JPH0513790B2 - - Google Patents

Info

Publication number
JPH0513790B2
JPH0513790B2 JP62189648A JP18964887A JPH0513790B2 JP H0513790 B2 JPH0513790 B2 JP H0513790B2 JP 62189648 A JP62189648 A JP 62189648A JP 18964887 A JP18964887 A JP 18964887A JP H0513790 B2 JPH0513790 B2 JP H0513790B2
Authority
JP
Japan
Prior art keywords
reaction force
output shaft
detection rod
nut
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62189648A
Other languages
Japanese (ja)
Other versions
JPS6434677A (en
Inventor
Shozo Matsumura
Masaji Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Metal Industries Inc
Original Assignee
Maeda Metal Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Metal Industries Inc filed Critical Maeda Metal Industries Inc
Priority to JP18964887A priority Critical patent/JPS6434677A/en
Publication of JPS6434677A publication Critical patent/JPS6434677A/en
Publication of JPH0513790B2 publication Critical patent/JPH0513790B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はボルトナツト締付工法の一つであるナ
ツト回転角法に使用されるボルトナツト締付具に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a bolt/nut tightening tool used in the nut rotation angle method, which is one of the bolt/nut tightening methods.

(従来の技術及びその問題点) ボルトナツトの締付工法には「ナツト回転角
法」と「トルク法」とがある。
(Prior art and its problems) There are two methods for tightening bolts and nuts: the "nut rotation angle method" and the "torque method."

ナツト回転角法とは仮締状態から締付完了迄の
ナツトの回転角を所定角度に制御すことによりボ
ルト軸力を管理するボルトナツト締付工法であ
り、トルク法とは締付完了時の締付トルクを所定
値に制御することによりボルト軸力を管理するも
のである。
The nut rotation angle method is a bolt/nut tightening method that manages bolt axial force by controlling the rotation angle of the nut to a predetermined angle from the temporary tightening state to the completion of tightening. The bolt axial force is managed by controlling the applied torque to a predetermined value.

トルク法に使用する締付工具は、ストレインゲ
ージや電動機の負荷電流などによつて比較的容易
にトルクの計測を行ない、これを制御することが
できる。
The tightening tool used in the torque method can relatively easily measure and control torque using a strain gauge, motor load current, or the like.

回転角法用ボルト締付機は、締付けるべきボル
トを、そのボルト耐力の5〜10%で仮締めし、そ
の仮締め状態を始点として、その始点からのボル
トの回転角を検出し、その検出された回転角が設
定された所要回転角(120〜270°)に達した瞬間
に締付けソケツトの回転を停止して、ボルトの軸
力を管理するものである。
The rotation angle method bolt tightening machine temporarily tightens the bolt to be tightened to 5 to 10% of its bolt proof strength, uses the temporary tightening state as a starting point, and detects the rotation angle of the bolt from that starting point. The axial force of the bolt is managed by stopping the rotation of the tightening socket the moment the rotation angle reaches the required rotation angle (120 to 270 degrees).

上記回転角法に使用する回転工具の一例とし
て、第12図に示す特公昭56−4391号が提案され
ており、これは、ソケツト7と電動機13との間
に減速機8及びロータリエンコーダなどの角度セ
ンサー81を用いてソケツト7の回転角度を計測
するものである。この場合ナツトNとソケツト7
の嵌合の遊びや、締付機の反力受6が隣接ボルト
B1等、他の部材に当たるまでの空転角度を計測
値に含まない様にする為に、反力受6が隣接部材
に当たつたことを検知する検知器82を反力受6
に取り付け、更に電動機13には制御ボツクス8
4を連繁しなければならず、計測及び制御が複雑
になると共に装置全体が大型化する。
As an example of a rotary tool used in the above-mentioned rotation angle method, Japanese Patent Publication No. 56-4391 shown in FIG. The angle sensor 81 is used to measure the rotation angle of the socket 7. In this case nut N and socket 7
If there is any play in the fitting or the reaction force receiver 6 of the tightening machine is
In order to avoid including the idling angle until it hits other members such as B1 in the measurement value, a detector 82 that detects when the reaction force receiver 6 hits an adjacent member is installed on the reaction force receiver 6.
A control box 8 is attached to the electric motor 13.
4 must be repeated in succession, which complicates measurement and control and increases the size of the entire device.

更に、作業上最も問題となるのは、角度センサ
ー81を締付具本体83に設けているため、計測
の基準点を得る為に操作ハンドル12を含む締付
具本体83と反力受6を固定状態に連結しなけれ
ばならず、その為、ソケツトをナツトに嵌合する
位相合わせの際、本体ごと回転させねばならず
又、反力受6が隣接部材に当たるまでの空転時に
ハンドルを含む本体が回転し、作業者が連れ廻さ
れ危険であつた。
Furthermore, the biggest problem during work is that the angle sensor 81 is provided on the fastener body 83, so in order to obtain a reference point for measurement, the fastener main body 83 including the operation handle 12 and the reaction force receiver 6 must be connected. It must be connected in a fixed state, and therefore, the entire body must be rotated during phase alignment when fitting the socket to the nut, and the body, including the handle, must be rotated until the reaction force receiver 6 hits the adjacent member. The machine rotated and the worker was moved around, which was dangerous.

更に、締付具本体83にはハンドル部12が突
設されており、反力受6の空転によつて締付方向
に対するハンドル部12の角度が変わり、締付具
の支持及び操作が困難になる。
Further, a handle portion 12 is provided protruding from the fastener body 83, and the angle of the handle portion 12 with respect to the tightening direction changes due to idle rotation of the reaction force receiver 6, making it difficult to support and operate the fastener. Become.

上記とは別に実用化されているナツト回転角法
用の回転工具の中には、電動機の負荷電流を計測
し、この値が一定値以上となつてからのロータリ
エンコーダの計測値の推移によつてソケツトの回
転角度を計測する方式のものがある。しかしこの
負荷電流の計測を行なう機構及び回路は、トルク
法の締付具に用いられているものと同様のもので
あつて、トルク法の締付具にロータリエンコーダ
とその制御回路を附加したものとも言える。その
ため構造の複雑化により、締付具本体の大型化は
もちろん、大型の制御ボツクスを連繁しなければ
ならず、作業効率が悪い。又、電動機の慣性力に
より、ソケツトとナツトの噛み込みを生じたり、
ナツトの締め過ぎを起こすことがあり、締付精度
に問題がある。そのうえ、電動機に加わる負荷が
ある程度大きくならないと負荷電流の違いは検知
できないから、ナツトを予め締付具が検知できる
値以上に締付けておく必要がある。そのため締付
力が小さい小型のボルトナツトには使用できない
場合もあり、適応範囲が限定される。又、ロータ
リエンコーダを締付具本体に設置しているので、
前述の如く反力受と締付具本体を固定状態に連結
しなければならず、反力受の空転時には連れ廻り
が起きて危険であるなどの問題点を抱えている。
Apart from the above, some rotary tools for the nut rotation angle method that have been put into practical use measure the load current of the motor, and when this value exceeds a certain value, the change in the measured value of the rotary encoder is used. There is a method that measures the rotation angle of the socket. However, the mechanism and circuit for measuring this load current are similar to those used in torque method fasteners, and are similar to those used in torque method fasteners with the addition of a rotary encoder and its control circuit. You can say that. Therefore, due to the complicated structure, not only the main body of the fastener becomes large, but also large control boxes must be installed in succession, resulting in poor work efficiency. Also, the inertia of the electric motor may cause the socket and nut to become jammed,
This may cause the nut to be over-tightened, resulting in problems with tightening accuracy. Furthermore, since a difference in load current cannot be detected unless the load applied to the motor increases to a certain extent, it is necessary to tighten the nut in advance to a value greater than that which can be detected by the tightening tool. Therefore, it may not be possible to use it for small bolts and nuts with low tightening force, and the range of application is limited. In addition, since the rotary encoder is installed on the fastener body,
As mentioned above, the reaction force receiver and the fastener main body must be connected in a fixed state, and when the reaction force receiver idles, it causes problems such as rotation, which is dangerous.

しかし、ナツト回転角法はトルク法に比較する
とボルトそのものに起因するボルト軸力のバラツ
キが少ないため、ボルトの取扱いが容易という利
点があり、近年では、ボルト軸力をより高精度に
管理する場合や、トルク法ではトルク係数値が大
巾に変動する為に締付けができない亜鉛メツキな
どを施した耐候性ボルトを使用する場合などに実
施され、ナツト回転角法による施工が増加する傾
向にあり、より小型軽量で、高精度に締付けの出
来るナツト回転角法締付具の開発が望まれてい
た。
However, compared to the torque method, the nut rotation angle method has the advantage of being easier to handle bolts because there is less variation in the bolt axial force caused by the bolt itself. The nut rotation angle method is becoming more and more popular, as it is used when using galvanized weather-resistant bolts that cannot be tightened due to large fluctuations in the torque coefficient value using the torque method. It has been desired to develop a nut rotation angle method fastener that is smaller, lighter, and capable of tightening with high precision.

本発明は、ソケツトを連繁した出力軸と入力軸
との相対的な回転角度に応じて出力軸に内蔵する
ロツドを軸方向に移動させ、この移動量によつて
ナツトの回転角度を検出し、ソケツトの回転制御
を行なうことにより、前記問題を解決出来るボル
トナツト締付具を明らかにするものである。
The present invention moves a rod built into the output shaft in the axial direction according to the relative rotation angle between the output shaft and the input shaft, which have successive sockets, and detects the rotation angle of the nut based on the amount of this movement. The present invention discloses a bolt/nut fastener that can solve the above problem by controlling the rotation of the socket.

(課題を解決する手段) 本発明のボルトナツト締付具は、電動機13等
の回転駆動装置にクラツチ2及び差動減速装置を
介してソケツト7を駆動するソケツト駆動機構7
1と、遊星歯車減速機構4の出力軸46と入力軸
41の軸心に跨がつてスライド可能に配備された
検出ロツド51と、入力軸41と出力軸46の相
対回転角度に応じて検出ロツド51を移動させる
ロツド移動装置5と、ソケツト7にナツト締付け
の負荷が作用したとき検出ロツド移動装置5を作
動させる制御装置9と、該ロツドの後退移動によ
つてクラツチ2を切るクラツチ遮断装置28と、
ボルトナツト締付時の締付反力を受ける反力受6
とによつて構成され、締付具のハンドル部12は
反力受6に相対的に回転自由に取付けられてい
る。
(Means for Solving the Problems) The bolt/nut tightening tool of the present invention includes a socket drive mechanism 7 that drives a socket 7 via a clutch 2 and a differential speed reduction device to a rotary drive device such as an electric motor 13.
1, a detection rod 51 that is slidably disposed astride the axes of the output shaft 46 and input shaft 41 of the planetary gear reduction mechanism 4, and a detection rod 51 that is slidably disposed astride the axes of the output shaft 46 and input shaft 41 of the planetary gear reduction mechanism 4; 51; a control device 9 that operates the detection rod moving device 5 when a nut tightening load is applied to the socket 7; and a clutch disconnection device 28 that disengages the clutch 2 when the rod moves backward. and,
Reaction force receiver 6 that receives the tightening reaction force when tightening bolts and nuts
The handle portion 12 of the fastener is rotatably attached to the reaction force receiver 6.

(作用及び効果) ナツト回転角度の検出をロツドの移動という機
械的手段によつて行なうため、従来のように制御
ボツクスを設ける必要がなく作業性が向上し、構
成も簡単である。又、クラツチの設置により、締
付完了時のソケツトとナツトの噛み込みを防止
し、回転駆動装置の慣性力によるナツトの締め過
ぎを防止して誤差の少ない回転角度の制御が可能
となる。
(Operations and Effects) Since the nut rotation angle is detected by the mechanical means of moving the rod, there is no need to provide a control box as in the past, improving work efficiency and simplifying the configuration. Further, by installing the clutch, it is possible to prevent the socket and the nut from becoming jammed when tightening is completed, and to prevent the nut from being over-tightened due to the inertial force of the rotary drive device, thereby making it possible to control the rotation angle with less error.

回転角度の検出をナツトに非常に近い箇所で行
なつているため、減速装置自体の「ねじり」によ
る誤差を極めて小さく出来、高精度の回転角制御
が可能となる。
Since the rotation angle is detected at a location very close to the nut, errors caused by the "twisting" of the reduction gear itself can be minimized, making it possible to control the rotation angle with high precision.

又、従来のものとは異なり反力受と締付具本体
を固定する必要がないので、反力受が隣接部材に
当たるまでの空転時においても作業者が反力受の
空転にともなつて本体が回り、それにより連れ廻
される不都合はなく、僅かの保持力で自由な方向
からの操作が可能であり、作業性および安全性の
面からも有利である。
In addition, unlike conventional systems, there is no need to fix the reaction force receiver and the fastener body, so even when the reaction force receiver is idling until it hits an adjacent member, the operator can easily tighten the main body as the reaction force receiver idles. There is no inconvenience caused by rotation, and operation can be performed from any direction with a small holding force, which is advantageous in terms of workability and safety.

(実施例) 第1図の如く実施例の締付具は、差動減速装置
として遊星歯車減速機構4を用い、該遊星歯車減
速機構の出力軸46をソケツト7に接続し、反力
受6が隣設の部材(図示せず)に当たるまで空転
した後、ソケツト7がこれに嵌合するナツトNを
回転し始めた時点より、遊星歯車減速機構4の入
力軸41と出力軸46との相対的な回転角度(以
下相対回転角度と呼ぶ)に応じて、出力軸46に
内蔵するロツド51を軸方向に移動させ、この移
動量によつてナツトNの回転角度を検出しソケツ
ト7の制御を行なうものである。
(Embodiment) As shown in FIG. 1, the fastener of the embodiment uses a planetary gear reduction mechanism 4 as a differential reduction device, connects the output shaft 46 of the planetary gear reduction mechanism to the socket 7, and connects the reaction force receiver 6. After the socket 7 idles until it hits an adjacent member (not shown), the relative relationship between the input shaft 41 and the output shaft 46 of the planetary gear reduction mechanism 4 changes from the point at which the socket 7 starts rotating the nut N fitted thereto. The rod 51 built into the output shaft 46 is moved in the axial direction according to the relative rotation angle (hereinafter referred to as the relative rotation angle), and the rotation angle of the nut N is detected based on the amount of movement and the socket 7 is controlled. It is something to do.

遊星歯車減速機構4において、入力軸41にト
ルクを入力し、出力軸46より出力を得るには、
このときの入力軸と出力軸の回転角度の関係は、
回転比をiとし、入力軸回転角度をR1、出力軸
回転角度をR3とすると R1=iR3 …… となる。但しi>1 又、入力軸と出力軸の相対回転角度を△Rとす
ると、 △R=R1−R3 …… であるから、これに式を代入すると △R=(i−1)R3 …… となる。故にR3は R3=△R/(i−1) …… となる。
In the planetary gear reduction mechanism 4, in order to input torque to the input shaft 41 and obtain output from the output shaft 46,
The relationship between the rotation angles of the input shaft and output shaft at this time is
If the rotation ratio is i, the input shaft rotation angle is R1 , and the output shaft rotation angle is R3, then R1=iR3... However, i>1 Also, if the relative rotation angle between the input shaft and the output shaft is △R, then △R=R 1 −R 3 ..., so substituting the formula into this, △R=(i-1)R 3 ... becomes. Therefore, R 3 becomes R 3 =ΔR/(i-1)...

回転比iは定数で予め分かつているから、相対
回転角度△Rによつて出力軸回転角度R3が求め
られる。
Since the rotation ratio i is a constant and is known in advance, the output shaft rotation angle R 3 can be determined from the relative rotation angle ΔR.

本締付具では前述の如く上記出力軸の回転角度
を出力軸に内蔵するロツド51の軸方向に移動量
に変換し、その移動量によつて出力軸回転角度を
間接的に検出するものである。
As mentioned above, this fastener converts the rotation angle of the output shaft into the amount of movement in the axial direction of the rod 51 built into the output shaft, and the output shaft rotation angle is indirectly detected from the amount of movement. be.

本締付具は動力部1と出力部3とから成り、動
力部1のケース11にはハンドル部12が突設さ
れ、該ケースと出力部3のケース31は遊星歯車
減速機構4の入力軸41を中心に回転自由に嵌ま
つている。
This fastener consists of a power part 1 and an output part 3. A handle part 12 is protruded from a case 11 of the power part 1, and the case 31 and the case 31 of the output part 3 are connected to the input shaft of the planetary gear reduction mechanism 4. It is fitted in such a way that it can rotate freely around 41.

動力部3には電動機13及び該電動機の回転を
遊星歯車減速機構4の入力軸41に伝達、遮断す
るクラツチ2及び該クラツチ2の切換及び電動機
への通電を制御するトリガー26が配備されてい
る。
The power unit 3 is equipped with an electric motor 13, a clutch 2 that transmits and interrupts the rotation of the electric motor to the input shaft 41 of the planetary gear reduction mechanism 4, and a trigger 26 that controls switching of the clutch 2 and energization of the electric motor. .

クラツチ2は、電動機の回転軸20とクラツチ
出力軸29を同心に配備し、両軸の対向端部に傘
歯車21,22を具え、両軸と直交して且つ両軸
に接近離間可能に伝達傘歯車24を配備して構成
され、伝達傘歯車24を前記トリガー26に形成
したカム面27によつて動作するトグル25によ
つて軸方向に移動させ、伝達歯車24と傘歯車2
1,22を噛合或は離間させて、電動機13の回
転をクラツチ出力軸29に伝達または遮断する。
The clutch 2 has a rotating shaft 20 of the electric motor and a clutch output shaft 29 arranged concentrically, and has bevel gears 21 and 22 at opposing ends of both shafts, so that transmission is perpendicular to both shafts and capable of approaching and separating from both shafts. The transmission bevel gear 24 is moved in the axial direction by a toggle 25 operated by a cam surface 27 formed on the trigger 26.
1 and 22 are engaged or separated to transmit or cut off the rotation of the electric motor 13 to the clutch output shaft 29.

トグル25は後記するロツド51によつても作
動し、トグル25、ロツド51及びトリガー26
によつてクラツチ遮断装置28を構成している。
The toggle 25 is also operated by a rod 51 which will be described later, and the toggle 25, rod 51 and trigger 26
This constitutes a clutch disconnection device 28.

又、傘歯車21,22と伝達傘歯車24は摩擦
車によつても構成可能であるし、あるいは軸方向
に対向する噛み合い歯と、それを動作させるに適
したトグル機構によつても構成可能で、クラツチ
遮断装置28は本実施例だけに限られるものでは
ない。
Furthermore, the bevel gears 21 and 22 and the transmission bevel gear 24 can be configured by friction wheels, or can be configured by axially opposing meshing teeth and a toggle mechanism suitable for operating them. However, the clutch disconnection device 28 is not limited to this embodiment.

クラツチ出力軸29の先端には後記の如く遊星
歯車減速機構4の入力軸41に噛合する歯車23
が形成されている。
At the tip of the clutch output shaft 29 is a gear 23 that meshes with the input shaft 41 of the planetary gear reduction mechanism 4 as described later.
is formed.

電動機13への通電回路14には2つのスイツ
チ15,16が配備され、各スイツチは夫々前記
トグル25及びトリガー26の動きによつて作動
する押し軸17,18及びバネ19,19に連繁
されている。
Two switches 15 and 16 are provided in the energizing circuit 14 for the electric motor 13, and each switch is connected to push shafts 17 and 18 and springs 19 and 19, which are activated by the movements of the toggle 25 and trigger 26, respectively. ing.

出力部ケース31に配備された遊星歯車減速機
構4は、入力軸41と、該入力軸41に同心に配
備された出力軸46と、出力軸46に軸承され入
力軸41上の太陽歯車54及び出力部ケース31
の内面に形成された内歯40に噛合するアイドル
ギヤ44とによつて構成される。
The planetary gear reduction mechanism 4 disposed in the output part case 31 includes an input shaft 41, an output shaft 46 disposed concentrically with the input shaft 41, a sun gear 54 on the input shaft 41 supported by the output shaft 46, and a sun gear 54 on the input shaft 41. Output part case 31
and an idle gear 44 that meshes with internal teeth 40 formed on the inner surface of the shaft.

入力軸41は出力部ケース31の後壁及び動力
部ケース11の前壁を回転可能に貫通して該ケー
ス11内に突出し、突出端に前記クラツチ出力軸
29に噛合する大歯車43を具えている。
The input shaft 41 rotatably penetrates the rear wall of the output part case 31 and the front wall of the power part case 11, projects into the case 11, and has a large gear 43 at the projecting end that meshes with the clutch output shaft 29. There is.

出力軸46の先端に該軸46と一体回転可能に
ソケツト7を嵌合し、前記電動機13、クラツチ
2及び遊星歯車減速機構4によつてソケツト駆動
装置71を形成している。
A socket 7 is fitted to the tip of the output shaft 46 so as to be able to rotate integrally with the shaft 46, and the electric motor 13, clutch 2, and planetary gear reduction mechanism 4 form a socket drive device 71.

入力軸41及び出力軸46を貫いてロツド51
が摺動可能に配備されて、バネ54によつてソケ
ツト7側に付勢されている。ロツド51の動力部
1側は角軸52に形成されて入力軸41の貫通角
孔42に摺動可能且つ入力軸41と一体回転可能
に嵌まり、他端外周部はリード角の大なる螺旋条
53を形成しており、該螺旋条53の部分は出力
軸46の貫通孔47に摺動可能に嵌まつている。
A rod 51 passes through the input shaft 41 and output shaft 46.
is slidably disposed and biased toward the socket 7 by a spring 54. The power section 1 side of the rod 51 is formed into a square shaft 52, and is fitted into the square through hole 42 of the input shaft 41 so as to be able to slide and rotate integrally with the input shaft 41, and the outer peripheral portion of the other end is formed into a spiral with a large lead angle. A thread 53 is formed, and a portion of the spiral thread 53 is slidably fitted into the through hole 47 of the output shaft 46 .

第1図、第10図の如く、出力軸46の略中央
部には一部を切欠いて該切欠き部48にロツド5
1の軸心を含む面内にて回転可能且つロツド51
の螺旋条53に噛合する歯部を有する歯車55を
軸承し、歯車の一部を出力軸46の外部に臨出さ
せている。
As shown in FIGS. 1 and 10, a portion is cut out approximately at the center of the output shaft 46, and a rod 5 is inserted into the cutout portion 48.
The rod 51 is rotatable in a plane including the axis of the rod 51.
A gear 55 having teeth that mesh with the spiral thread 53 is supported, and a part of the gear is exposed outside the output shaft 46 .

第1図、第6図の如く、出力軸46の略中央部
外周部には、バネ59により左側へ押圧されるス
リーブ57及びリング状の円錐カム56を摺動可
能に嵌合し、スリーブ57は前記歯車55が自由
に回転できる幅の切欠き58をその円筒部の一部
に有して、出力軸46より飛び出している歯車5
5の侵入を許容している。
As shown in FIGS. 1 and 6, a sleeve 57 pressed to the left by a spring 59 and a ring-shaped conical cam 56 are slidably fitted to the outer circumference of the approximately central portion of the output shaft 46. The gear 5 has a notch 58 wide enough to allow the gear 55 to rotate freely in a part of its cylindrical portion, and protrudes from the output shaft 46.
5 intrusion is allowed.

出力軸46の先端にはロツド51の前進端を規
制するネジ軸状のストツパー30を螺合してい
る。
A threaded stopper 30 for regulating the forward end of the rod 51 is screwed onto the tip of the output shaft 46.

上記ロツド51、歯車55、円錐カム56及び
スリーブ57によつてロツド移動装置5を構成し
ている。
The rod 51, gear 55, conical cam 56 and sleeve 57 constitute the rod moving device 5.

第1図、第8図の如く、出力部ケース31の先
端外周は小径のスプライン筒軸32に形成され、
該スプライン筒軸32に、スプライン軸孔61を
形成した筒状の反力受6が遊びのある状態に嵌合
している。
As shown in FIGS. 1 and 8, the outer periphery of the tip end of the output part case 31 is formed into a small diameter spline cylinder shaft 32,
A cylindrical reaction force receiver 6 having a spline shaft hole 61 is fitted into the spline cylinder shaft 32 with some play.

又、反力受6と出力部ケース31の間には捩り
バネ33を配して、本実施例においては動力部1
側より見て左廻りの方向に反力受6を回転付勢
し、反力受6と出力部ケース31が嵌合している
スプラインのそれぞれの山谷の側面が当たつて止
まつている。出力部ケース31のスプライン筒軸
32の谷部には貫通孔34が設けられ、ボール3
5が配されており、該ボール35は前記バネ59
により押圧されている円錐カム56の円錐カム面
により、貫通孔34から半径方向に外向きに押さ
れているが、反力受6のスプライン軸孔61の内
側面に当たつて止まつている(第8図)。
Further, a torsion spring 33 is disposed between the reaction force receiver 6 and the output part case 31, and in this embodiment, the power part 1
The reaction force receiver 6 is rotationally biased in the counterclockwise direction when viewed from the side, and the side surfaces of the peaks and troughs of the splines to which the reaction force receiver 6 and the output part case 31 are fitted are brought into contact and stopped. A through hole 34 is provided in the valley of the spline cylinder shaft 32 of the output part case 31, and the ball 3
5 is arranged, and the ball 35 is connected to the spring 59.
The conical cam surface of the conical cam 56 is pushed radially outward from the through hole 34, but it stops against the inner surface of the spline shaft hole 61 of the reaction force receiver 6 ( Figure 8).

反力受6の先端には反力を受ける為の突起60
が設けられており、ナツト締付けの際には該突起
60が隣接のナツト又は部材に当たつて反力を受
ける。
The tip of the reaction force receiver 6 has a protrusion 60 for receiving reaction force.
is provided, and when the nut is tightened, the protrusion 60 hits an adjacent nut or member and receives a reaction force.

上記出力部ケース31、バネ33、反力受6、
ボール35、バネ59及びカム56によつて出力
軸46に負荷が作用したとき、検出ロツド移動装
置5を作動させる制御装置9が構成させる。
The output part case 31, the spring 33, the reaction force receiver 6,
A control device 9 is configured to operate the detection rod moving device 5 when a load is applied to the output shaft 46 by the ball 35, the spring 59, and the cam 56.

(動作説明) 次にナツト締付時の各動作について説明する。(Operation explanation) Next, each operation when tightening the nut will be explained.

使用前の締付具は、第1スイツチ15はバネ1
9によつてトリガー26が左側へ押圧されて開路
しており、クラツチ2は遮断状態となつている。
又トグル25は第2スイツチ16のバネ19によ
つて左側へ押圧されている。
Before use, the first switch 15 is the spring 1
9, the trigger 26 is pressed to the left to open the circuit, and the clutch 2 is in the disconnected state.
The toggle 25 is also pushed to the left by the spring 19 of the second switch 16.

第1、第2スイツチ15,16は電動機13へ
の通電を開閉する電気接点であつて、運転前の状
態では第2スイツチ16は閉じているが第1スイ
ツチ15が開いており、電動機13への通電はさ
れず停止している。
The first and second switches 15 and 16 are electrical contacts that open and close electricity to the electric motor 13. Before operation, the second switch 16 is closed, but the first switch 15 is open, and the electric motor 13 is turned on and off. is not energized and is stopped.

実際にナツトを締付けるには、先ず、締付ける
べきボルトを、そのボルト耐力の5〜10%で仮締
めする。
To actually tighten a nut, first temporarily tighten the bolt to 5 to 10% of its proof strength.

仮締めしたナツトにソケツト7を嵌合する。 Fit the socket 7 into the temporarily tightened nut.

このとき反力受6の突起60は隣接の部材やナ
ツトには当たつておらず、又ソケツト7とナツト
の嵌合には遊びがある。
At this time, the protrusion 60 of the reaction force receiver 6 does not touch any adjacent member or nut, and there is play in the fitting between the socket 7 and the nut.

次に第2図のようにトリガー26を右側へ引張
ると、クラツチ2が伝達状態になるとともに、第
1スイツチ15が閉となり電動機13は始動す
る。
Next, when the trigger 26 is pulled to the right as shown in FIG. 2, the clutch 2 becomes in the transmission state, the first switch 15 is closed, and the electric motor 13 is started.

これにより、入力軸41は電動機13側より見
て右回転に回転を始めるが、出力部ケース31は
反力を受けていないため出力部ケース31が反力
受6とともに入力軸41側より見て左回転に空転
を始め、ソケツト7は回転しない。
As a result, the input shaft 41 starts to rotate clockwise when viewed from the electric motor 13 side, but since the output case 31 is not receiving any reaction force, the output case 31 and the reaction force receiver 6 are rotated clockwise when viewed from the input shaft 41 side. It starts spinning counterclockwise and socket 7 does not rotate.

又、ロツド51は入力軸41と一緒に回転する
ので、出力軸46との相対回転角度に応じてロツ
ド51の外周の左巻きの螺旋条53に噛み合つて
いる歯車55が、恰もウオームホイルのごとく回
転する。出力部ケース31は反力受6とともに空
転を続け、ついには反力受6の突起60が隣接の
ナツトN1に当たると共に、ナツトNとソケツト
7の嵌合の遊びもなくなつて反力受6は停止す
る。しかし出力部ケース31は更に回転を続けよ
うとするため、捩りバネ33を捩りながら、出力
部ケース31と反力受6が嵌合しているスプライ
ン軸孔61とスプライン筒軸32の山谷の嵌め合
いの遊び分だけ更に回転する。
Also, since the rod 51 rotates together with the input shaft 41, the gear 55 meshing with the left-handed helical strip 53 on the outer periphery of the rod 51 changes depending on the relative rotation angle with the output shaft 46, just like a worm wheel. Rotate. The output part case 31 continues to idle together with the reaction force receiver 6, and finally the protrusion 60 of the reaction force receiver 6 hits the adjacent nut N1 , and the play in the fitting between the nut N and the socket 7 disappears, and the reaction force receiver 6 stops. However, since the output case 31 tries to continue rotating, the torsion spring 33 is twisted, and the peaks and valleys of the spline shaft hole 61 and the spline cylinder shaft 32, into which the output case 31 and the reaction force receiver 6 are fitted, are fitted. It rotates further by the amount of play in the match.

このとき、第8図の如く反力受6のスプライン
軸孔63の内側面に当たつて止まつていたボール
35は外側に移動することが可能となり、ボール
35を押していた円錐カム56とスリーブ57は
バネ59の付勢により前方へ移動を始め、第2
図、第6図のようにスリーブ57の円筒部の切欠
き58の端部58aが歯車55の歯車に噛い込
み、歯車55の回転を止める。
At this time, as shown in FIG. 8, the ball 35 that had been stopped against the inner surface of the spline shaft hole 63 of the reaction force receiver 6 is now able to move outward, and the conical cam 56 that was pushing the ball 35 and the sleeve 57 begins to move forward due to the bias of the spring 59, and the second
As shown in FIG. 6, the end 58a of the notch 58 of the cylindrical portion of the sleeve 57 is engaged with the gear of the gear 55, and the rotation of the gear 55 is stopped.

同時に、反力受6とスプライン軸孔61と出力
部ケース31のスプライン筒軸32とのスプライ
ンの山谷の側面が当たつて出力部ケース31は反
力を受け、出力軸46は回転し始め、ナツトを締
付ける。遊星歯車減速機構4の入力軸41の回転
数は出力軸46の回転数よりも多いから、両軸4
1,46は相対的に回転状態となる。
At the same time, the sides of the peaks and valleys of the splines of the reaction force receiver 6, the spline shaft hole 61, and the spline cylinder shaft 32 of the output case 31 come into contact, the output case 31 receives a reaction force, and the output shaft 46 begins to rotate. Tighten the nut. Since the rotation speed of the input shaft 41 of the planetary gear reduction mechanism 4 is higher than the rotation speed of the output shaft 46, both shafts 4
1 and 46 are in a relatively rotating state.

従つて、歯車55に噛み合うロツド51は入力
軸41と出力軸46の相対回転角度によつて、恰
も、ネジ穴からネジを抜くようにバネ54を押し
縮めながら動力部1側へ移動して第3図のように
トグル25を押圧する。これによつてトグル25
はトリガー26のカム27より外れて、クラツチ
2を遮断するとともに第2スイツチ16が開いて
電動機13への通電も遮断する。
Therefore, depending on the relative rotation angle between the input shaft 41 and the output shaft 46, the rod 51 meshing with the gear 55 moves toward the power unit 1 while compressing the spring 54, as if pulling a screw out of a screw hole. 3. Press the toggle 25 as shown in Figure 3. This will cause toggle 25
is disengaged from the cam 27 of the trigger 26, shutting off the clutch 2, and at the same time, the second switch 16 opens and the power to the electric motor 13 is also cut off.

この時点で入力軸41は回転を停止するととも
に出力軸46を回転を停止して何ら出力しなくな
り、ナツトの締付けを完了する。又出力部ケース
31も反力を受けなくなり、捩りバネ33によつ
て初期状態まで回転させられるので、第4図、第
8図の如くボール35は反力受6のスプライン軸
孔61の内側面によつて軸心へ押し下げられる。
At this point, the input shaft 41 stops rotating and the output shaft 46 stops rotating so that no output is produced, completing the tightening of the nut. In addition, the output part case 31 is no longer subjected to reaction force and is rotated to the initial state by the torsion spring 33, so that the ball 35 is pushed against the inner surface of the spline shaft hole 61 of the reaction force receiver 6, as shown in FIGS. 4 and 8. is pushed down toward the axis by

ボール35が軸心へ押し下げられることによ
り、円錐カム56、スリーブ57はバネ59を押
し縮めながら動力部1側へ移動し、スリーブ57
の切欠き58の端部58aと歯車55の噛み合い
が外れ、歯車55は自由に回転できる。これによ
つて歯車55に噛み合つているロツド51は軸方
向に移動することが可能となり、バネ54の抗力
によつて歯車55を回転させながらソケツト7側
へ移動し第5図のように初期の位置に復帰する。
As the ball 35 is pushed down toward the axis, the conical cam 56 and the sleeve 57 move toward the power unit 1 side while compressing the spring 59, and the sleeve 57
The end 58a of the notch 58 and the gear 55 are disengaged, and the gear 55 can rotate freely. This makes it possible for the rod 51 meshing with the gear 55 to move in the axial direction, and moves toward the socket 7 while rotating the gear 55 due to the drag force of the spring 54, and returns to the initial position as shown in FIG. Return to position.

次にトリガー26を左側へ戻すと第1スイツチ
15が開くとともに、第2スイツチ16のバネ1
9によつて閉じ且つトグル25は初期位置に戻さ
れ、第1図の状態に復帰する。
Next, when the trigger 26 is returned to the left, the first switch 15 opens, and the spring 1 of the second switch 16 opens.
9, and the toggle 25 is returned to its initial position, returning to the state shown in FIG.

以上により、ナツト締付時の各動作について説
明を行なつたが、この中で、第3図の様にロツド
51がトグル25に当たつてクラツチ2を遮断さ
せる状態から、第5図の如くロツド51が左側へ
移動して初期状態に戻るまでの行程は瞬間的に行
なわれる為、トリガー26を左側へ戻す操作はこ
の後に来るとしたが、場合によつては途中に操作
されることも考えられる。このときには2つの動
作が同時に進行することになる。
As described above, each operation when tightening the nut has been explained, from the state in which the rod 51 hits the toggle 25 to disconnect the clutch 2 as shown in Fig. 3, to the state shown in Fig. 5. Since the process from when the rod 51 moves to the left to return to its initial state is instantaneous, the operation to return the trigger 26 to the left comes after this, but in some cases it may be operated during the process. Conceivable. At this time, two operations proceed simultaneously.

ナツトNの回転角度の設定はロツド51の移動
距離を変えることにより行なう。すなわち第1図
のようにネジ軸状ストツパー30の螺入位置によ
つてロツド51の初期位置を変えることにより、
ロツド51が移動を始めてクラツチ2を動作させ
るまでの距離を変えて行なうものであり、ロツド
51の移動量は出力軸46と入力軸41の相対回
転角度とロツド51の螺旋条53のリードの積に
比例するので、ナツト回転角度をストツパー30
によつて設定できることが分かる。
The rotation angle of the nut N is set by changing the moving distance of the rod 51. That is, by changing the initial position of the rod 51 depending on the screwing position of the threaded shaft-shaped stopper 30 as shown in FIG.
This is done by changing the distance from when the rod 51 starts moving until it operates the clutch 2, and the amount of movement of the rod 51 is determined by the product of the relative rotation angle between the output shaft 46 and the input shaft 41 and the lead of the spiral strip 53 of the rod 51. Since it is proportional to the rotation angle of the nut, the stopper 30
It can be seen that it can be set by

本実施例では遊星歯車減速機構を一段だけ使用
した場合について説明を行なつているが、これに
限らず、遊星歯車減速機構を数段組み合わせて、
その初段入力軸と最終段出力軸との相対回転角度
によつても何ら不都合なく構成することができ
る。又、第1、第2スイツチ15,16をそれぞ
れバルブに置き換えれば空圧または油圧電動機に
も適応させることが可能である。
Although this embodiment describes the case where only one stage of the planetary gear reduction mechanism is used, the present invention is not limited to this.
The relative rotation angle between the first stage input shaft and the final stage output shaft can also be configured without any inconvenience. Furthermore, by replacing the first and second switches 15 and 16 with valves, it is possible to adapt the system to pneumatic or hydraulic motors.

本発明は上記実施例の構成に限定されることは
く、特許請求の範囲に記載の範囲内で種々の変形
が可能である。
The present invention is not limited to the configuration of the above embodiments, and various modifications are possible within the scope of the claims.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は締付前の状態の締付具の断面図、第2
図は締付時の締付具の断面図、第3図は締付終了
時の締付具の断面図、第4図は歯車とスリーブの
係合が外れた状態の締付具の断面図、第5図はロ
ツドが元位置に復帰した状態の断面図、第6図は
歯車とスリーブの係合状態を示す断面図、第7図
は反力受と空転の説明図、第8図は第1図−
線に沿う断面図、第9図は第2図−線に沿う
断面図、第10図は第1図−線に沿う断面
図、第11図は第1図XI−XI線に沿う断面図、第
12図は従来例の説明図である。 1……動力部、2……クラツチ、28……クラ
ツチ遮断部、3……出力部、4……遊星歯車減速
機構、5……ロツド移動装置、6……反力受、9
……制御装置。
Figure 1 is a sectional view of the fastener before tightening, Figure 2
The figure is a cross-sectional view of the fastener during tightening, Figure 3 is a cross-sectional view of the fastener after tightening, and Figure 4 is a cross-sectional view of the fastener with the gear and sleeve disengaged. , Fig. 5 is a sectional view of the rod returned to its original position, Fig. 6 is a sectional view showing the engaged state of the gear and sleeve, Fig. 7 is an explanatory diagram of the reaction force receiver and idling, and Fig. 8 is Figure 1-
9 is a sectional view taken along the line of FIG. 2, FIG. 10 is a sectional view taken along the line of FIG. 1, and FIG. 11 is a sectional view taken along the line XI-XI of FIG. FIG. 12 is an explanatory diagram of a conventional example. DESCRIPTION OF SYMBOLS 1... Power part, 2... Clutch, 28... Clutch cutoff part, 3... Output part, 4... Planetary gear reduction mechanism, 5... Rod moving device, 6... Reaction force receiver, 9
……Control device.

Claims (1)

【特許請求の範囲】 1 電動機13等の回転駆動装置にクラツチ2及
び遊星歯車機構4を介してソケツト7を駆動する
ソケツト駆動機構71と、 遊星歯車減速機構4の入力軸41と出力軸46
の軸心にスライド可能に嵌まつた検出ロツド51
と、 遊星歯車減速機構4の出力軸46と入力軸41
の相対回転角度に応じて検出ロツド51を軸方向
に移動させるロツド移動装置5と、 出力軸46にナツト締付けの負荷が作用したと
き検出ロツド移動装置5を作動させる制御装置9
と、 該検出ロツドの後退移動によつてクラツチ2を
切るクラツチ遮断装置28と、 ボルトナツト締付時の締付反力を受ける反力受
6と、 反力受け6に相対的に回転自由に取り付けられ
た操作ハンドル部12とによつて構成され、 前記検出ロツド51は入力軸41に該軸と一体
回転可能に嵌まり、出力軸46に対しては該軸4
6の回転とは無関係に回転自由に嵌まり且つ出力
軸46に嵌まつた部分には螺旋条53を形成して
おり、検出ロツド移動装置5は、出力軸46に開
設した切欠き部48に該軸46の軸心を含む面内
にて回転自由に枢支され前記検出ロツド51の螺
旋条53に噛合し且つ一部を出力軸46の外部に
臨出させた歯車55と、出力軸46に軸方向に摺
動可能に嵌まり歯車55の歯に係合して歯車55
の回転を阻止するストツプ部58aを具えたスリ
ーブ57と、スリーブ57が歯車55に係合する
方向にスリーブ57を付勢するバネ59とから成
り、 制御装置9は、遊星歯車減速機構4の内歯40
を具えたケース31と、該ケース31に回転方向
に遊びのある状態にてスプライン係合しバネ33
によつて遊び方向に付勢された反力受6と、ケー
ス31に開設された貫通孔34に嵌まり回転体3
1と反力受6のスプライン係合部の遊び空間36
に出没可能なボール35と、前記検出ロツド移動
装置5のスリーブ57と一体に軸方向に摺動可能
に配備され且つバネ59によつてボール35を遊
び空間36側へ押圧する方向に付勢されたカム5
6とから成るボルトナツト締付具。
[Claims] 1. A socket drive mechanism 71 that drives the socket 7 via the clutch 2 and the planetary gear mechanism 4 to a rotational drive device such as an electric motor 13, and the input shaft 41 and output shaft 46 of the planetary gear reduction mechanism 4.
The detection rod 51 is slidably fitted into the axis of the
and the output shaft 46 and input shaft 41 of the planetary gear reduction mechanism 4
a rod moving device 5 that moves the detection rod 51 in the axial direction according to the relative rotation angle of the rod; and a control device 9 that operates the detection rod moving device 5 when a nut tightening load is applied to the output shaft 46.
, a clutch disconnection device 28 that disconnects the clutch 2 when the detection rod moves backward; a reaction force receiver 6 that receives a tightening reaction force when tightening a bolt/nut; and a reaction force receiver 6 that is rotatably attached to the reaction force receiver 6. The detection rod 51 is fitted into the input shaft 41 so as to be able to rotate integrally with the shaft, and the detection rod 51 is fitted into the input shaft 41 so as to be rotatable therewith.
A spiral thread 53 is formed on the portion that is fitted into the output shaft 46 so that it can rotate freely regardless of the rotation of the detection rod 6 . A gear 55 that is rotatably supported in a plane including the axis of the shaft 46, meshes with the spiral thread 53 of the detection rod 51, and has a portion protruding outside the output shaft 46, and the output shaft 46. The gear 55 is slidably fitted in the axial direction and engages with the teeth of the gear 55.
The control device 9 consists of a sleeve 57 having a stop portion 58a that prevents rotation of the planetary gear reduction mechanism 4, and a spring 59 that biases the sleeve 57 in a direction in which the sleeve 57 engages with the gear 55. teeth 40
and a spring 33 that is spline engaged with the case 31 with play in the rotational direction.
The reaction force receiver 6 is biased in the play direction by
Play space 36 between the spline engagement portion of 1 and the reaction force receiver 6
A ball 35 that can be retracted and retracted is disposed so as to be able to slide in the axial direction integrally with the sleeve 57 of the detection rod moving device 5, and is biased by a spring 59 in a direction to press the ball 35 toward the play space 36. Cam 5
A bolt/nut fastener consisting of 6.
JP18964887A 1987-07-29 1987-07-29 Bolt nut tightening tool Granted JPS6434677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18964887A JPS6434677A (en) 1987-07-29 1987-07-29 Bolt nut tightening tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18964887A JPS6434677A (en) 1987-07-29 1987-07-29 Bolt nut tightening tool

Publications (2)

Publication Number Publication Date
JPS6434677A JPS6434677A (en) 1989-02-06
JPH0513790B2 true JPH0513790B2 (en) 1993-02-23

Family

ID=16244831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18964887A Granted JPS6434677A (en) 1987-07-29 1987-07-29 Bolt nut tightening tool

Country Status (1)

Country Link
JP (1) JPS6434677A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632911B2 (en) * 1987-11-24 1994-05-02 前田金属工業株式会社 Output shaft rotation angle detector
JP2618428B2 (en) * 1988-03-30 1997-06-11 株式会社 マキタ Power tool rotation control device
JP4939821B2 (en) * 2006-03-07 2012-05-30 株式会社マキタ Rotary tightening tool
JP4411335B2 (en) 2007-05-16 2010-02-10 本田技研工業株式会社 Water jacket structure for water-cooled internal combustion engine
JP5635897B2 (en) 2010-12-15 2014-12-03 Tone株式会社 Tightening machine with socket unit
CN112059602A (en) * 2020-09-14 2020-12-11 于同仁 Automatic device of screwing up of gearbox main reduction gear

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604702Y2 (en) * 1981-03-31 1985-02-12 芝浦メカトロニクス株式会社 Electric bolt tightening machine attachment

Also Published As

Publication number Publication date
JPS6434677A (en) 1989-02-06

Similar Documents

Publication Publication Date Title
US5203242A (en) Power tool for two-step tightening of screw joints
US5356350A (en) Motor-driven screwdriver with variable torque setting for equal torques regardless or countertorques by fasteners
EP0525911B1 (en) Transmission for electrically driven tool
US4215594A (en) Torque responsive speed shift mechanism for power tool
JP4041539B2 (en) Power nutrunner with torque release clutch and adjustment tool
EP0277105B1 (en) Power tool for two step tightening of screw joints
US4966057A (en) Power wrench
US4328871A (en) Power tool speed and torque control mechanism
EP0886559B1 (en) Power nutrunner
US4842078A (en) Screw joint tightening power tool
US8790210B2 (en) Power tool with an automatic speed regulating device
US20170248210A1 (en) Adjustment arrangement and valve control device comprising an adjustment arrangement
JPS58165969A (en) Blocking type screw driver
JPH0513790B2 (en)
US4610339A (en) Adjustable torque limiting assembly
JPH03117568A (en) Power wrench
US9022137B2 (en) Fastening tool
USRE33514E (en) Adjustable torque limiting assembly
US4295552A (en) Means for coupling a hand drive with a rotatable shaft
JPH0326470A (en) Angle driver
JPH0632911B2 (en) Output shaft rotation angle detector
CA1248787A (en) Adjustable torque limiting assembly
JPS6243734Y2 (en)
TWI805277B (en) Power tool
GB2281046A (en) Tightening screwed connections

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees