. In the case of this technique, since the heat input to the base material is relatively small, the penetration is relatively shallow, but the amount of fusion can be increased because the amount of fusion of the wire is large. Therefore, when applied to a thin plate or a joint having a large root gap, good welding results can be obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前者の
技術を薄板やル−トギャップが大きい継手に適用する
と、母材が溶融し過ぎてしまい、溶融金属の溶落ちや過
大なアンダ−カットなどの溶接欠陥が発生しやすい。一
方、後者の技術を中・厚板に適用すると、ビ−ド幅が狭
く余盛が高くなり、融合不良も発生しやすい。本発明の
目的は、上記した課題を解決し、中・厚板だけでなく薄
板やル−トギャップが大きい継手まで様々の広範囲ワ−
クに適用することができる消耗電極式ガスシ−ルドア−
ク溶接方法および装置を提供するにある。
However, when the former technique is applied to a thin plate or a joint having a large root gap, the base material is excessively melted, and the weld metal is burned through or excessively undercuts. Defects are likely to occur. On the other hand, when the latter technique is applied to medium-thick plates, the bead width is narrow and the excess is high, and fusion defects are likely to occur. An object of the present invention is to solve the above-mentioned problems and to perform various wide range work not only for medium and thick plates but also for thin plates and joints having a large root gap.
Electrode type gas shield door that can be applied to
In order to provide a welding method and apparatus.

【0004】[0004]

【課題を解決するための手段】上記した課題は、消耗電
極式ガスシ−ルドア−ク溶接方法において、交流期間と
直流期間とを交互に繰り返す出力を電極と母材との間に
印加することにより解決される。また、期間TPではワ
イヤの臨界電流値よりも大きい電流IPを、また期間TB
にはワイヤの臨界電流値よりも小さい電流IBを交互に
供給すると共に、期間Tの中の期間TDCにおいては電流
P,電流IBともワイヤをプラスとする極性(以下、E
P極性という)とし、期間Tの中の残りの期間TACにお
いては電流IPをEP極性にまた電流IBをワイヤをマイ
ナスとする極性(以下、EN極性という)として、期間
DCと期間TACとを交互に繰り返す出力を電極と母材と
の間に印加することにより解決される。さらに、上記期
間Tの中の期間TACと期間TDCの比率を変化させること
により解決される。。
The above-mentioned problems are solved by applying an output in which the alternating period and the direct period are alternately repeated between the electrode and the base material in the consumable electrode type gas shield arc welding method. Will be resolved. Further, a large current I P than the critical current value of the wire in the period T P, also the period T B
Is alternately supplied with a current I B smaller than the critical current value of the wire, and in the period T DC of the period T, both the current I P and the current I B have a positive polarity (hereinafter, E).
P polarity), and in the remaining period T AC of the period T, the current I P has the EP polarity and the current I B has the negative polarity of the wire (hereinafter referred to as the EN polarity), and the period T DC and the period This is solved by applying an output that alternately repeats T AC between the electrode and the base material. Further, it is solved by changing the ratio of the period T AC and the period T DC in the period T. .

【0005】[0005]

【作用】溶接電流を直流とする時の消耗電極式ガスシ−
ルドア−ク溶接では、溶接電流値など極性以外の他の条
件を同一にしても、極性により溶接現象および溶接結果
は異なる。すなわち、EP極性ではア−クが集中して溶
込みが深くなるのに対し、EN極性ではア−クが分散し
て溶込みは浅くなる。一方、ワイヤの溶融量はEN極性
のほうがEP極性よりも多くなる。本発明によれば、期
間Tの中の期間TDCには交互に供給する電流IPと電流
BをEP極性とし、期間Tの中の残りの期間TACには
電流IPをEP極性とし電流IBをEN極性で供給するよ
うにしておき、期間TDCと期間TACとを交互に繰り返
す。この結果、電流IBがEP極性で供給される時には
ア−クが集中して溶込みが深くなり、一方、電流IB
EN極性の時にはア−クが分散して溶込みは浅くなると
共に、ワイヤの溶融量はEP極性の時よりも増加する。
そして、上記期間Tの中の期間TDCと期間TACの比率を
変化させることにより溶込み深さの制御ができる。すな
わち、期間TACの比率(TAC/T)を小さくすることに
より上記した従来技術の前者とほぼ同等の結果を、また
期間TACの比率(TAC/T)を大きくすることにより上
記した従来技術の後者とほぼ同等の溶接結果を得られる
だけでなく、さらに両者の中間的な溶接結果となるよう
に溶込み深さや溶融量を制御することができる。また、
期間Tを変化させることにより、ビ−ド波の高さや間隔
あるいは溶込み深さの変動周期を制御することができる
から、ビ−ド波の明瞭化(ビ−ド波の輪郭をきわだたせ
る)および裏波溶接での溶込み深さの制御も可能とな
る。
[Operation] Consumable electrode type gas shield when welding current is DC
In rudder arc welding, the welding phenomenon and the welding result differ depending on the polarity even if the conditions other than the polarity such as the welding current value are the same. That is, in the EP polarity, the arc is concentrated and the penetration is deep, whereas in the EN polarity, the arc is dispersed and the penetration is shallow. On the other hand, the melting amount of the wire in the EN polarity is larger than that in the EP polarity. According to the present invention, in the period T DC of the period T, the current I P and the current I B alternately supplied have the EP polarity, and in the remaining period T AC of the period T, the current I P has the EP polarity. Then, the current I B is supplied in the EN polarity, and the period T DC and the period T AC are alternately repeated. As a result, the A when the current I B is provided in EP polarity - click the penetration becomes deeper concentrated, while the current I B is at the time of EN polarity A - with click is dispersed penetration is shallower , The amount of melting of the wire is greater than that of the EP polarity.
Then, the penetration depth can be controlled by changing the ratio of the period T DC to the period T AC in the period T. That is, the result almost equal to the former case of the above-mentioned conventional technique is obtained by decreasing the ratio of the period T AC (T AC / T), and the result is increased by increasing the ratio of the period T AC (T AC / T). Not only can the welding result almost equal to the latter of the conventional technique be obtained, but also the penetration depth and the melting amount can be controlled so as to obtain an intermediate welding result between the two. Also,
By changing the period T, it is possible to control the fluctuation period of the height or interval of the bead wave or the penetration depth, so that the bead wave can be clarified (the outline of the bead wave can be defined). ) And the penetration depth in Uranami welding are also possible.

【0006】[0006]

【実施例】図1は本発明による消耗電極式ガスシ−ルド
ア−ク溶接方法を実施するための装置の一実施例を示す
ブロック図である。以下、電流波形を示す図2を参照し
ながら説明する。同図において、1は直流電源で、商用
交流を直流に変換する整流回路と、整流された電流を交
流に変換する入力側インバ−タ回路と、変換された交流
を降圧する変圧器と、変換された交流を再び直流に変換
する整流回路等から構成されており、入力された3相の
商用交流を直流に変換する。なお、直流電源1は2電源
で構成され、出力端子1aは出力端子1bに対してプラ
ス側、出力端子1bは出力端子1cに対してプラス側に
なるように構成されている。2は出力側インバ−タ回路
で、2個のトランジスタ2a,2bで構成され、直流電
源1の出力を略矩形の交流に変換する。ここで、トラン
ジスタ2aのコレクタは上記出力端子1aに、エミッタ
はトランジスタ2bのコレクタに、ベ−スは後述する駆
動回路17にそれぞれ接続されている。また、トランジ
スタ2bのエミッタは上記出力端子1cに、ベ−スは後
述する駆動回路17にそれぞれ接続されている。3はワ
イヤで、トランジスタ2aのエミッタとトランジスタ2
bのコレクタとの接続点4に接続されている。なお、5
はワイヤ送給ロ−ラである。6は母材で、上記出力端子
1bに接続されている。7は電流IPの値を設定するた
めのIP設定器、8は電流IBの値を設定するためのIB
設定器で、それぞれ切換スイッチ9を介して直流電源1
に接続されている。10は電流IPを供給する期間TP
設定するためのTP設定器、11は電流IBを供給する期
間TBを設定するためのTB設定器で、それぞれ時間信号
発生器12に接続されている。時間信号発生器12は切
換スイッチ9と後述する極性判定器16に接続されてい
る。13は期間TDCの値を設定するためのTDC設定器、
14は期間TACを設定するためのTAC設定器で、それぞ
れ極性信号発生器15を介して極性判定器16に接続さ
れている。極性判定器16は時間信号発生器12および
極性信号発生器15からの信号に基づいて出力側インバ
−タ回路2の駆動回路17に所定の信号を出力する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an embodiment of an apparatus for carrying out the consumable electrode type gas shield arc welding method according to the present invention. Hereinafter, description will be given with reference to FIG. 2 showing current waveforms. In the figure, reference numeral 1 denotes a DC power supply, a rectifier circuit for converting commercial AC into DC, an input side inverter circuit for converting rectified current into AC, a transformer for stepping down the converted AC, and a converter. It is composed of a rectifying circuit or the like for converting the input AC into DC again, and converts the input three-phase commercial AC into DC. The DC power supply 1 is composed of two power supplies, the output terminal 1a is on the plus side of the output terminal 1b, and the output terminal 1b is on the plus side of the output terminal 1c. An output side inverter circuit 2 is composed of two transistors 2a and 2b and converts the output of the DC power supply 1 into a substantially rectangular AC. Here, the collector of the transistor 2a is connected to the output terminal 1a, the emitter is connected to the collector of the transistor 2b, and the base is connected to a drive circuit 17 described later. The emitter of the transistor 2b is connected to the output terminal 1c, and the base is connected to a drive circuit 17 described later. 3 is a wire, which is the emitter of the transistor 2a and the transistor 2a.
It is connected to the connection point 4 with the collector of b. 5
Is a wire feeding roller. A base material 6 is connected to the output terminal 1b. 7 is an I P setter for setting the value of the current I P , and 8 is I B for setting the value of the current I B
DC power supply 1 via the setting switch 9
It is connected to the. 10 T P setter for setting a period T P for supplying a current I P, 11 at T B setter for setting a period T B supplies current I B, respectively time signal generator 12 It is connected. The time signal generator 12 is connected to the changeover switch 9 and a polarity determiner 16 described later. 13 is a T DC setting device for setting the value of the period T DC ,
Reference numeral 14 denotes a T AC setting device for setting the period T AC , which is connected to the polarity determining device 16 via the polarity signal generator 15. The polarity determiner 16 outputs a predetermined signal to the drive circuit 17 of the output side inverter circuit 2 based on the signals from the time signal generator 12 and the polarity signal generator 15.

【0007】以下、始めに回路の動作について説明す
る。溶接作業に先立ち、ワイヤの材質および直径、シ−
ルドガスの組成、ア−ク長およびワイヤ送給速度等に応
じて予め以下の設定をする。すなわち、IP設定器7お
よびIB設定器8によりワイヤの臨界電流値よりも大き
い電流IPおよびワイヤの臨界電流値よりも小さい電流
Bの値を設定する。また、TP設定器10およびTB
定器11により電流IPおよび電流IBを供給する期間T
Pおよび期間TBの値を設定する。さらに、TDC設定器1
3およびTAC設定器14により期間TDCおよび期間TAC
の値を設定する。なお、期間TDCおよび期間TACについ
ては後述する。図示しない起動ボタンが押されると、図
示しないシ−ルドガスが供給され、ワイヤ3が送給され
る。なお、図2には示していないが、ア−クスタ−ト時
すなわちワイヤ3が母材6に当接しア−クが発生してか
ら所定の時間が経過するまでの過渡状態においては電流
Pと同じ大きさの電流が供給される。そして、ア−ク
が発生してから上記所定の時間が経過し通常溶接状態に
なると期間TDCが開始する。通常溶接状態において時間
信号発生器12は、TP設定器10およびTB設定器11
により設定された期間TPおよび期間TBの値に基づいて
切換スイッチ9を切換える。そして直流電源1は、IP
設定器7およびIB設定器8により設定された電流IP
よび電流IBを出力端子1a,1b,1cに出力する。
一方、極性判定器16は極性信号発生器15からの信号
が期間TDCの時はトランジスタ2aをオンとしトランジ
スタ2bをオフとする信号を駆動回路17に出力する。
したがって、期間TDCにおいてはEP極性となる。そし
て、期間TDCが終了し極性信号発生器15からの信号が
期間TACに移ると極性判定器16は期間TACの制御を行
う。すなわち、期間期間TACにおいて極性判定器16
は、期間TPではトランジスタ2aをオンとし、トラン
ジスタ2bをオフとする。一方、期間TBではトランジ
スタ2aをオフとしトランジスタ2bをオンとする信号
を駆動回路17に出力する。したがって、期間TACにお
いては期間TPはEP極性、期間TBはEN極性となる。
First, the operation of the circuit will be described below. Prior to welding work, wire material and diameter,
The following settings are made in advance according to the composition of the cold gas, the arc length and the wire feeding speed. That is, the I P setting unit 7 and the I B setting unit 8 set the values of the current I P larger than the critical current value of the wire and the current I B smaller than the critical current value of the wire. Further, a period T for supplying the current I P and the current I B by the T P setting device 10 and the T B setting device 11.
Set values for P and period T B. Furthermore, T DC setting device 1
3 and T AC setter 14 causes the period T DC and the period T AC
Set the value of. The period T DC and the period T AC will be described later. When a start button (not shown) is pressed, shield gas (not shown) is supplied and the wire 3 is fed. Although not shown in FIG. 2, the current I P is increased during an arc start, that is, in a transient state from when the wire 3 comes into contact with the base material 6 to generate an arc until a predetermined time elapses. A current of the same magnitude as is supplied. Then, when the above-mentioned predetermined time elapses after the occurrence of the arc and the normal welding state is established, the period T DC starts. In the normal welding state, the time signal generator 12 includes the T P setter 10 and the T B setter 11.
The changeover switch 9 is switched based on the values of the period T P and the period T B set by. The DC power supply 1 is I P
The current I P and the current I B set by the setter 7 and the I B setter 8 are output to the output terminals 1a, 1b, 1c.
On the other hand, the polarity determiner 16 outputs a signal for turning on the transistor 2a and turning off the transistor 2b to the drive circuit 17 when the signal from the polarity signal generator 15 is in the period T DC .
Therefore, in the period T DC , the EP polarity is obtained. Then, when the period T DC ends and the signal from the polarity signal generator 15 shifts to the period T AC , the polarity determiner 16 controls the period T AC . That is, in the period T AC , the polarity determiner 16
During the period T P , the transistor 2a is turned on and the transistor 2b is turned off. On the other hand, in the period T B , a signal that turns off the transistor 2a and turns on the transistor 2b is output to the drive circuit 17. Therefore, in the period T AC , the period T P has the EP polarity and the period T B has the EN polarity.

【0008】次に溶接現象について説明する。 (1)期間TDCにおいては、先ずEP極性の電流IP
よりワイヤ3は溶かされ、電流IPによる電磁ピンチ力
によりワイヤ3の先端に形成される溶滴はワイヤ3から
離脱して母材6に移行する。そして、次のEP極性の電
流IBにより集中したア−クが維持されるが、ワイヤ3
はほとんど溶融されない。 (2)期間TACにおいては期間TDC野場合と同様に、先
ずEP極性の電流IPによりワイヤ3は溶かされ、電流
Pによる電磁ピンチ力によりワイヤ3の先端に形成さ
れる溶滴はワイヤ3から離脱して母材6に移行する。そ
して、次のEN極性の電流IBではア−クは余り集中し
ないが、ワイヤ3の溶融量はEP極性に較べて多い。
Next, the welding phenomenon will be described. (1) In the period T DC , first, the wire 3 is melted by the EP polarity current I P , and the droplet formed at the tip of the wire 3 by the electromagnetic pinch force by the current I P is separated from the wire 3 and the base metal Go to 6. Then, A was concentrated by the current I B of the next EP polarity - but click is maintained, the wire 3
Is hardly melted. (2) In the period T AC , as in the case of the period T DC , the wire 3 is first melted by the EP polarity current I P , and the droplet formed at the tip of the wire 3 by the electromagnetic pinch force by the current I P is generated. It separates from the wire 3 and transfers to the base material 6. The arc is not concentrated so much in the next current I B having the EN polarity, but the melting amount of the wire 3 is larger than that in the EP polarity.

【0009】以下、期間TACと期間Tとの比率(ただ
し、期間T=期間TAC+期間TDC)を変化させた時のビ
−ド幅(BW)、溶込み深さ(PD)、余盛高さ(R
F)、溶込み深さの変動を表す溶込み深さの変化量(Δ
PD)および余盛高さの変動を表す余盛高さの変化量
(ΔRF)について求めて整理した結果を示す図3ない
し図6により説明する。期間Tを小さくすると、図3に
示すとおり、ビ−ド幅(BW)はほぼ一定であるが、溶
込み深さ(PD)と余盛高さ(RF)はやや減少する。
一方、溶込み深さの変化量(ΔPD)および余盛高さの
変化量(ΔRF)は、図4に示すとおり、大幅に減少す
る。上記図3,図4から期間Tを変化させることによ
り、ビ−ド幅および余盛高さすなわちビ−ドの形状を余
り変えることなく、ビ−ド波の高さや溶込み深さを制御
できる。すなわち、例えば、ビ−ド波の高さや溶込み深
さの変動を小さくしたい場合には期間Tを小さくすれば
よい。期間Tにおける期間TACの比率を大きくすると、
図5に示すとおり、ビ−ド幅(BW)と溶込み深さ(P
D)は減少し、余盛高さ(RF)は増加する。一方、溶
込み深さの変化量(ΔPD)および余盛高さの変化量
(ΔRF)は、図6に示すとおり、山形に変化する。上
記図5,図6から期間Tを同一とする場合、期間TAC
比率を適切に選定することにより、ビ−ド波の高さや間
隔、あるいは溶込み深さの変動量の制御が可能となる。
なお、以下に具体的な溶接例を示す。 (a)アルミニウム(A5052)の溶接例 母材の板厚:6mm、 ワイヤ材質:A505
2、 ワイヤ径:1.2φ、 ワイヤ送給速度:8m/
min、 シ−ルドガス:アルゴン、 IP=300A、IB=4
0A、 TP=2ms、TB=2msとして、期間TACおよび期間
DCを下記、、、の4通りとした例。 TAC=1s、 TDC=1s (T=2s) TAC=0.26s、TDC=0.74s (T=1s) TAC=0.16s、TDC=0.04s (T=0.2
s) TAC=24ms、 TDC=24ms (T=48m
s) (b)鉄鋼(SPCC)の溶接例 母材の板厚:3.2mm、 ワイヤ材質:メタルコア
−ドワイヤ ワイヤ径:1.2φ、 ワイヤ送給速度:5m/
min、 シ−ルドガス:マグガス、 IP=350A、IB=70
A、 TP=3ms、TB=17msとして、期間TACおよび期
間TDCを下記、、の3通りとした例。 TAC=0.24s、TDC=0.24s (T=0.4
8s) TAC=40ms、 TDC=40ms (T=80m
s) TAC=80ms、 TDC=20ms (T=100
ms) (c)ステンレス鋼(SUS304)の溶接例 母材の板厚:1mm、 ワイヤ材質:SUS30
8ワイヤ ワイヤ径:0.9φ、 ワイヤ送給速度:3m/
min、 シ−ルドガス:アルゴン、 IP=280A、IB=30
A、 TP=3.5ms、TB=51.5msとして、期間TAC
および期間TDCを下記とした例。 TAC=0.55s、TDC=0.22s (T=0.7
7s) そして、上記いずれの場合にも、良好な溶接結果を得る
ことができた。なお、本実施例においては、期間TAC
よび期間TDCをそれぞれ期間TPと期間TBの和の倍数と
するとともにそれぞれを同期させて制御したが、期間T
ACおよび期間TDCは期間TPと期間TBの和の倍数でなく
てもよい。すなわち期間TACおよび期間TDCを期間TP
および期間TBの関数としてではなく、独立に定めても
よい。例えば、上記鉄鋼(SPCC)の溶接例におけ
るTACおよびTDCをそれぞれ0.25sとしたり、ある
いはTACを0.25s、Tを0.5sとしてもよい。こ
の場合、期間TACおよび期間TDCにおける最後期間TB
の内の一部(1〜16ms)はEP極性からEN極性へ
あるいはEN極性からEP極性へ変化する場合が発生す
るが、実用上差し支えないし、さらに、ア−クが発生し
てから上記所定の時間が経過し通常溶接状態になった時
に期間TDCから開始するするようにしたが期間TACから
開始するするようにしても良いことを確認した。また、
直流電源1を2電源で構成したが、直流電源1を1電源
とし、出力側インバ−タ回路をフルブッリジ構成として
2個のトランジスタを交互に動作させるようにしても良
い。この場合、上記したように、期間TACおよび期間T
DCを期間TPおよび期間TBと独立に定めてもよいから、
既存の直流電源を用いて本発明の溶接方法を実施するこ
とができる。さらに、出力電流を所定の値に制御する定
電流特性の直流電源としたが、定電電圧特性の直流電源
を用い上記電流IPおよび電流IBに略等しい電流が得ら
れるように、出力電圧を設定するようにしてもよい。
Hereinafter, the bead width (BW), the penetration depth (PD), when the ratio of the period T AC to the period T (where T = period T AC + period T DC ) is changed, Extra height (R
F), the amount of change in penetration depth (Δ that represents the variation in penetration depth)
PD) and the variation amount (ΔRF) of the extra-height height, which indicates the variation of the extra-height height, and the results arranged and arranged will be described with reference to FIGS. 3 to 6. As shown in FIG. 3, when the period T is shortened, the bead width (BW) is almost constant, but the penetration depth (PD) and the fill height (RF) are slightly decreased.
On the other hand, the amount of change in the penetration depth (ΔPD) and the amount of change in the overfill height (ΔRF) are significantly reduced as shown in FIG. By changing the period T from FIG. 3 and FIG. 4 described above, the height of the bead wave and the penetration depth can be controlled without changing the bead width and the extra height, that is, the shape of the bead. .. That is, for example, when it is desired to reduce variations in the height of the bead wave and the penetration depth, the period T may be reduced. If the ratio of the period T AC in the period T is increased,
As shown in FIG. 5, the bead width (BW) and the penetration depth (P
D) decreases and the fill height (RF) increases. On the other hand, the amount of change in penetration depth (ΔPD) and the amount of change in excess height (ΔRF) change into a mountain shape as shown in FIG. When the period T is the same from FIGS. 5 and 6, it is possible to control the fluctuation amount of the height or interval of the bead wave or the penetration depth by appropriately selecting the ratio of the period T AC. Become.
In addition, the concrete welding example is shown below. (A) Welding example of aluminum (A5052) Base material plate thickness: 6 mm, wire material: A505
2, wire diameter: 1.2φ, wire feeding speed: 8m /
min, shield gas: Argon, I P = 300 A, I B = 4
0A, T P = 2 ms, T B = 2 ms, the period T AC and the period T DC are the following four examples. T AC = 1 s, T DC = 1 s (T = 2 s) T AC = 0.26 s, T DC = 0.74 s (T = 1 s) T AC = 0.16 s, T DC = 0.04 s (T = 0. Two
s) T AC = 24 ms, T DC = 24 ms (T = 48 m
s) (b) Welding example of steel (SPCC) Base metal plate thickness: 3.2 mm, Wire material: Metal cored wire Wire diameter: 1.2φ, Wire feeding speed: 5 m /
min, shield gas: mag gas, I P = 350 A, I B = 70
A, T P = 3 ms, T B = 17 ms, the period T AC and the period T DC are set to the following three examples. T AC = 0.24s, T DC = 0.24s (T = 0.4
8 s) T AC = 40 ms, T DC = 40 ms (T = 80 m
s) T AC = 80 ms, T DC = 20 ms (T = 100
ms) (c) Welding example of stainless steel (SUS304) Base metal plate thickness: 1 mm, Wire material: SUS30
8 wires Wire diameter: 0.9φ, Wire feeding speed: 3m /
min, shield gas: argon, I P = 280 A, I B = 30
A, T P = 3.5 ms, T B = 51.5 ms, period T AC
And an example in which the period T DC is as follows. T AC = 0.55s, T DC = 0.22s (T = 0.7
7s) And in any of the above cases, good welding results could be obtained. In the present embodiment, the period T AC and the period T DC are each set to a multiple of the sum of the period T P and the period T B and are controlled in synchronization with each other.
AC and period T DC need not be a multiple of the sum of period T P and period T B. That is, the period T AC and the period T DC are set to the period T P.
And may be determined independently rather than as a function of period T B. For example, T AC and T DC in the welding example of the above steel (SPCC) may be 0.25 s, or T AC may be 0.25 s and T may be 0.5 s. In this case, the last period T B in the periods T AC and T DC
A part (1 to 16 ms) of the above may change from the EP polarity to the EN polarity or from the EN polarity to the EP polarity, but there is no problem in practical use, and further, the above-mentioned predetermined value after the arc occurs. It was confirmed that when the time passes and the normal welding state is started, the period T DC is started, but it may be started from the period T AC . Also,
Although the DC power supply 1 is composed of two power supplies, the DC power supply 1 may be composed of one power supply and the output side inverter circuit may be configured to have a full bridge structure so that two transistors are alternately operated. In this case, as described above, the period T AC and the period T
Since DC may be defined independently of the periods T P and T B ,
The welding method of the present invention can be carried out using an existing DC power supply. Furthermore, although the DC power source of the constant current characteristics for controlling an output current to a predetermined value, so that substantially the same current can be obtained in the current I P and a current I B using a direct current power source of constant-voltage characteristic, the output voltage May be set.

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば平
均の溶接電流を一定として、溶込み深さ、母材の溶融
量、ビ−ド波の高さや間隔、あるいは溶込み深さの変動
周期を制御することができる。したがって、中・厚板だ
けでなく薄板やル−トギャップが大きい継手まで様々の
広範囲ワ−クに適用することができる。
As described above, according to the present invention, the average welding current is kept constant, and the penetration depth, the melting amount of the base material, the height and interval of the bead wave, or the penetration depth is set. The fluctuation period can be controlled. Therefore, not only medium and thick plates but also thin plates and joints having a large root gap can be applied to various wide-ranging works.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による消耗電極式ガスシ−ルドア−ク溶
接方法を実施するための装置の一実施例を示すブロック
図である。
FIG. 1 is a block diagram showing an embodiment of an apparatus for carrying out a consumable electrode type gas shield arc welding method according to the present invention.

【図2】本発明による電流波形を示す図である。FIG. 2 is a diagram showing a current waveform according to the present invention.

【図3】期間Tに対するビ−ド幅(BW)、溶込み深さ
(PD)および余盛高さ(RF)の変化を示す図であ
る。
FIG. 3 is a diagram showing changes in a bead width (BW), a penetration depth (PD), and a surplus height (RF) with respect to a period T.

【図4】期間Tに対する溶込み深さの変化量(ΔPD)
および余盛高さの変化量(ΔRF)を示す図である。
4] Amount of change in penetration depth with respect to period T (ΔPD)
It is a figure which shows the amount of change ((DELTA) RF) of extra height.

【図5】期間Tにおける期間TACの比率に対するビ−ド
幅(BW)、溶込み深さ(PD)および余盛高さ(R
F)の変化を示す図である。
FIG. 5 is a bead width (BW), a penetration depth (PD) and a surplus height (R) with respect to the ratio of the period T AC in the period T.
It is a figure which shows the change of F).

【図6】期間Tにおける期間TACの比率に対する溶込み
深さの変化量(ΔPD)および余盛高さの変化量(ΔR
F)を示す図である。
FIG. 6 is a change amount of penetration depth (ΔPD) and a change amount of extra fill height (ΔR) with respect to the ratio of period T AC in period T.
It is a figure which shows F).

【符号の説明】[Explanation of symbols]

1 直流電源 2 出力側インバ−タ回路 3 ワイヤ 6 母材 7 IP設定器 8 IB設定器 9 切換スイッチ 10 TP設定器 11 TB設定器 12 時間信号発生器 13 TDC設定器 14 TAC設定器 15 極性信号発生器 16 極性判定器 17 駆動回路1 DC power source 2 output inverter - capacitor circuit 3 wire 6 preform 7 I P setter 8 I B setter 9 changeover switch 10 T P setter 11 T B setter 12 hours signal generator 13 T DC setter 14 T AC setting device 15 Polarity signal generator 16 Polarity judgment device 17 Drive circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 交流期間と直流期間とを交互に繰り返す
出力を電極と母材との間に印加することを特徴とする消
耗電極式ガスシ−ルドア−ク溶接方法。
1. A consumable electrode type gas shield arc welding method, characterized in that an output alternately repeating an alternating current period and a direct current period is applied between an electrode and a base material.
【請求項2】 期間TPではワイヤの臨界電流値よりも
大きい電流IPを、また期間TBにはワイヤの臨界電流値
よりも小さいIBを交互に供給すると共に、期間Tの中
の期間TDCにおいては電流IPおよび電流IBともワイヤ
をプラスとする極性とし、期間Tの中の残りの期間TAC
においては電流IPをワイヤをプラスとする極性にまた
電流IBをワイヤをマイナスとする極性として、期間T
DCと期間TACとを交互に繰り返す出力を電極と母材との
間に印加することを特徴とする消耗電極式ガスシ−ルド
ア−ク溶接方法。
2. A method period T P in wire large current I P than the critical current value of, also with the period T B alternately supplying a smaller I B than the critical current value of the wire, in the period T In the period T DC , both the current I P and the current I B have a polarity in which the wire is positive, and the remaining period T AC in the period T
, The current I P has a polarity in which the wire is positive and the current I B has a polarity in which the wire is negative, and the period T
A consumable electrode type gas shield arc welding method, characterized in that an output in which DC and a period T AC are alternately repeated is applied between the electrode and the base material.
【請求項3】 期間TDCと期間TACとの比率を変化させ
ることを特徴とする請求項1または請求項2に記載の消
耗電極式ガスシ−ルドア−ク溶接方法。
3. The consumable electrode type gas shield arc welding method according to claim 1, wherein the ratio of the period T DC to the period T AC is changed.
【請求項4】 直流電源と、入力側を直流電源に接続さ
れ出力側を電極および母材に接続される交流変換装置
と、交流変換装置を駆動する駆動回路と、切換スイッチ
に接続され直流電源の出力を設定するIP設定器および
B設定器と、時間信号発生器に接続されIP設定器およ
びIB設定器で設定された出力を供給する期間を定める
期間TP設定器および期間TB設定器と、極性信号発生器
に接続される期間TDC設定器および期間TAC設定器と、
極性判定器とからなり、切換スイッチを直流電源に、ま
た時間信号発生器を切換スイッチおよび極性判定器に、
さらに極性信号発生器を極性判定器に接続し、電極およ
び母材との間に出力IPおよびIBを交互に供給すると共
に期間TDCにおいては出力IPおよびIBともワイヤをプ
ラスとする極性に、また期間TACにおいては出力IP
ワイヤをプラスとする極性にまた出力IBをワイヤをマ
イナスとする極性に交互に切換えるように構成したこと
を特徴とする消耗電極式ガスシ−ルドア−ク溶接装置。
4. A direct current power source, an alternating current converter having an input side connected to the direct current power source and an output side connected to an electrode and a base material, a drive circuit for driving the alternating current converter, and a direct current power source connected to a changeover switch. I P setter and I B setter and the period T P setter and duration to determine the period for supplying the output set by the time signal is connected to the generator I P setter and I B setter for setting the output of the A T B setter, a period T DC setter and a period T AC setter connected to the polarity signal generator,
It consists of a polarity judgment device, the changeover switch for the DC power supply, the time signal generator for the changeover switch and the polarity judgment device,
Further, the polarity signal generator is connected to the polarity determiner, the outputs I P and I B are alternately supplied between the electrodes and the base material, and the wires I P and I B are positive in the period T DC . The consumable electrode type gas shield container is configured so that the output I P is switched to the polarity in which the wire is positive and the output I B is switched to the polarity in which the wire is negative during the period T AC . -Cu welding equipment.
【請求項5】 直流電源と、直流電源に接続され直流電
源の出力を設定するためのIP設定器およびIB設定器
と、入力側を直流電源に接続され出力側を電極および母
材に接続される交流変換装置と、交流変換装置を駆動す
る駆動回路と、期間TPと期間TBおよび期間TPと期間
DCならびに期間TACを設定可能な時間制御手段とから
なり、時間制御手段は出力IPおよびIBを供給する期間
を期間TPおよび期間TBとする信号を交互に直流電源に
出力すると共に期間TDCおよび期間TACを交互とする信
号を駆動回路に出力し、電極および母材との間に出力I
PおよびIBを交互に供給すると共に期間TDCにおいては
出力IPおよびIBともワイヤをプラスとする極性に、ま
た期間TACにおいては出力IPをワイヤをプラスとする
極性にまた出力IBをワイヤをマイナスとする極性に交
互に切換えるように構成したことを特徴とする消耗電極
式ガスシ−ルドア−ク溶接装置。
[5 claim] DC power supply, and I P setter and I B setter for being connected to a DC power source to set the output of the DC power source, an input side connected to the output side electrode and the base metal to a DC power source An AC converter connected thereto, a drive circuit for driving the AC converter, and a time control means capable of setting the period T P , the period T B, the period T P , the period T DC, and the period T AC. means outputs a signal to alternate the period T DC and period T AC and outputs the DC power to alternating signal to output I P and I B period T P and the period T B of the period for supplying the drive circuit , Output between the electrode and base material I
In the period T DC is supplied alternately P and I B output I P and I B with a polarity to the wire and positive, also the period T in the AC output I P a or the polarity of the wires and the positive output I A consumable electrode type gas shield arc welding device characterized in that B is alternately switched to a polarity in which the wire is negative.
JP31030391A 1991-11-26 1991-11-26 Consumable electrode type gas shielded arc welding method and apparatus Expired - Fee Related JP3162137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31030391A JP3162137B2 (en) 1991-11-26 1991-11-26 Consumable electrode type gas shielded arc welding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31030391A JP3162137B2 (en) 1991-11-26 1991-11-26 Consumable electrode type gas shielded arc welding method and apparatus

Publications (2)

Publication Number Publication Date
JPH05138355A true JPH05138355A (en) 1993-06-01
JP3162137B2 JP3162137B2 (en) 2001-04-25

Family

ID=18003602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31030391A Expired - Fee Related JP3162137B2 (en) 1991-11-26 1991-11-26 Consumable electrode type gas shielded arc welding method and apparatus

Country Status (1)

Country Link
JP (1) JP3162137B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361416A (en) * 2001-06-04 2002-12-18 Yaskawa Electric Corp Arc welding control method
JP2004082163A (en) * 2002-08-27 2004-03-18 Sansha Electric Mfg Co Ltd Welding method and electric power unit for welding
JP2006102813A (en) * 2004-10-06 2006-04-20 Lincoln Global Inc Alternating current welding method using cored electrode
DE102016102884B4 (en) 2016-02-18 2022-06-02 Rehm GmbH & Co. KG Schweißtechnik welding process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361416A (en) * 2001-06-04 2002-12-18 Yaskawa Electric Corp Arc welding control method
JP2004082163A (en) * 2002-08-27 2004-03-18 Sansha Electric Mfg Co Ltd Welding method and electric power unit for welding
JP4643113B2 (en) * 2002-08-27 2011-03-02 株式会社三社電機製作所 Welding method and power supply device for welding
JP2006102813A (en) * 2004-10-06 2006-04-20 Lincoln Global Inc Alternating current welding method using cored electrode
DE102016102884B4 (en) 2016-02-18 2022-06-02 Rehm GmbH & Co. KG Schweißtechnik welding process

Also Published As

Publication number Publication date
JP3162137B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
US5349159A (en) Consumable-electrode AC gas shield arc welding method and apparatus therefor
US8338750B2 (en) AC pulse arc welding control method
US6376802B1 (en) Method of controlling the AC pulsed arc welding and welding power supply apparatus therefor
US6051806A (en) Power supply apparatus for welders and method of manufacturing same
JP3809983B2 (en) Consumable electrode type AC gas shield welding equipment
JPH10286671A (en) Consumable electrode type ac pulse arc welding device
JP2002086271A (en) Control method and power source device for ac pulse arc welding
EP1681123A2 (en) Arc start control method for AC arc welding
AU7220700A (en) Arc welder and torch for same
US4877941A (en) Power supply system for consumable electrode arc welding and method of controlling the same
JP3162137B2 (en) Consumable electrode type gas shielded arc welding method and apparatus
JP4391877B2 (en) Heat input control DC arc welding / pulse arc welding switching welding method
JP3018807B2 (en) Consumable electrode type pulse arc welding equipment
EP1193019B1 (en) Method and apparatus for controlling AC pulse ARC welding and welding power source apparatus
JP3856355B2 (en) Consumable electrode type AC gas shielded arc welding method and apparatus
JP2873716B2 (en) Starting AC arc
JP2003088958A (en) Output control method for ac pulsed arc welding
JPH09271942A (en) Pulsed mag arc welding method and welding equipment
JP2000254779A (en) Method and machine for ac pulse arc welding
JP2643144B2 (en) Arc welding equipment
JP4252636B2 (en) Consumable electrode gas shield arc welding method
JP2854613B2 (en) AC arc welding method and apparatus for consumable electrode type gas shielded arc welding
JP4673519B2 (en) Feed control method for AC gas shielded arc welding
JP2985552B2 (en) Consumable electrode type pulse arc welding equipment
JP2703804B2 (en) Control method and apparatus for AC tag welding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees