JPH05135626A - High voltage withstanding wire - Google Patents
High voltage withstanding wireInfo
- Publication number
- JPH05135626A JPH05135626A JP3298699A JP29869991A JPH05135626A JP H05135626 A JPH05135626 A JP H05135626A JP 3298699 A JP3298699 A JP 3298699A JP 29869991 A JP29869991 A JP 29869991A JP H05135626 A JPH05135626 A JP H05135626A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- insulator
- dielectric constant
- core wire
- withstand voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、外径等を太くすること
無くより高い電圧を伝送することのできる耐圧電線に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure resistant wire capable of transmitting a higher voltage without increasing the outer diameter or the like.
【0002】[0002]
【従来の技術】従来、絶縁電線、ケーブル等の一般配線
用電線、及び制御用・軽装用ケーブル(以下、単に電線
という)を用いて、電力及び信号の伝送が行われてい
る。とくにX線装置等の高電圧の電力供給を必要とする
場合には、通常同軸状の高電圧電線が用いられている。2. Description of the Related Art Conventionally, electric power and signals are transmitted using insulated wires, wires for general wiring such as cables, and cables for control and light equipment (hereinafter, simply referred to as wires). Especially when a high voltage power supply such as an X-ray device is required, a coaxial high voltage electric wire is usually used.
【0003】以下、この従来の高電圧電線の構成につい
て図3に示す断面形状を参照して説明する。図3におい
て、高電圧電線の中心にある断面略円形の心線101
は、その周囲を誘電率が均一な絶縁体105によって被
覆され、その外側を同心円状に網線107で取り囲ま
れ、さらにその外側を絶縁体による保護被覆109によ
って被覆されている。The structure of this conventional high-voltage electric wire will be described below with reference to the sectional shape shown in FIG. In FIG. 3, a core wire 101 having a substantially circular cross section at the center of the high-voltage electric wire.
Is surrounded by an insulator 105 having a uniform dielectric constant, the outside thereof is concentrically surrounded by a mesh wire 107, and the outside thereof is covered by a protective coating 109 made of an insulator.
【0004】前記絶縁体105には、ポリエチレン等の
耐電圧の高い材料が用いられ心線と網線との間の耐電圧
を高くしている。また、心線の外周の半径R1 は、電線
の外径に対し最も耐電圧を高くするために、網線の内側
の半径R2 の1/e(約1/2.7)に近い値に設定さ
れる。すなわち、この径の比率は、心線が細いと心線表
面での電場が強くなり、ここから外側に向けて放電が起
こり易くなり、また心線が太いと網線との間の絶縁距離
が短くなり耐電圧が低下することから、最も耐電圧を高
くできる、最適な値として求められるものである。A material having a high withstand voltage such as polyethylene is used for the insulator 105 to increase the withstand voltage between the core wire and the mesh wire. Further, the radius R 1 of the outer circumference of the core wire is close to 1 / e (about 1 / 2.7) of the radius R 2 of the inner side of the wire in order to maximize the withstand voltage with respect to the outer diameter of the wire. Is set to. That is, the ratio of the diameters is such that when the core wire is thin, the electric field on the surface of the core wire becomes strong, and discharge tends to occur outward from here, and when the core wire is thick, the insulation distance between the core wire and Since it becomes shorter and the withstand voltage decreases, it is required as an optimum value that can maximize the withstand voltage.
【0005】[0005]
【発明が解決しようとする課題】上述してきたように、
従来の電線は外径と絶縁体の材質で耐電圧が決まり、耐
電圧を上げるためには外径を大きくして対応していた。
また、外径に比べ比較的心線が太くなることから、電線
自体の重量が重く高価なものになる。また、そのために
フレキシブル性が損なわれる等の解決すべき課題が生じ
る。DISCLOSURE OF THE INVENTION As described above,
With conventional electric wires, the withstand voltage is determined by the outer diameter and the material of the insulator, and in order to increase the withstand voltage, the outer diameter is increased.
Further, since the core wire is relatively thicker than the outer diameter, the weight of the electric wire itself is heavy and expensive. Further, for that reason, there are problems to be solved such as deterioration of flexibility.
【0006】本発明は上記課題に鑑みてなされたもの
で、電線の外径に比して耐電圧を高くすることを可能と
し、すなわち心線の外径を小さくすることで電線をフレ
キシブルに、かつ軽量に、安価にすることを目的とする
ものである。The present invention has been made in view of the above problems, and makes it possible to increase the withstand voltage as compared with the outer diameter of the electric wire, that is, by making the outer diameter of the core wire small, the electric wire can be made flexible. Moreover, it is intended to be lightweight and inexpensive.
【0007】[0007]
【課題を解決するための手段】本発明は、内側導電体
と、この内側導電体を囲繞する外側導電体と、前記内側
導電体と外側導電体との間に設けられ、誘電率を外側導
電体から内側導電体に向けて順次高くなるように形成さ
れる絶縁体とを有することを要旨とする。SUMMARY OF THE INVENTION The present invention is provided between an inner conductor, an outer conductor surrounding the inner conductor, the inner conductor and the outer conductor, and having a dielectric constant of the outer conductor. The gist of the present invention is to have an insulator formed so as to be sequentially higher from the body toward the inner conductor.
【0008】[0008]
【作用】本発明の耐圧電線は、内側導電体と外側導電体
との間に、誘電率が外側導電体から内側導電体に向けて
順次高くなるように形成される絶縁体を介在させたの
で、内側導電体表面での電場強度ピークが緩和される。In the withstand voltage wire of the present invention, an insulator is formed between the inner conductor and the outer conductor so that the dielectric constant is gradually increased from the outer conductor to the inner conductor. , The electric field intensity peak on the inner conductor surface is relaxed.
【0009】[0009]
【実施例】以下、図面を参照して実施例を説明する。図
1に本発明に係る一実施例の耐圧電線の断面を示す。Embodiments will be described below with reference to the drawings. FIG. 1 shows a cross section of a pressure resistant electric wire according to an embodiment of the present invention.
【0010】耐圧電線の中心にある断面略円形の内側導
電体としての心線1は、銅、アルミニウム或いはその合
金等の単線若しくはより線によって構成され、その周囲
は心線1に近い側ほど誘電率が高く成る、いわゆる傾斜
機能材料が用いられる傾斜絶縁体3で囲繞、すなわち取
り囲まれる。A core wire 1 as an inner conductor having a substantially circular cross section at the center of a pressure resistant wire is composed of a single wire or a stranded wire of copper, aluminum or an alloy thereof, and the periphery thereof is closer to the core wire 1 and is dielectric. It is surrounded, that is, surrounded by a graded insulator 3 that uses a so-called functionally graded material, which has a higher rate.
【0011】この傾斜絶縁体3で用いられる傾斜機能材
料は、互いに機能が異なる材料同士を組み合わせ、その
両者の組成比率を連続的に或いは段階的に変化させて一
体化したものであって、具体的には、内側は誘電率の高
いスチレンブタジエンゴム(比誘電率3.0〜7.0)
あるいはナイロン(同5.0〜14.0)等の混合比率
が高く、外側は誘電率の低いポリエチレン(同2.2〜
2.4)等の混合比率が高くなるように、内側から外側
にかけ傾斜絶縁体3の混合比がゆるやかに変化してお
り、本実施例では概略1/rに比例して誘電率が変化す
るようになされている。また、この傾斜絶縁体3部分
は、主として溶射法によって形成される。すなわち、雰
囲気が制御された減圧チャンバ内でプラズマジェットを
利用して、複数の原料粉末をその混合比を適宜変化させ
ながら、順次積層させていくものである。従って、傾斜
絶縁体3における組成比率は、連続的に変化したものと
なる。The functionally graded material used in the graded insulator 3 is a combination of materials having different functions, which are integrated by continuously or stepwise changing the composition ratio of the materials. In terms of internal characteristics, styrene-butadiene rubber with a high dielectric constant (relative dielectric constant 3.0-7.0)
Alternatively, a mixture of nylon (5.0 to 14.0) with a high mixing ratio and polyethylene with a low dielectric constant on the outside (2.2 to 14.0)
The mixing ratio of the inclined insulator 3 changes gradually from the inside to the outside so that the mixing ratio of 2.4) and the like increases, and in this embodiment, the dielectric constant changes in proportion to approximately 1 / r. It is done like this. Further, this inclined insulator 3 portion is mainly formed by a thermal spraying method. That is, a plurality of raw material powders are sequentially laminated while changing the mixing ratio thereof appropriately by using a plasma jet in a decompression chamber where the atmosphere is controlled. Therefore, the composition ratio of the graded insulator 3 changes continuously.
【0012】次に、この傾斜絶縁体3の周囲を誘電率が
均一な絶縁体5によって被覆する。この絶縁体5には、
ポリエチレン等の耐電圧の高い材料が用いられ心線1と
後述する網線7との間の耐電圧を高くしている。Next, the periphery of this inclined insulator 3 is covered with an insulator 5 having a uniform dielectric constant. In this insulator 5,
A material having a high withstand voltage such as polyethylene is used to increase the withstand voltage between the core wire 1 and a mesh wire 7 described later.
【0013】その外側を同心円状に多数の銅線を編み状
に編んで構成される外側導電体としての網線7で取り囲
み、さらにその外側をポリ塩化ビニル(PVC)、クロ
ロプレンゴム(CR)等の絶縁体による保護被覆9によ
って被覆していく。次に、図2を参照して本実施例の作
用を説明する。The outer side is surrounded by a mesh wire 7 as an outer conductor, which is formed by knitting a number of concentric copper wires in a knitted shape, and the outer side is further covered with polyvinyl chloride (PVC), chloroprene rubber (CR), etc. It is covered with a protective coating 9 made of an insulating material. Next, the operation of this embodiment will be described with reference to FIG.
【0014】まず、一般的な絶縁体における電場強度E
を求めると、この絶縁体内に設定される中心軸から距離
rの点での電場強度Eは、その点での絶縁体の誘電率を
ε0としたときに、 E=q/2πεr …(1) で表される。ここでqは電線の単位長さ当りに帯電する
電荷である(図1では、心線1の表面に+q、網線7の
内側表面に−qが帯電する)。First, the electric field strength E in a general insulator
When the electric field strength E at a point at a distance r from the central axis set in this insulator is E = q / 2πεr (1) when the permittivity of the insulator at that point is ε 0 ) Is represented by. Here, q is an electric charge charged per unit length of the electric wire (in FIG. 1, + q is charged on the surface of the core wire 1 and −q is charged on the inner surface of the mesh wire 7).
【0015】従って、図3に示す従来の誘電率が均一な
絶縁体105によってのみ被覆される電線の場合、誘電
率ε0 が一定であるので電場強度Eは図2に示す1点鎖
線のように距離rに反比例する。このため心線101表
面で電場強度EにピークPが生じる。Therefore, in the case of the conventional wire shown in FIG. 3 which is covered only by the insulator 105 having a uniform dielectric constant, the electric field strength E is as shown by the one-dot chain line in FIG. 2 because the dielectric constant ε 0 is constant. Is inversely proportional to the distance r. Therefore, the electric field strength E has a peak P on the surface of the core wire 101.
【0016】一方、本実施例の耐圧電線の場合、電場強
度Eは図2に示す実線のように前記従来の電線で生じて
いたピークPが削れたような形状を呈する。すなわち、
半径距離rがr2 〜r3 の領域は、電場強度E0 が一定
であるので、前記従来の電線と同様に電場強度Eは半径
距離rに反比例する。さらに、半径距離rがr1 〜r2
の領域では、誘電率ε0 が半径距離rに反比例するので
電場強度Eは一定に成り、ピークは生じない。On the other hand, in the case of the withstand voltage wire of this embodiment, the electric field strength E has a shape such that the peak P generated in the conventional wire is removed as shown by the solid line in FIG. That is,
Since the electric field strength E 0 is constant in the region where the radial distance r is r 2 to r 3 , the electric field strength E is inversely proportional to the radial distance r as in the conventional electric wire. Further, the radial distance r is r 1 to r 2
In the region of, since the dielectric constant ε 0 is inversely proportional to the radial distance r, the electric field intensity E becomes constant and no peak occurs.
【0017】上述したように、本実施例によれば心線1
表面での電場強度Eのピークが緩和され、最大電場強度
を低く抑えることができる。このため放電による絶縁破
損がおこり難くなり電線の耐電圧を上げることができ
る。また、さらに、このとき(電荷qが帯電した状態)
心線1と網線7との間の電圧VはAs described above, according to this embodiment, the core wire 1
The peak of the electric field strength E on the surface is relaxed, and the maximum electric field strength can be suppressed low. For this reason, insulation damage due to discharge is less likely to occur, and the withstand voltage of the wire can be increased. Further, at this time (state in which the electric charge q is charged)
The voltage V between the core wire 1 and the mesh wire 7 is
【0018】[0018]
【数1】 の式(2)で計算されるが、これは図のr軸と実線(従
来例の場合は1点鎖線)で囲まれる部分の面積でもある
(なお、式(3)に従来の場合を比較のために示す)。
この図2からも判る通り、本実施例では従来例より面積
が大きく高い電圧が付加されているにも拘らず最大電場
強度は低く抑えられて、すなわち電線の耐電圧が上がる
ことがわかる。[Equation 1] It is also calculated by the formula (2) of the above, but this is also the area of the part surrounded by the r-axis and the solid line (the one-dot chain line in the case of the conventional example) in the figure. Shown for).
As can be seen from FIG. 2, in this embodiment, the maximum electric field strength is suppressed to a low level, that is, the withstand voltage of the wire is increased, although the area is larger and a higher voltage is applied than in the conventional example.
【0019】上述してきたように、外径の大きさを固定
した場合、電線の耐電圧をより高くすることができ、ま
た同時に心線の外径を小さくすることができることか
ら、電線をフレキシブルかつ軽量に、また安価にするこ
とができる。As described above, when the size of the outer diameter is fixed, the withstand voltage of the electric wire can be further increased, and at the same time, the outer diameter of the core wire can be reduced. It can be lightweight and inexpensive.
【0020】なお、本発明は傾斜絶縁体3を組成する材
料、混合比率及び製造法を特に限定するものではなく、
またこの傾斜絶縁体3を囲む絶縁体5と一体化したもの
となっていても構わない(この場合は誘電率の大きく異
なった2種の材料が必要と成る)。さらには、傾斜絶縁
体3部分は本実施例のように、誘電率を連続的に変えな
くとも、誘電率の異なる絶縁材料からなる薄膜、シート
若しくはテープ等を心線1に近い側ほど誘電率が高く成
るように、心線1に順次巻き付け、被覆していく多層構
造にして誘電率を階段状に変化させるものであっても良
い。The present invention does not particularly limit the materials constituting the graded insulator 3, the mixing ratio, and the manufacturing method.
Further, it may be integrated with the insulator 5 surrounding the inclined insulator 3 (in this case, two kinds of materials having greatly different dielectric constants are required). Further, in the inclined insulator 3 portion, unlike the present embodiment, even if the dielectric constant is not continuously changed, a thin film, a sheet, or a tape made of an insulating material having a different dielectric constant is closer to the core wire 1 in the dielectric constant. In order to obtain a high dielectric constant, the core wire 1 may be sequentially wound and covered to form a multilayer structure in which the dielectric constant is changed stepwise.
【0021】[0021]
【発明の効果】以上説明したように、本発明の耐圧電線
によれば電線の外径に比して耐電圧をより高くすること
が可能で、また心線の外径が小であることから電線をフ
レキシブルに、かつ軽量とすることができる等の効果を
奏する。As described above, according to the pressure resistant wire of the present invention, the withstand voltage can be made higher than the outer diameter of the wire and the outer diameter of the core wire is small. This has the effect of making the electric wire flexible and lightweight.
【図1】本発明の一実施例に係る耐圧電線の構成を示す
断面図である。FIG. 1 is a cross-sectional view showing a structure of a pressure resistant wire according to an embodiment of the present invention.
【図2】図1に示す耐圧電線の作用を説明するための図
である。FIG. 2 is a diagram for explaining the action of the pressure-resistant wire shown in FIG.
【図3】従来の電線の構成を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration of a conventional electric wire.
1 心線 3 傾斜絶縁体 5 絶縁体 7 網線 9 保護被覆 1 core wire 3 inclined insulator 5 insulator 7 mesh wire 9 protective coating
Claims (1)
を外側導電体から内側導電体に向けて順次高くなるよう
に形成される絶縁体とを有することを特徴とする耐圧電
線。1. An inner conductor, an outer conductor surrounding the inner conductor, and a dielectric constant provided between the inner conductor and the outer conductor, the permittivity being directed from the outer conductor to the inner conductor. A pressure-resistant wire, comprising: an insulator formed so as to be sequentially higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3298699A JPH05135626A (en) | 1991-11-14 | 1991-11-14 | High voltage withstanding wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3298699A JPH05135626A (en) | 1991-11-14 | 1991-11-14 | High voltage withstanding wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05135626A true JPH05135626A (en) | 1993-06-01 |
Family
ID=17863140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3298699A Pending JPH05135626A (en) | 1991-11-14 | 1991-11-14 | High voltage withstanding wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05135626A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008535448A (en) * | 2005-03-22 | 2008-08-28 | デーン+シェーネ ゲーエムベーハ+ツェオー.カーゲー | Lightning strike current emission device |
-
1991
- 1991-11-14 JP JP3298699A patent/JPH05135626A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008535448A (en) * | 2005-03-22 | 2008-08-28 | デーン+シェーネ ゲーエムベーハ+ツェオー.カーゲー | Lightning strike current emission device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960009794Y1 (en) | Hybrid shielded cable | |
EP0821371B1 (en) | High frequency power cable | |
US4761519A (en) | Highly flexible, shielded, multi-conductor electrical cable | |
JP2863631B2 (en) | Coaxial cable with conductive jacket | |
US5208426A (en) | Shielded electric signal cable having a two-layer semiconductor jacket | |
US20110127064A1 (en) | Communication cable | |
US5414215A (en) | High frequency electric cable | |
KR20120105843A (en) | Power cable for high frequency | |
JPH07141927A (en) | Electric coaxial cable proper to wide-band high frequency | |
US3843830A (en) | Electric cable with corrugated sheath and semi-conductive protective layer between the sheath and the core | |
JP2001057114A (en) | Shielded wire | |
JPH05135626A (en) | High voltage withstanding wire | |
JPH0992039A (en) | Coil type noise-preventing high-tension resistance wire | |
JP2012075266A (en) | Polymer bushing insulator | |
JPH06119825A (en) | Litz wire and manufacture thereof | |
US20010020542A1 (en) | Motor cable with ferromagnetic sheathing | |
JP4205164B2 (en) | Stress control for high voltage cable terminations. | |
EP1496524A3 (en) | Reflective surge suppressing cable | |
JP3217649B2 (en) | High frequency power transmission cable | |
JPH06176630A (en) | Cable for high-voltage electronic equipment | |
GB2095459A (en) | A high-current cable for medium-frequency three-phase current | |
JPH05327321A (en) | Leak coaxial cable | |
SU1348914A1 (en) | Pulsed high-voltage coaxial cable | |
JP2006164607A (en) | Cable and twisted cable | |
JP2002352640A (en) | Extra thin coaxial cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20090210 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20110210 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20110210 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20120210 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120210 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130210 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 14 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |