JPH05135A - Blood model - Google Patents

Blood model

Info

Publication number
JPH05135A
JPH05135A JP3043002A JP4300291A JPH05135A JP H05135 A JPH05135 A JP H05135A JP 3043002 A JP3043002 A JP 3043002A JP 4300291 A JP4300291 A JP 4300291A JP H05135 A JPH05135 A JP H05135A
Authority
JP
Japan
Prior art keywords
blood
model
fluorescent dye
calibration test
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3043002A
Other languages
Japanese (ja)
Other versions
JP2683848B2 (en
Inventor
Masayoshi Fuse
政好 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP3043002A priority Critical patent/JP2683848B2/en
Publication of JPH05135A publication Critical patent/JPH05135A/en
Application granted granted Critical
Publication of JP2683848B2 publication Critical patent/JP2683848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To achieve higher reproducibility of a measured value for calibration test by setting a mixing ratio of an orange fluorescent dye and a red fluorescent dye to that indicating a photo absorption characteristic similar to blood. CONSTITUTION:A blood model 19 herein used is a acrylic resin as base which is mixed with an orange powder fluorescent dye at a mixing ratio of 50-75% and a red powder fluorescent dye at a mixing ratio of 50-25% to impart a photoabsorption characteristic similar to blood and injection molded into a plate. The tip of the blood model 19 is curved in shape so that a detection waveform similar to a pulse wave of an organism can be picked up from a photodetecting section 16 when the blood model 19 moves is or out between a light emitting section 15 and the photodetecting section 16. This enables optical calibration test of a pulse oximeter containing a measuring probe, that has hereto before been hard to perform thereby achieving higher reproducibility of a measured value for calibration test.

Description

【発明の詳細な説明】Detailed Description of the Invention

[発明の目的] [Object of the Invention]

【0001】[0001]

【産業上の利用分野】本発明は、パルスオキシメータの
校正試験を行なう際に使用される血液モデルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blood model used for performing a calibration test of a pulse oximeter.

【0002】[0002]

【従来の技術】パルスオキシメータは、酸化ヘモグロビ
ンと還元ヘモグロビンとで異なる光透過性を有するたと
えば2つの波長の光を人の指先などに入光させ、動脈血
の脈動に伴って現れる2つの波長についての透過光の脈
動変動分の比を求め、この比を関数として血中の酸素飽
和度を求めるものである。ところで、このパルスオキシ
メータでの校正方法は従来、測定プローブを含めず装置
本体のみで電気的に校正を行なっていた。また別の試験
方法としては、正常な人の指先を実際に測定することで
校正が行なわており、同一人物の指先を複数回測定プロ
ーブに装着して同じ測定値を示すかどうかで確認を行な
っていた。
2. Description of the Related Art A pulse oximeter emits light of, for example, two wavelengths, which have different optical transmissivities between oxyhemoglobin and deoxyhemoglobin, into a fingertip of a person or the like, and about two wavelengths that appear with pulsation of arterial blood. The ratio of the pulsation fluctuation of the transmitted light is calculated, and the oxygen saturation in the blood is calculated by using this ratio as a function. By the way, in the calibration method using the pulse oximeter, conventionally, the calibration was performed electrically only by the apparatus main body without including the measurement probe. As another test method, calibration is performed by actually measuring the fingertip of a normal person, and it is confirmed whether the same person's fingertip is attached to the measurement probe multiple times to show the same measurement value. Was there.

【0003】[0003]

【発明が解決しようとする課題】しかし、人の指先を実
際に測定して校正を行なう方法では、測定された値に再
現性が乏しく、測定値が信頼できるかどうかの判定が難
しかった。そこで、人の指先に近似した吸光特性を持つ
指モデルを用いてパルスオキシメータの校正を行なうこ
とが考えられるが、血液の吸光特性に近似させた血液モ
デルの実現が難しく、指モデルによるパルスオキシメー
タの校正試験は困難であった。
However, in the method of actually measuring and calibrating the fingertip of a person, the reproducibility of the measured value is poor, and it is difficult to judge whether the measured value is reliable. Therefore, it is conceivable to calibrate the pulse oximeter using a finger model that has an absorption characteristic similar to that of a human finger, but it is difficult to realize a blood model that approximates the absorption characteristic of blood, and pulse oximeters using finger models are difficult to realize. The calibration test of the meter was difficult.

【0004】本発明は、このような従来の課題を解決す
るために提案されたものであり、校正試験用の測定値の
再現性を向上でき、高い信頼性でパルスオキシメータの
校正を行なえるようにするための血液モデルを提供する
ことを目的とする。 [発明の構成]
The present invention has been proposed in order to solve such a conventional problem, and can improve the reproducibility of measured values for a calibration test, and can calibrate a pulse oximeter with high reliability. The aim is to provide a blood model for doing so. [Constitution of Invention]

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明による血液モデルはオレンジ色の蛍光染料がた
とえば50〜75%、赤色の蛍光染料が50〜25%の
比で混合されてなり、血液に近似した吸光特性を有する
ことを特徴とするものである。
In order to achieve this object, the blood model according to the present invention comprises an orange fluorescent dye mixed in a ratio of 50 to 75% and a red fluorescent dye in a ratio of 50 to 25%. , And has an absorption characteristic similar to that of blood.

【0006】[0006]

【作用】上述した構成によれば、オレンジ色の蛍光染料
と赤色の蛍光染料を所定の比で混合することで、血液に
近似した吸光特性を持たせることができるとともに、こ
れらの混合比を変えることで、異なる酸素飽和度の校正
試験に使用できる血液モデルが構成される。
According to the above-mentioned structure, by mixing the orange fluorescent dye and the red fluorescent dye at a predetermined ratio, it is possible to give an absorption characteristic close to that of blood and change the mixing ratio of these. This constitutes a blood model that can be used for calibration tests with different oxygen saturations.

【0007】[0007]

【実施例】以下、本発明による血液モデルの具体的な実
施例を図面に基づき詳細に説明する。図1に、この血液
モデルを使用したパルスオキシメータ用校正試験装置の
ブロック図を示す。この図で、パルスオキシメータ本体
1に信号ケーブル2によって接続される測定プローブ3
には、人の指モデル4が装着され、この指モデル4の一
部を構成する脈動発生部5が駆動部6により駆動されて
指モデル4内で往復運動される。駆動部6には、駆動用
の電源が電源部7から供給され、コントロール部8から
は脈動発生部5を適正な速度で駆動するためのコントロ
ール信号が入力される。また位置検出部9では、センサ
10からの入力信号に基づき脈動発生部5の位置検出が行
なわれ、検出結果が位置検出表示部11に表示される。測
定プローブ3は、図2に示すようにピン12を支点に開閉
自在な上挟持板13と下挟持板14が内側に閉ざされるよう
にばね付勢され、この上挟持板13の内面部には酸素飽和
度測定用に異なる波長λ1 ,λ2 の光を発するための2
つの発光ダイオードからなる発光部15が設けられている
とともに、下挟持板14の内面部には発光部15に対峙して
受光部16が設けられている。この測定プローブ3の上挟
持板13と下挟持板14間に校正試験時に装着される指モデ
ル4は、組織モデル17とこの組織モデル17内で運動され
る脈動発生部5からなる。組織モデル17はたとえば発泡
スチロール樹脂などから構成され、生体組織に近似され
るよう各波長に対して一定な吸光特性を有している。こ
の組織モデル17には、透光性の基板18に血液モデル19を
貼り付けた脈動発生部5が挿入される挿入孔20が前後方
向に穿設されている。基板18の両側壁には、図3および
図4に示すようにスライドガイドピン21,21が突設さ
れ、これらガイドピン21,21が挿入孔20の両側部に形成
されたスライド溝22,22に嵌め込まれ、脈動発生部5が
スライド溝22の範囲組織モデル17内を運動できるように
なっている。また駆動部6を構成するモータの出力軸23
には円板24が固着され、この円板24の偏心した位置に連
結ロッド26が回動自在に取り付けられている。この連結
ロッド26の先端には、回動自在なカップリング27を介し
て脈動発生部5の基板18の基部が取り付けられている。
これによりモータの回転運動が円板24を介して脈動発生
部5に直線運動として伝達され、脈動発生部5が発光部
15と受光部16間に出入りする形で指モデル4内で前後方
向に往復運動される。また組織モデル17にはこの指モデ
ル4が測定プローブ3に装着されるときに、発光部15と
受光部16間に正しく入り込んだどうかを確認するための
センサ10が取り付けられている。このセンサ10からは発
光部15の光を受けたときに検知出力が位置検出部9に送
出され、位置検出部9ではこのセンサ検知信号に基づき
発光ダイオードからなる表示部11を点灯する。したがっ
て、この表示部11の点灯状態を確認することで、指モデ
ル4がプローブ3に完全に装着されたどうかの確認を行
なえる。なお、指モデル4の上面部と下面部には滑止め
4a,4aが貼り付けられている。つぎに、基板18上の血液
モデル19の構成を説明する。この血液モデル19は、血液
に近似した吸光特性を持たせるために混合比が50〜7
5%のオレンジ色の粉末蛍光染料と混合比が50〜25
%の赤色の粉末蛍光染料とを混ぜ合わせ、アクリル樹脂
をベースに板状に射出成形したものである。ここで、使
用される蛍光染料はルモゲンF(BASF社の商品名)のオ
レンジ240と赤300である。この蛍光染料の化学名
は、ペリレン(Perylen)である。オレンジ色の粉末蛍光
染料と赤色の粉末蛍光染料の混合比を上記の範囲で変え
ることにより、異なる酸素飽和度Sの校正試験用に対応
した吸光特性パターンP1 ,P2 ,P3 (図9参照)を
有する血液モデル19を構成できる。ここで、オレンジ色
の粉末蛍光染料の混合比を多くすることにより、酸素飽
和度Sの高い場合の校正試験用として用いられる血液モ
デル19が構成される。また血液モデル19の先端部19a の
形状は、図5に示すように断面曲線形状に切り欠かれて
いる。このように血液モデル19の先端形状を曲面形状と
したことにより、実線と仮想線で示すように発光部15と
受光部16間に血液モデル19が出入りするときに、生体の
脈波に近い検出波形を受光部16から取り出すことができ
る。なお、血液モデル19の先端形状を直角に切り落とし
た場合は、生体の脈波とは異なる矩形波に近い急峻な検
出波形となってしまう。ここで、血液モデル19は、生体
内での透過光の散乱に近似される吸光特性が得られるよ
うな表面処理が施されており、血液モデル19内に入り込
んだ直線光およびモデル19内で生じた散乱光が長波長の
蛍光に変えられて再放出され、その大部分は点線で示す
ように全反射によりエッジ部分19b に誘導されて、残り
透過光が脈動検出分として利用される。このように大部
分をエッジ部19b に誘導してしまうことにより、脈動変
化分の信号レベルの差を大きくとることができる。な
お、この血液モデル19は着脱可能となっており、汚れな
どにより吸光特性が変化したときは交換できるようにな
っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of a blood model according to the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a block diagram of a pulse oximeter calibration test apparatus using this blood model. In this figure, a measurement probe 3 connected to the pulse oximeter body 1 by a signal cable 2
A human finger model 4 is attached to the human body, and a pulsation generator 5 that constitutes a part of the finger model 4 is driven by a drive unit 6 to reciprocate in the finger model 4. Driving power is supplied to the driving unit 6 from the power supply unit 7, and a control signal for driving the pulsation generating unit 5 at an appropriate speed is input from the control unit 8. Further, in the position detection unit 9, the sensor
The position of the pulsation generator 5 is detected based on the input signal from 10, and the detection result is displayed on the position detection display 11. As shown in FIG. 2, the measurement probe 3 is spring-biased so that the upper holding plate 13 and the lower holding plate 14 which can be opened and closed with the pin 12 as a fulcrum are closed inward. 2 for emitting light of different wavelengths λ1 and λ2 for measuring oxygen saturation
A light emitting portion 15 composed of two light emitting diodes is provided, and a light receiving portion 16 is provided on the inner surface of the lower holding plate 14 so as to face the light emitting portion 15. The finger model 4, which is mounted between the upper holding plate 13 and the lower holding plate 14 of the measurement probe 3 during the calibration test, includes a tissue model 17 and a pulsation generator 5 that moves in the tissue model 17. The tissue model 17 is made of, for example, styrofoam resin, and has a constant light absorption characteristic for each wavelength so as to approximate a living tissue. The tissue model 17 is provided with an insertion hole 20 in the front-rear direction in which the pulsation generator 5 having the blood model 19 attached to the translucent substrate 18 is inserted. As shown in FIGS. 3 and 4, slide guide pins 21 and 21 are provided on both side walls of the board 18, and the guide pins 21 and 21 are formed in the slide grooves 22 and 22 formed on both sides of the insertion hole 20, respectively. The pulsation generating section 5 can be moved within the range tissue model 17 of the slide groove 22 by being fitted into. Also, the output shaft 23 of the motor that constitutes the drive unit 6
A disc 24 is fixed to the disc 24, and a connecting rod 26 is rotatably attached to the disc 24 at an eccentric position. The base of the base plate 18 of the pulsation generator 5 is attached to the tip of the connecting rod 26 via a rotatable coupling 27.
As a result, the rotational movement of the motor is transmitted as a linear movement to the pulsation generating section 5 via the disc 24, and the pulsation generating section 5 becomes a light emitting section.
The finger model 4 is reciprocally moved in the front-rear direction so as to move in and out between the light receiving unit 16 and the light receiving unit 16. Further, the tissue model 17 is provided with a sensor 10 for confirming whether the finger model 4 is properly inserted between the light emitting portion 15 and the light receiving portion 16 when the finger model 4 is attached to the measurement probe 3. A detection output is sent from the sensor 10 to the position detecting unit 9 when the light from the light emitting unit 15 is received, and the position detecting unit 9 turns on the display unit 11 formed of a light emitting diode based on the sensor detection signal. Therefore, by confirming the lighting state of the display unit 11, it is possible to confirm whether or not the finger model 4 is completely attached to the probe 3. It should be noted that the upper surface and the lower surface of the finger model 4 are not slippery.
4a and 4a are attached. Next, the configuration of the blood model 19 on the substrate 18 will be described. The blood model 19 has a mixing ratio of 50 to 7 in order to have absorption characteristics similar to blood.
5% orange powder fluorescent dye and mixing ratio 50 ~ 25
% Of red powder fluorescent dye, and injection-molded into a plate shape based on an acrylic resin. The fluorescent dyes used here are orange 240 and red 300 of Lumogen F (trade name of BASF). The chemical name of this fluorescent dye is Perylen. By changing the mixing ratio of the orange powder fluorescent dye and the red powder fluorescent dye within the above range, the absorption characteristic patterns P1, P2, P3 (see FIG. 9) corresponding to the calibration test of different oxygen saturation S can be obtained. The blood model 19 that the user has can be configured. Here, by increasing the mixing ratio of the orange powder fluorescent dye, the blood model 19 used for the calibration test when the oxygen saturation S is high is configured. Further, the shape of the tip portion 19a of the blood model 19 is cut out in a curved sectional shape as shown in FIG. By making the tip shape of the blood model 19 into a curved shape in this way, when the blood model 19 enters and leaves between the light emitting unit 15 and the light receiving unit 16 as shown by the solid line and the virtual line, detection close to the pulse wave of the living body The waveform can be extracted from the light receiving unit 16. If the tip shape of the blood model 19 is cut off at a right angle, a sharp detection waveform close to a rectangular wave different from the pulse wave of the living body will result. Here, the blood model 19 is subjected to a surface treatment such that the absorption characteristics approximate to the scattering of transmitted light in the living body are obtained, and the linear light entering the blood model 19 and the model 19 are generated. The scattered light is converted into long-wavelength fluorescence and re-emitted, and most of it is guided to the edge portion 19b by total reflection as shown by the dotted line, and the remaining transmitted light is used as a pulsation detection component. In this way, by guiding the most part to the edge portion 19b, it is possible to make a large difference in the signal level of the pulsation change. The blood model 19 is removable so that it can be replaced when the light absorption characteristics change due to dirt or the like.

【0008】図6は、実際の生体における吸光特性と指
モデル4における吸光特性とを説明するために生体と指
モデル4とを模式化して対比したものであり、図6(a)
は組織層28と血液層29とに分けた生体30の模式図を示
し、図6(b) は指モデル4の模式図を示す。図中、Dは
組織分の厚み、ΔDは血液分の厚さ、I0 は入射光量、
Iは組織分だけの透過光量、(I−ΔI)は脈動に伴う
血液における減光分を差し引いた透過光量をそれぞれ示
す。このように組織モデル17内で血液モデル19を運動さ
せることにより、血液の脈動に伴って吸光度が変化する
生体30の特性に近似させた吸光特性をこの指モデル4に
よって模擬的に実現することができる。ここで、脈動に
伴う吸光度の変化分をΔA、吸光物の吸光係数をE、吸
光物の濃度をCとすると、ΔAは次式で与えられる。 ΔA=Log[I/(I−ΔI)]=ECΔD また第1および第2の波長λ1 ,λ2 における吸光度の
変化分をそれぞれΔA1,ΔA2 、吸光物の吸光係数を
それぞれE1 ,E2 とすると、吸光係数の比Φは、次式
で与えられる。 Φ=ΔA1 /ΔA2 =E1 /E2 このΦを関数として、次式のように酸素飽和度Sが求め
られる。 S=f(Φ) 図7は、実際の人の指先部のS−Φ関係曲線を示したも
のであり、指モデル4はこのS−Φ関係曲線に近似した
特性が得られる必要があり、この特性が得られるよう組
織モデル17および血液モデル19の素材が決められる。図
8には、酸化ヘモグロビンと還元ヘモグロビンの吸光特
性と、酸素飽和度Sが97%ついての校正試験を行なえ
るようにするためのシミュレータとして指モデル4が用
いられる場合における血液モデル19の吸光特性パターン
P1 が示されている。また図9には、酸素飽和度Sが8
3%および60%のときのシミュレータとして血液モデ
ル19を構成したときのこの血液モデル19の吸光特性パタ
ーンがそれぞれ示されている。図中、右側のA1 ,A2
は波長λ1 ,λ2 のときの各吸光特性パターンP1 ,P
2,P3 に対応する血液モデル19で観測される吸光度の
脈動変動波形(疑似サイン波)をそれぞれ示し、左側の
A1 ,A2 は実際の生体で観測される吸光度の脈動変動
波形をそれぞれ示す。
FIG. 6 is a schematic comparison between the living body and the finger model 4 in order to explain the actual light-absorbing characteristics and the light-absorbing characteristics of the finger model 4, and FIG.
Shows a schematic diagram of a living body 30 divided into a tissue layer 28 and a blood layer 29, and FIG. 6 (b) shows a schematic diagram of the finger model 4. In the figure, D is the thickness of the tissue, ΔD is the thickness of the blood, I 0 is the amount of incident light,
I represents the amount of transmitted light only in the tissue portion, and (I-ΔI) represents the amount of transmitted light obtained by subtracting the dimmed portion in blood due to pulsation. By moving the blood model 19 in the tissue model 17 as described above, the finger model 4 can be used to simulate the light absorption characteristics approximate to the characteristics of the living body 30 in which the light absorption changes with the pulsation of blood. it can. Here, ΔA is given by the following equation, where ΔA is the change in absorbance due to pulsation, E is the extinction coefficient of the light absorber, and C is the concentration of the light absorber. ΔA = Log [I / (I-ΔI)] = ECΔD Further, assuming that the changes in the absorbance at the first and second wavelengths λ1 and λ2 are ΔA1 and ΔA2, respectively, and the extinction coefficients of the absorber are E1 and E2, respectively, the absorption is The coefficient ratio Φ is given by the following equation. [Phi] = [Delta] A1 / [Delta] A2 = E1 / E2 Using this [Phi] as a function, the oxygen saturation S can be obtained by the following equation. S = f (Φ) FIG. 7 shows an S-Φ relationship curve of an actual human fingertip portion, and the finger model 4 needs to obtain characteristics approximate to this S-Φ relationship curve. The materials of the tissue model 17 and the blood model 19 are determined so as to obtain this characteristic. FIG. 8 shows the absorption characteristics of oxyhemoglobin and reduced hemoglobin, and the absorption characteristics of the blood model 19 when the finger model 4 is used as a simulator for performing a calibration test with an oxygen saturation S of 97%. Pattern P1 is shown. Further, in FIG. 9, the oxygen saturation S is 8
The light absorption characteristic patterns of the blood model 19 when the blood model 19 is configured as a simulator at 3% and 60% are shown, respectively. In the figure, A1 and A2 on the right side
Is the absorption characteristic patterns P1 and P for wavelengths λ1 and λ2
2 and 3 show the pulsation fluctuation waveforms of the absorbance (pseudo sine wave) observed in the blood model 19 corresponding to P3, and A1 and A2 on the left side respectively show the pulsation fluctuation waveforms of the absorbance observed in the actual living body.

【0009】つぎに、測定プローブ3に指モデル4を装
着して校正試験を行なう際のパルスオキシメータ内部で
の信号処理の動作を図10のタイミング図に基づいて説
明する。まず、発光駆動部31からは波長がλ1 ,λ2 に
対応する発光部15の発光ダイオードをそれぞれ点灯する
ための駆動パルス(a) が出力され、この駆動パルスに同
期して、2つの発光ダイオードが交互に点灯される。発
光部15から発せられた光は、指モデル4を透過したあと
に、受光部16によって受光され、受光出力が受光増幅部
32に供給される。この増幅部32で増幅された受光信号
は、マルチプレクサ33に送られて、λ1 側の同期パルス
(b) とλ2 側の同期パルス(c) に基づきそれぞれの波長
に対応した信号に分離される。マルチプレクサ33から出
力される分離信号はホールド部34でλ1 側の信号がホー
ルドされ、次段のAC部35において脈動変動分に対応す
る交流成分AC1(f)が抽出されるとともに、DC部36で組
織分に対応する直流成分DC1(g)が抽出される。またλ2
側の信号は、ホールド部37でホールドされ、次段のAC
部38において脈動変動分に対応する交流成分AC2(h)が抽
出されるとともに、DC部39で組織分に対応する直流成
分DC2(i)が抽出される。これらAC部35,36およびDC
部36,39からの出力信号は、A/D変換部40でディジタ
ル信号に変換されたあと、CPU41に供給され、このC
PU41において次式に示すように各波長λ1 ,λ2 に対
応する吸光度の変化分ΔA1 ,ΔA2 を求める演算が行
なわれる。 ΔA1 =AC1 /DC1 ΔA2 =AC2 /DC2 続いて、次段の演算部42では次式に示すように吸光係数
の比Φを求める演算が行なわれる。 Φ=ΔA1 /ΔA2 この吸光係数の比Φから次段の演算部43において酸素飽
和度Sが算出され、表示部44に求められた酸素飽和度S
の値が表示される。
Next, the operation of signal processing inside the pulse oximeter when the finger model 4 is attached to the measurement probe 3 and a calibration test is performed will be described based on the timing chart of FIG. First, the light emission drive unit 31 outputs a drive pulse (a) for turning on the light emitting diodes of the light emission unit 15 corresponding to wavelengths λ1 and λ2, respectively, and two light emitting diodes are synchronized with the drive pulse (a). The lights are turned on alternately. The light emitted from the light emitting unit 15 is received by the light receiving unit 16 after passing through the finger model 4, and the light reception output is the light reception amplification unit.
Supplied to 32. The received light signal amplified by the amplifier 32 is sent to the multiplexer 33, and the synchronization pulse on the λ1 side is sent.
The signals corresponding to the respective wavelengths are separated based on (b) and the synchronization pulse (c) on the λ2 side. As for the separated signal output from the multiplexer 33, the signal on the λ1 side is held by the hold unit 34, the AC component AC1 (f) corresponding to the pulsation fluctuation is extracted by the AC unit 35 in the next stage, and the DC unit 36 also The DC component DC1 (g) corresponding to the tissue component is extracted. Also λ2
The signal on the side is held by the hold unit 37, and the AC of the next stage is held.
The AC component AC2 (h) corresponding to the pulsation fluctuation component is extracted in the unit 38, and the DC component DC2 (i) corresponding to the tissue component is extracted in the DC unit 39. These AC parts 35, 36 and DC
The output signals from the units 36 and 39 are converted into digital signals by the A / D conversion unit 40 and then supplied to the CPU 41, where the C
In PU41, as shown by the following equation, the calculation for obtaining the changes ΔA1 and ΔA2 in the absorbance corresponding to the respective wavelengths λ1 and λ2 is performed. ΔA1 = AC1 / DC1 ΔA2 = AC2 / DC2 Subsequently, the calculation unit 42 at the next stage performs a calculation for obtaining the ratio Φ of the absorption coefficient as shown in the following equation. Φ = ΔA1 / ΔA2 From the ratio Φ of the extinction coefficient, the oxygen saturation S is calculated in the calculation unit 43 in the next stage, and the oxygen saturation S obtained on the display unit 44 is calculated.
The value of is displayed.

【0010】[0010]

【発明の効果】以上説明したように本発明による血液モ
デルによれば、オレンジ色の蛍光染料と赤色の蛍光染料
とを所定の比率で混合することで血液モデルを構成した
ので、生体の血液に近似した吸光特性を持たせることが
でき、従来困難であった測定プローブを含めたパルスオ
キシメータの光学的な校正試験が、この指モデルにより
可能となった。したがって、この血液モデルを用いた指
モデルによりパルスオキシメータの校正試験を行なうこ
とにより、校正試験用の測定値の再現性が向上でき、高
い信頼性でパルスオキシメータの校正が行なえる。
As described above, according to the blood model of the present invention, since the blood model is constructed by mixing the orange fluorescent dye and the red fluorescent dye in a predetermined ratio, the blood model of the living body can be obtained. This finger model enables the optical calibration test of the pulse oximeter including the measurement probe, which has been able to have similar absorption characteristics and was difficult in the past. Therefore, by performing the calibration test of the pulse oximeter with the finger model using this blood model, the reproducibility of the measurement value for the calibration test can be improved, and the pulse oximeter can be calibrated with high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による血液モデルを用いたパルスオキシ
メータ用校正試験装置の一実施例をパルスオキシメータ
と共に示すブロック図。
FIG. 1 is a block diagram showing an embodiment of a pulse oximeter calibration test apparatus using a blood model according to the present invention together with a pulse oximeter.

【図2】測定プローブに装着される指モデルを示す断面
図。
FIG. 2 is a cross-sectional view showing a finger model attached to a measurement probe.

【図3】上記指モデルの平面図。FIG. 3 is a plan view of the finger model.

【図4】上記指モデルの正面図。FIG. 4 is a front view of the finger model.

【図5】指モデルに用いられる血液モデルの形状と血液
モデル内での透過光の散乱の様子を説明するための図。
FIG. 5 is a diagram for explaining a shape of a blood model used for a finger model and a state of scattering of transmitted light in the blood model.

【図6】生体と指モデルの吸光特性を説明するための模
式図。
FIG. 6 is a schematic diagram for explaining absorption characteristics of a living body and a finger model.

【図7】人の指先の酸素飽和度Sと吸光係数の比Φとの
関係曲線を示すグラフ。
FIG. 7 is a graph showing a relationship curve between the oxygen saturation S of a human fingertip and the extinction coefficient ratio Φ.

【図8】酸化ヘモグロビンと還元ヘモグロビンの吸光特
性と血液モデルの吸光特性を示す特性図。
FIG. 8 is a characteristic diagram showing the absorption characteristics of oxygenated hemoglobin and reduced hemoglobin and the absorption characteristics of a blood model.

【図9】異なる酸素飽和度の校正試験用として用いられ
る血液モデルの各吸光特性パターンを示す図。
FIG. 9 is a diagram showing each absorption characteristic pattern of a blood model used for a calibration test of different oxygen saturation.

【図10】パルスオキシメータ内部での信号処理の動作
を示すタイミング図。
FIG. 10 is a timing chart showing an operation of signal processing in the pulse oximeter.

【符号の説明】[Explanation of symbols]

1 パルスオキシメータ本体 3 測定プローブ 4 指モデル 5 脈動発生部 6 駆動部 7 電源部 8 コントロール部 9 位置検出部 10 センサ 11 位置検出表示
部 15 発光部 16 受光部 17 組織モデル 18 基板 19 血液モデル 20 挿入孔 21 ガイドピン 22 スライド溝 23 出力軸 24 円板 26 連結ロッド 27 カップリング 28 組織層 29 血液層 30 生体
1 pulse oximeter body 3 measurement probe 4 finger model 5 pulsation generator 6 drive unit 7 power supply unit 8 control unit 9 position detection unit 10 sensor 11 position detection display unit 15 light emitting unit 16 light receiving unit 17 tissue model 18 substrate 19 blood model 20 Insertion hole 21 Guide pin 22 Slide groove 23 Output shaft 24 Disc 26 Connection rod 27 Coupling 28 Tissue layer 29 Blood layer 30 Living body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オレンジ色の蛍光染料と赤色の蛍光染料
とが所定の比で混合されてなり、血液に近似した吸光特
性を有することを特徴とする血液モデル。
1. A blood model comprising an orange fluorescent dye and a red fluorescent dye mixed in a predetermined ratio and having an absorption characteristic similar to blood.
【請求項2】 オレンジ色の蛍光染料が50〜75%、
赤色の蛍光染料が50〜25%の比で混合されてなり、
血液に近似した吸光特性を有することを特徴とする血液
モデル。
2. Orange fluorescent dye is 50-75%,
Red fluorescent dye is mixed in a ratio of 50-25%,
A blood model having an absorption characteristic similar to that of blood.
JP3043002A 1991-02-15 1991-02-15 Blood model Expired - Fee Related JP2683848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3043002A JP2683848B2 (en) 1991-02-15 1991-02-15 Blood model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3043002A JP2683848B2 (en) 1991-02-15 1991-02-15 Blood model

Publications (2)

Publication Number Publication Date
JPH05135A true JPH05135A (en) 1993-01-08
JP2683848B2 JP2683848B2 (en) 1997-12-03

Family

ID=12651798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3043002A Expired - Fee Related JP2683848B2 (en) 1991-02-15 1991-02-15 Blood model

Country Status (1)

Country Link
JP (1) JP2683848B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072267A (en) * 2007-09-19 2009-04-09 Koken Co Ltd Living body model, pseudo-biological information generator using the model, and living body simulator using the generator compatible with pulse oximeter
US9389443B2 (en) 2013-10-24 2016-07-12 Kabushiki Kaisha Toshiba Device for inspecting a photoelectric pulse wave sensor and method for inspecting a photoelectric pulse wave sensor
WO2020066959A1 (en) * 2018-09-25 2020-04-02 パイオニア株式会社 Optical sample, optical member, and optical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002978A (en) 2013-05-23 2015-01-08 キヤノン株式会社 Photoacoustic blood model

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842752U (en) * 1981-09-16 1983-03-22 星家畜薬株式会社 Cow blood measurement color chart
JPS58166261A (en) * 1982-03-09 1983-10-01 ロ−レンス・カズ Supravital analysis method of blood through different-color staining and fluorescent luminescence
JPS62103572A (en) * 1985-09-06 1987-05-14 シンテツクス(ユ−・エス・エイ)インコ−ポレイテツド Novel ligand-receptor-assay using squalate dye
JPS63243879A (en) * 1987-03-31 1988-10-11 Nippon Koden Corp Standard solution for calibrating hemocytometer
JPS646865A (en) * 1987-06-30 1989-01-11 Japan Synthetic Rubber Co Ltd Standard liquid for calibration of blood measuring instrument
JPS6446496A (en) * 1987-08-17 1989-02-20 Enomoto Kk Production of doll
JPH01135359U (en) * 1988-03-03 1989-09-18
JPH01292224A (en) * 1988-04-29 1989-11-24 Boehringer Mannheim Corp Colorimeter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842752B2 (en) * 1980-01-31 1983-09-21 アントニオ テヌ−タ How to make peeled frozen tomatoes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842752U (en) * 1981-09-16 1983-03-22 星家畜薬株式会社 Cow blood measurement color chart
JPS58166261A (en) * 1982-03-09 1983-10-01 ロ−レンス・カズ Supravital analysis method of blood through different-color staining and fluorescent luminescence
JPS62103572A (en) * 1985-09-06 1987-05-14 シンテツクス(ユ−・エス・エイ)インコ−ポレイテツド Novel ligand-receptor-assay using squalate dye
JPS63243879A (en) * 1987-03-31 1988-10-11 Nippon Koden Corp Standard solution for calibrating hemocytometer
JPS646865A (en) * 1987-06-30 1989-01-11 Japan Synthetic Rubber Co Ltd Standard liquid for calibration of blood measuring instrument
JPS6446496A (en) * 1987-08-17 1989-02-20 Enomoto Kk Production of doll
JPH01135359U (en) * 1988-03-03 1989-09-18
JPH01292224A (en) * 1988-04-29 1989-11-24 Boehringer Mannheim Corp Colorimeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072267A (en) * 2007-09-19 2009-04-09 Koken Co Ltd Living body model, pseudo-biological information generator using the model, and living body simulator using the generator compatible with pulse oximeter
US9389443B2 (en) 2013-10-24 2016-07-12 Kabushiki Kaisha Toshiba Device for inspecting a photoelectric pulse wave sensor and method for inspecting a photoelectric pulse wave sensor
WO2020066959A1 (en) * 2018-09-25 2020-04-02 パイオニア株式会社 Optical sample, optical member, and optical device

Also Published As

Publication number Publication date
JP2683848B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
JPH0614922B2 (en) Calibration test equipment for pulse oximeter
Fantini et al. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry
Schmitt Simple photon diffusion analysis of the effects of multiple scattering on pulse oximetry
US8380272B2 (en) Physiological sensor
US5324979A (en) Method and means for generating synthetic spectra allowing quantitative measurement in near infrared measuring instruments
JP3649732B2 (en) Non-invasive non-spectrophotometric infrared measurement of blood analyte concentration
CN101808570B (en) Blood oximeter
US9279763B2 (en) Apparatus and method for measuring an analyte such as bilirubin, using light
JP2004230000A (en) Instrument for measuring concentration of light absorptive substance in blood
CA2398591C (en) Non-invasive measurement of skin bilirubin level
KR102043319B1 (en) Frequency domian based multi-wavelength bio-signal analysing apparatus
JPH10500323A (en) Pulse oximeter and sensor optimized for low saturation
JPH11510722A (en) Method, apparatus and sensor for measuring oxygen saturation
JPH11506834A (en) Light source with adjustable wavelength for oximeter
JPS6392335A (en) Method and apparatus for monitoring oxygen saturation degree in blood
CA2564113A1 (en) Photoplethysmography with a spatially homogenous multi-color source
JP2004290544A (en) Blood analyzer
WO2008036217A1 (en) System and method for practicing spectrophotometry using light emitting nanostructure devices
WO2008076353A2 (en) Optical spectrophotometer
US20120229800A1 (en) Pulse oximeter test instruments and methods
JPH05135A (en) Blood model
JP7343569B2 (en) System and method for measurement selection and probe guidance in a gingivitis detector
JPH0415046A (en) Measuring method for blood circulating movement
KR20070055614A (en) Instrument for noninvasively measuring blood sugar level
Schenkman et al. Improved myoglobin saturation measurement made by partial least-squares analysis of optical reflectance spectra

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970624

LAPS Cancellation because of no payment of annual fees