JPH05135399A - Optical head - Google Patents

Optical head

Info

Publication number
JPH05135399A
JPH05135399A JP3295472A JP29547291A JPH05135399A JP H05135399 A JPH05135399 A JP H05135399A JP 3295472 A JP3295472 A JP 3295472A JP 29547291 A JP29547291 A JP 29547291A JP H05135399 A JPH05135399 A JP H05135399A
Authority
JP
Japan
Prior art keywords
beam shaping
shaping prism
incident
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3295472A
Other languages
Japanese (ja)
Inventor
Toru Sasaki
徹 佐々木
Kunikazu Onishi
邦一 大西
Masayuki Inoue
雅之 井上
Akira Saito
明 斎藤
Yasuo Kitada
保夫 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3295472A priority Critical patent/JPH05135399A/en
Publication of JPH05135399A publication Critical patent/JPH05135399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To miniaturize the constitution and to make the cost low by constituting a beam shaping prism with a reflection type and a transmission type beam shaping prisms having the same incident planes and the same light-emitting surfaces, making an angle between an incident optical axis and a light-emitting optical axis a right angle and selecting an optical constant so as to cancel and correct a color aberration each other. CONSTITUTION:A luminous flux 2 outgoing from a semiconductor laser element 1 is made a parallel luminous flux 4 by a collimate lens 3 and incident on the incident plane 13a of the first reflection type beam shaping prism 13. The luminous flux 15 refracted on the surface 13a is reflected from the reflection surface 13b and becomes the luminous fluxes 16, 17 and refracted on the incident plane 14a of a second transmission type beam shaping prism 14 and becomes the luminous fluxes 18, 19 and is emitted from the light-emitting surface 14b. The angle between the optical axis 4a of the luminous flux 4 and the optical axis 19a of the luminous flux 19 is made 90 degree and the optical constant is set so as to cancel the color aberration by the fluctuation of the wavelength of the prisms 13, 14 and to correct it. Thus, the luminous flux is deflected 90 degree without using a reflection mirror, etc., and an optical head is miniaturized and made a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レ−ザ光の非等方性を
等方性に変換するビ−ム整形プリズムを有し、かつ装置
への実装上、光ヘッドの大きさからくる制約のため、反
射ミラ−等を用いて半導体レ−ザから光分離手段までの
光路を90度偏向する必要がある光ヘッドにおいて、特
に、上記反射ミラ−等の偏向手段を特別に設けることな
く、レ−ザ光の非等方性を等方性に変換するビ−ム整形
プリズムを入射光軸と反射光軸を90度を成すように構
成した実装面で好適な光ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a beam shaping prism for converting the anisotropy of laser light into an isotropic one, and is mounted on a device depending on the size of an optical head. Due to the limitation, in an optical head that requires the optical path from the semiconductor laser to the light separating means to be deflected by 90 degrees using a reflection mirror or the like, without particularly providing the deflection means such as the reflection mirror. The present invention relates to an optical head suitable for mounting in which a beam shaping prism for converting anisotropy of laser light into isotropicity is constituted so that an incident optical axis and a reflected optical axis form 90 degrees.

【0002】[0002]

【従来の技術】図5は、ビ−ム整形プリズムとして従来
の透過型ビ−ム整形プリズムを2個用い、光路を90度
偏向するために反射ミラ−を用いた従来の光ヘッドの構
成図である。
2. Description of the Related Art FIG. 5 is a block diagram of a conventional optical head using two conventional transmission type beam shaping prisms as a beam shaping prism and a reflection mirror for deflecting an optical path by 90 degrees. Is.

【0003】直線偏光光源である半導体レ−ザ素子1か
ら発射された非等方的な発散光束2は、コリメ−タレン
ズ3により平行光束4となる。平行光束4は、ビ−ム整
形用プリズム50の入射面50aが光束4の光軸4aに
対して斜めに成っていることにより屈折光52となる。
屈折光52はビ−ム整形用プリズム50の出射面50b
で屈折されることなく透過した光束53と成る。光束5
3は、ビ−ム整形用プリズム50と同じ形状のビ−ム整
形用プリズム51に入射する。ここで光束53は、ビ−
ム整形用プリズム51の入射面51aが光束53の光軸
53aに対して斜めに成っていることにより屈折光54
となる。屈折光54はビ−ム整形用プリズム51の出射
面51bで屈折されることなく透過した光束55と成
る。以上により入射光束4は透過型ビ−ム整形プリズム
50、51を通過する過程で2回の屈折により、縦横に
当方性を持った出射光束55に整形される。また光束4
の入射面50aに対する入射角と、光束53の入射面5
1aに対する入射角を等しくすることで出射光55は入
射光4の光軸4aに対して平行となる。そして、光ヘッ
ドを装置へ実装する上で、半導体レ−ザ1、コリメ−タ
レンズ3、ビ−ム整形プリズム50、51、ビ−ムスプ
リッタ6をA方向に一直線上に並べると光路長が長くな
る。すなわち光ヘッドのA方向の長さの制約から、半導
体レ−ザ素子1から光分離手段であるビ−ムスプリッタ
6までの光路を90度偏向し、A方向の長さを短くする
必要がある。よって図に示した従来の光ヘッドでは、ビ
−ム整形された光束55は、ミラ−56を用いて光路を
90度偏向されている。そしてミラ−56を反射した光
束5は、ビ−ムスプリッタ6を透過し、ミラ−7で反射
される。その後、平行光束5は、対物レンズ8により集
光されて、光学的情報記録媒体であるディスク9の情報
記録面9a上に照射される。
An anisotropic divergent light beam 2 emitted from a semiconductor laser element 1 which is a linearly polarized light source becomes a parallel light beam 4 by a collimator lens 3. The parallel light flux 4 becomes refracted light 52 because the incident surface 50a of the beam shaping prism 50 is oblique to the optical axis 4a of the light flux 4.
The refracted light 52 is emitted from the exit surface 50b of the beam shaping prism 50.
The light beam 53 is transmitted without being refracted by. Luminous flux 5
3 enters a beam shaping prism 51 having the same shape as the beam shaping prism 50. Here, the luminous flux 53 is
The incident surface 51a of the beam shaping prism 51 is formed obliquely with respect to the optical axis 53a of the light beam 53.
Becomes The refracted light 54 becomes a light beam 55 that is transmitted without being refracted by the emission surface 51b of the beam shaping prism 51. As described above, the incident light beam 4 is shaped into the outgoing light beam 55 having vertical and horizontal isotropic properties by being refracted twice in the process of passing through the transmissive beam shaping prisms 50 and 51. Also the luminous flux 4
Angle of incidence on the incident surface 50a of the
By making the incident angles with respect to 1a equal, the emitted light 55 becomes parallel to the optical axis 4a of the incident light 4. When mounting the optical head on the apparatus, if the semiconductor laser 1, the collimator lens 3, the beam shaping prisms 50 and 51, and the beam splitter 6 are aligned in the A direction, the optical path length becomes long. Become. That is, due to the restriction of the length of the optical head in the A direction, it is necessary to shorten the length in the A direction by deflecting the optical path from the semiconductor laser element 1 to the beam splitter 6 as the light separating means by 90 degrees. .. Therefore, in the conventional optical head shown in the figure, the beam-shaped light beam 55 is deflected by 90 degrees in the optical path by using the mirror 56. The light beam 5 reflected by the mirror 56 passes through the beam splitter 6 and is reflected by the mirror 7. After that, the parallel light flux 5 is condensed by the objective lens 8 and irradiated onto the information recording surface 9a of the disc 9 which is an optical information recording medium.

【0004】ディスク9からの反射光束10は、対物レ
ンズ8により再び平行光束11に変換され、ミラ−7で
反射された後に、さらにビ−ムスプリッタ6の反射面6
aによって反射される。反射後の平行光束12は、検出
光学系100に導かれ、ディスク9の情報記録面9a上
に集光スポットを位置決めするサ−ボ信号と、情報信号
として検出される。
The reflected light beam 10 from the disk 9 is converted into a parallel light beam 11 again by the objective lens 8 and is reflected by the mirror 7 and then further reflected by the reflecting surface 6 of the beam splitter 6.
reflected by a. The reflected parallel light flux 12 is guided to the detection optical system 100 and detected as a servo signal for positioning a focused spot on the information recording surface 9a of the disk 9 and an information signal.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来技術
の透過型ビ−ム整形プリズム50、51を用いる光ヘッ
ドにおいて、半導体レ−ザ1、コリメ−トレンズ3、ビ
−ム整形プリズム50、ビ−ムスプリッタ6が直線的に
配置されるため、半導体レ−ザ1からビ−ムスプリッタ
6まで(A方向)の距離が長くなり光ヘッドが大きくな
る点については配慮されておらず、このため光ヘッドを
装置に実装する点で問題となるという課題があった。ま
たA方向の距離を短くするために、ミラ−等の部品を半
導体レ−ザ素子1からビ−ムスプリッタ6までの光路中
に設けて、光軸を90度偏向四、見かけ上A方向の距離
を短くすることも可能であるが、新たな部品を設ける必
要があり部品点数が多くなる課題があった。これに対し
て、ビ−ム整形プリズム50を一個を使用し、ビ−ム整
形を行なえば、光路長を短くすることが可能である。し
かし、この場合はビ−ム整形プリズムに対する入射光と
出射光の光軸が屈曲し、光ヘッドの構造が複雑になると
いう課題と、半導体レ−ザ素子1のレ−ザ光の波長変動
が生じた場合、ビ−ム整形プリズムからの出射光の光軸
傾きの変動を発生させ、光ヘッドの光学性能を劣化させ
るという課題があった。
However, in the optical head using the above-mentioned conventional transmission type beam shaping prisms 50 and 51, the semiconductor laser 1, the collimating lens 3, the beam shaping prism 50 and the beam are used. -Since the beam splitter 6 is arranged linearly, it is not considered that the distance from the semiconductor laser 1 to the beam splitter 6 (direction A) becomes long and the optical head becomes large. There is a problem in that the optical head is mounted on the device. Further, in order to shorten the distance in the A direction, a component such as a mirror is provided in the optical path from the semiconductor laser device 1 to the beam splitter 6, and the optical axis is deflected by 90 degrees, apparently in the A direction. Although it is possible to shorten the distance, there is a problem that the number of parts is increased because it is necessary to provide new parts. On the other hand, if one beam shaping prism 50 is used and the beam shaping is performed, the optical path length can be shortened. However, in this case, there is a problem that the optical axes of the incident light and the outgoing light with respect to the beam shaping prism are bent and the structure of the optical head becomes complicated, and the wavelength variation of the laser light of the semiconductor laser element 1 is caused. If it occurs, there is a problem that the optical axis tilt of the light emitted from the beam shaping prism is changed, and the optical performance of the optical head is deteriorated.

【0006】本発明の目的は、光ヘッドの部品点数を増
やすことなく、半導体レ−ザ素子1からビ−ムスプリッ
タ6までの光路を90度偏向することのできる光ヘッド
を提供することにある。
An object of the present invention is to provide an optical head capable of deflecting the optical path from the semiconductor laser element 1 to the beam splitter 6 by 90 degrees without increasing the number of parts of the optical head. ..

【0007】[0007]

【課題を解決するための手段】そこで、上記目的を達成
するために、前記ビ−ム整形プリズムを、入射面と出射
面が同一で、反射面を有する反射型ビ−ム整形プリズム
と透過型ビ−ム整形プリズムとで構成し、入射光束の反
射型ビ−ム整形プリズムの入射面への入射角θ1と、反
射型ビ−ム整形プリズムの入射面と透過型ビ−ム整形プ
リズムの入射面との相対角γと、透過型ビ−ム整形プリ
ズムの入射面と出射面との相対角βと、出射光束の透過
型ビ−ム整形プリズムの出射面での屈折角θ9との関係
を次式の数式1を満たすように、反射型ビ−ム整形プリ
ズムと、透過型ビ−ム整形プリズムの形状を工夫し、配
置することにより達成される。
In order to achieve the above object, the beam shaping prism includes a reflection type beam shaping prism having an incident surface and an emission surface which are the same, and a transmission type. A beam shaping prism, and an incident angle .theta.1 of the incident light beam on the incident surface of the reflection type beam shaping prism, and an incidence surface of the reflection type beam shaping prism and the transmission type beam shaping prism. The relationship between the relative angle γ with respect to the surface, the relative angle β between the entrance surface and the exit surface of the transmissive beam shaping prism, and the refraction angle θ9 of the outgoing light flux at the exit surface of the transmissive beam shaping prism. This is achieved by devising and arranging the shapes of the reflective beam shaping prism and the transmission beam shaping prism so as to satisfy the following equation (1).

【0008】[0008]

【数1】 [Equation 1]

【0009】[0009]

【作用】作用を図2を用いて説明する。半導体レ−ザ素
子1から発射された非等方的な平行光束100は、前記
ビ−ム整形プリズムの第1のビ−ム整形プリズムである
反射型ビ−ム整形プリズム13(屈折率N1)の入射面
13aから入射する。ここで入射光100は、入射面1
3aが入射光軸100aに対して斜め(入射角θ1)に
成っていることから屈折(屈折角θ2)される。そして
屈折した光束101は、入射面13aに対して傾斜(相
対角α)した反射面13bで反射(反射角θ3)された
後、反射光102は再び入射面13aと同じ面13cに
入射(入射角θ4)し、そして屈折(屈折角θ5)して
出射する。そして第2のビ−ム整形プリズムである透過
型ビ−ム整形プリズム14(屈折率N2)の入射面14
aに入射する。ここで入射光束103は、反射型ビ−ム
整形プリズムの入射面13a(出射面13c)に対して
入射面14aが傾斜(相対角γ)した透過型ビ−ム整形
プリズムに入射する。ここで入射面14aが入射光軸1
03aに対して斜め(入射角θ6)に成っていることか
ら屈折(屈折角θ7)される。そして屈折した光束10
4は、入射面14aに対して傾斜(相対角β)した出射
面14bに入射(入射角θ8)し、そして屈折(屈折角
θ9)して出射する。従って、以下の関係式が成り立
つ。
The operation will be described with reference to FIG. The anisotropic parallel light flux 100 emitted from the semiconductor laser element 1 is a reflection type beam shaping prism 13 (refractive index N1) which is the first beam shaping prism of the beam shaping prism. Is incident from the incident surface 13a. Here, the incident light 100 is the incident surface 1
Since 3a is oblique to the incident optical axis 100a (incident angle θ1), it is refracted (refraction angle θ2). Then, the refracted light flux 101 is reflected (reflection angle θ3) by the reflecting surface 13b inclined (relative angle α) with respect to the incident surface 13a, and then the reflected light 102 is incident on the same surface 13c as the incident surface 13a (incident). Then, the light is refracted (refraction angle θ5) and emitted. The incident surface 14 of the transmission type beam shaping prism 14 (refractive index N2) which is the second beam shaping prism.
It is incident on a. Here, the incident light beam 103 is incident on the transmissive beam shaping prism in which the incident surface 14a is inclined (relative angle γ) with respect to the incident surface 13a (emission surface 13c) of the reflective beam shaping prism. Here, the incident surface 14a is the incident optical axis 1
It is refracted (refraction angle θ7) because it is oblique (incident angle θ6) with respect to 03a. And the refracted light beam 10
The light beam 4 enters the exit surface 14b that is inclined (relative angle β) with respect to the entrance surface 14a (incident angle θ8), is refracted (refraction angle θ9), and exits. Therefore, the following relational expression holds.

【0010】[0010]

【数2】 [Equation 2]

【0011】[0011]

【数3】 [Equation 3]

【0012】[0012]

【数4】 [Equation 4]

【0013】[0013]

【数5】 [Equation 5]

【0014】[0014]

【数6】 [Equation 6]

【0015】[0015]

【数7】 [Equation 7]

【0016】[0016]

【数8】 [Equation 8]

【0017】以上より、半導体レ−ザ素子1から発射さ
れた非等方的な平行光束100が、第1のビ−ム整形プ
リズムである反射型ビ−ム整形プリズム13の入射面1
3a、出射面13cと、第2のビ−ム整形プリズムであ
る透過型ビ−ム整形プリズム14の入射面14a,出射
面14bとの屈折により、紙面に平行な方向に拡大され
ビ−ム整形される。すなわち、入射光100の光束径を
a,出射光105の光束をbとすると、ビ−ム整形比は
次式で示される。
As described above, the anisotropic parallel light beam 100 emitted from the semiconductor laser device 1 is incident on the incident surface 1 of the reflection type beam shaping prism 13 which is the first beam shaping prism.
3a and the exit surface 13c are refracted by the entrance surface 14a and the exit surface 14b of the transmissive beam shaping prism 14 which is the second beam shaping prism, so that the beam is enlarged in the direction parallel to the paper surface. To be done. That is, assuming that the beam diameter of the incident light 100 is a and that of the emitted light 105 is b, the beam shaping ratio is expressed by the following equation.

【0018】[0018]

【数9】 [Equation 9]

【0019】また、入射光100の反射型ビ−ム整形プ
リズム13の入射面13aへの入射角θ1と、反射型ビ
−ム整形プリズム13の入射面13aと透過型ビ−ム整
形プリズム14の入射面14aとの相対角γと、透過型
ビ−ム整形プリズム14の入射面14aと出射面14b
との相対角βと、出射光105の透過型ビ−ム整形プリ
ズム14の出射面14bでの屈折角θ9との関係を数1
を満たすように、反射型ビ−ム整形プリズムと、透過型
ビ−ム整形プリズムの形状を工夫し、配置してあること
により、入射光100と出射光105との成す角を90
度にすることが可能であり、ミラ−等を使うことなく、
半導体レ−ザ素子1から光分離手段であるビ−ムスプリ
ッタ6までの光路を90度偏向することが出来る。
Further, the incident angle θ1 of the incident light 100 on the incident surface 13a of the reflection type beam shaping prism 13 and the incident surface 13a of the reflection type beam shaping prism 13 and the transmission type beam shaping prism 14. The relative angle γ with respect to the incident surface 14a, and the incident surface 14a and the outgoing surface 14b of the transmissive beam shaping prism 14.
And the relative angle β with respect to the refraction angle θ9 of the outgoing beam 105 at the exit surface 14b of the transmissive beam shaping prism 14
The reflective beam shaping prism and the transmissive beam shaping prism are devised and arranged so as to satisfy the above condition, so that the angle formed by the incident light 100 and the outgoing light 105 is 90.
It is possible to set the degree, without using a mirror etc.
The optical path from the semiconductor laser element 1 to the beam splitter 6 which is the light separating means can be deflected by 90 degrees.

【0020】[0020]

【実施例】以下、本発明の光ヘッドを図面を参照して詳
細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The optical head of the present invention will be described in detail below with reference to the drawings.

【0021】図1は本発明の光ヘッドの第1の実施例を
示す構成図である。
FIG. 1 is a block diagram showing a first embodiment of the optical head of the present invention.

【0022】図1において、直線偏光光源である半導体
レ−ザ素子1から発射された強度が非等方的な発散光で
ある光束2は、コリメ−タレンズ3により平行光束4と
され、本発明のビ−ム整形プリズムの第1のビ−ム整形
プリズムである反射型ビ−ム整形プリズム13の入射面
13aに入射する。ここで入射光束は、入射面13aが
入射光軸4aに対して斜めに成っていることから屈折さ
れる。そして屈折した光束15は、反射型ビ−ム整形プ
リズム13の反射面13bで反射される。反射光束16
は、再び入射面13aと同じ面13cより出射する。そ
して第2のビ−ム整形プリズムである透過型ビ−ム整形
プリズム14の入射面14aに入射する。ここで入射光
束17は、入射面14aが入射光軸17aに対して斜め
に成っていることから屈折される。そして屈折した光束
18は、透過型ビ−ム整形プリズム14の出射面14b
より出射する。以上非等方性のレ−ザ光4は反射型ビ−
ム整形プリズム13の入射面13aと、透過型ビ−ム整
形プリズム14の入射面14aのビ−ム整形作用によ
り、縦横に等方性を持った光ビ−ム19に整形される。
尚、本実施例においては、簡単のため、反射型ビ−ム整
形プリズム13を出射する出射光17と出射面13cは
垂直で、かつ透過型ビ−ム整形プリズム14を出射する
出射光19と出射面14bも垂直としてある。これによ
り、本実施例のビ−ム整形プリズムのビ−ム整形比mは
次式となる。
In FIG. 1, a light beam 2 emitted from a semiconductor laser device 1 which is a linearly polarized light source and which is a divergent light whose intensity is anisotropic is made into a parallel light beam 4 by a collimator lens 3, and the present invention is used. The first beam shaping prism of the second beam shaping prism is incident on the incident surface 13a of the reflection type beam shaping prism 13. Here, the incident light flux is refracted because the incident surface 13a is oblique to the incident optical axis 4a. Then, the refracted light beam 15 is reflected by the reflecting surface 13b of the reflective beam shaping prism 13. Reflected light beam 16
Exits from the same surface 13c as the incident surface 13a again. Then, it is incident on the incident surface 14a of the transmission type beam shaping prism 14 which is the second beam shaping prism. Here, the incident light beam 17 is refracted because the incident surface 14a is oblique to the incident optical axis 17a. Then, the refracted light beam 18 is emitted from the exit surface 14b of the transmissive beam shaping prism 14.
Emit more. The anisotropic laser light 4 is reflected by the reflective beam.
The incident surface 13a of the beam shaping prism 13 and the incident surface 14a of the transmissive beam shaping prism 14 are shaped into an optical beam 19 having vertical and horizontal isotropic properties.
In the present embodiment, for the sake of simplicity, the outgoing light 17 exiting the reflective beam shaping prism 13 and the outgoing light 13c are perpendicular to the outgoing surface 13c and exit light 19 exiting the transmissive beam shaping prism 14. The emission surface 14b is also vertical. As a result, the beam shaping ratio m of the beam shaping prism of this embodiment is given by the following equation.

【0023】[0023]

【数10】 [Equation 10]

【0024】また、入射光4と出射光19を垂直にする
条件式は、数1における光束18の透過型ビ−ム整形プ
リズム14の出射面14bでの屈折角θ9=0とする
と、光束4の反射型ビ−ム整形プリズム13の入射面1
3aへの入射角θ1と、反射型ビ−ム整形プリズム13
の入射面13aと透過型ビ−ム整形プリズム14の入射
面14aとの相対角γと、透過型ビ−ム整形プリズム1
4の入射面14aと出射面14bとの相対角βと次式で
与えられる。
Further, the conditional expression for making the incident light 4 and the outgoing light 19 perpendicular to each other is such that, when the refraction angle θ9 = 0 at the exit surface 14b of the transmissive beam shaping prism 14 of the light beam 18 in the equation 1, Incident surface 1 of the reflective beam shaping prism 13 of
Angle of incidence θ1 on 3a and reflective beam shaping prism 13
Relative angle γ between the incident surface 13a of the transparent beam shaping prism 14 and the incident surface 14a of the transmissive beam shaping prism 14 and the transmissive beam shaping prism 1
4 and the relative angle β between the incident surface 14a and the exit surface 14b are given by the following equation.

【0025】[0025]

【数11】 [Equation 11]

【0026】上式を満たすように反射型ビ−ム整形プリ
ズム13と、透過型ビ−ム整形プリズム14の形状を工
夫することにより、反射型ビ−ム整形プリズム13に入
射する入射光束4の入射光軸4aと、透過型ビ−ム整形
プリズム14を出射する光束19の光軸19aとの成す
角度を90度にすることが可能である。よって従来ヘッ
ドのように、新たにミラ−等の光学部品を光路中に設け
て、光路を90度偏向せずとも、本ビ−ム整形プリズム
だけで光路を90度偏向できる。また、透過型ビ−ム整
形プリズム14を出射した光束19は、2個の三角柱プ
リズム6a,6bから成るビ−ムスプリッタ6を透過
し、ミラ−7で反射される。その後、平行光束19は、
対物レンズ8により集光されて、光学的情報記録媒体で
あるディスク9の情報記録面9a上に照射される。
By devising the shapes of the reflection type beam shaping prism 13 and the transmission type beam shaping prism 14 so as to satisfy the above expression, the incident light beam 4 incident on the reflection type beam shaping prism 13 is made. The angle between the incident optical axis 4a and the optical axis 19a of the light beam 19 emitted from the transmissive beam shaping prism 14 can be set to 90 degrees. Therefore, like the conventional head, even if an optical component such as a mirror is newly provided in the optical path and the optical path is not deflected by 90 degrees, the optical path can be deflected by 90 degrees only by the beam shaping prism. The light beam 19 emitted from the transmissive beam shaping prism 14 passes through the beam splitter 6 composed of two triangular prisms 6a and 6b and is reflected by the mirror 7. After that, the parallel light flux 19 is
The light is condensed by the objective lens 8 and irradiated onto the information recording surface 9a of the disc 9 which is an optical information recording medium.

【0027】ディスク9からの反射光束10は、対物レ
ンズ8により再び平行光束11に変換され、ミラ−7で
反射された後に、さらにビ−ムスプリッタ6の反射面6
cによって反射される。反射後の平行光束12は、検出
光学系100に導きかれ、ディスク9の情報記録面9a
上に集光スポットを位置決めするサ−ボ信号と、情報信
号として検出される。サ−ボ信号及び情報信号について
は本発明と本質的に関係無いので詳細説明は省略する。
The reflected light beam 10 from the disk 9 is converted into a parallel light beam 11 by the objective lens 8 again, is reflected by the mirror 7, and is further reflected by the reflecting surface 6 of the beam splitter 6.
reflected by c. The parallel light flux 12 after reflection is guided to the detection optical system 100, and the information recording surface 9 a of the disc 9 is recorded.
A servo signal for positioning the focused spot on the upper side and an information signal are detected. Since the servo signal and the information signal are essentially unrelated to the present invention, detailed description thereof will be omitted.

【0028】次に、本実施例の光ヘッドに使用された、
ビ−ム整形プリズム13、14の具体的設計例について
述べる。
Next, used in the optical head of this embodiment,
A specific design example of the beam shaping prisms 13 and 14 will be described.

【0029】反射型ビ−ム整形プリズム13、透過型ビ
−ム整形プリズムの硝材をBK−7とし、ビ−ム整形比
が3と成る場合について計算すると、次のように設計さ
れる。N1=N2=1.51,m=3,α=18.6
°,β=34.4°,γ=58.5°,θ1=65.9
°,θ6=58.5° 一方、上記の設計値は、入射光と出射光が垂直と成る数
11で与えられる条件式を満足する。よって、本実施例
のビ−ム整形プリズム(反射型ビ−ム整形プリズム13
と透過型ビ−ム整形プリズム14)を用いれば、レ−ザ
光の非等方性を整形できると同時に新たにミラ−等の光
学部品を光路中に設けることなく、光路を90度偏向で
きる。これにより光ヘッドを小型化でき装置に実装する
上で有利となる。
When the glass material of the reflection type beam shaping prism 13 and the transmission type beam shaping prism is BK-7 and the beam shaping ratio is 3, the calculation is as follows. N1 = N2 = 1.51, m = 3, α = 18.6
°, β = 34.4 °, γ = 58.5 °, θ1 = 65.9
°, θ6 = 58.5 ° On the other hand, the above design value satisfies the conditional expression given by the equation 11 in which the incident light and the outgoing light are vertical. Therefore, the beam shaping prism of the present embodiment (reflection type beam shaping prism 13
And a transmissive beam shaping prism 14) can be used to shape the anisotropy of the laser light, and at the same time the optical path can be deflected by 90 degrees without newly providing an optical component such as a mirror in the optical path. .. As a result, the optical head can be downsized, which is advantageous in mounting the optical head on the apparatus.

【0030】一方、半導体レ−ザ素子1から出射される
前記レ−ザ光2は、温度変動等により波長変動が発生す
る。この波長変動は、ビ−ム整形プリズムの倍率の変動
及び出射光19の光軸傾きを変動させて、光ヘッドの光
学性能を劣化させる原因となる。よって、波長変動が発
生しても上記ビ−ム整形プリズムの倍率の変動及び出射
光19の光軸傾きを変動を補正する必要がある。本実施
例においての補正条件は次式と成る。
On the other hand, the laser light 2 emitted from the semiconductor laser device 1 has a wavelength variation due to temperature variation and the like. This wavelength variation causes variation in the magnification of the beam shaping prism and variation in the optical axis tilt of the emitted light 19 to cause deterioration of the optical performance of the optical head. Therefore, even if the wavelength variation occurs, it is necessary to correct the variation of the magnification of the beam shaping prism and the variation of the inclination of the optical axis of the emitted light 19. The correction conditions in this embodiment are as follows.

【0031】[0031]

【数12】 [Equation 12]

【0032】以下に色収差を補正したビ−ム整形プリズ
ムの設計例を記す。
A design example of a beam shaping prism with chromatic aberration corrected will be described below.

【0033】反射型ビ−ム整形プリズム13、透過型ビ
−ム整形プリズムの硝材をBK−7とし、ビ−ム整形比
が3.2と成る場合について計算すると、次のように設
計される。
BK-7 is used as the glass material of the reflection type beam shaping prism 13 and the transmission type beam shaping prism, and calculation is performed for the case where the beam shaping ratio is 3.2. ..

【0034】N1=N2=1.51,m=3.2,α=
18.27°,β=36.54°,γ=63.27°,
θ1=63.27°,θ6=63.27° 一方、上記の設計値は、入射光と出射光が垂直と成る数
11で与えられる条件式を満足する。よって、本実施例
のビ−ム整形プリズム(反射型ビ−ム整形プリズム13
と透過型ビ−ム整形プリズム14)を用いれば、レ−ザ
光の非等方性を整形できると同時に新たにミラ−等の光
学部品を光路中に設けることなく、光路を90度偏向で
きる。さらに半導体レ−ザ素子1から出射されるレ−ザ
光2の波長変動による色収差を補正可能となる。これに
より光ヘッドの性能を劣化させることなく小型化でき装
置に実装する上で有利となる。
N1 = N2 = 1.51, m = 3.2, α =
18.27 °, β = 36.54 °, γ = 63.27 °,
[theta] 1 = 63.27 [deg.], [theta] 6 = 63.27 [deg.] On the other hand, the above design values satisfy the conditional expression given by the equation 11 in which the incident light and the outgoing light are vertical. Therefore, the beam shaping prism of the present embodiment (reflection type beam shaping prism 13
And a transmissive beam shaping prism 14) can be used to shape the anisotropy of the laser light, and at the same time the optical path can be deflected by 90 degrees without newly providing an optical component such as a mirror in the optical path. .. Further, it becomes possible to correct chromatic aberration due to wavelength fluctuation of the laser light 2 emitted from the semiconductor laser element 1. As a result, the size of the optical head can be reduced without deteriorating the performance of the optical head, which is advantageous for mounting on an apparatus.

【0035】次に、本発明の第2の実施例について図3
を用いて説明する。図3において、図1と同じ記号は同
じ部品を示す。
Next, the second embodiment of the present invention will be described with reference to FIG.
Will be explained. 3, the same symbols as in FIG. 1 indicate the same parts.

【0036】本実施例のビ−ム整形プリズムは、第1の
実施例の反射型ビ−ム整形プリズム13と透過型ビ−ム
整形プリズム14の位置関係を逆にしたものである。す
なわち、コリメ−トレンズ3を出射した平行光束4は、
まず透過型ビ−ム整形プリズム14を透過した後、反射
型ビ−ム整形プリズム13を反射することにより、ビ−
ム整形を行われる。反射型ビ−ム整形プリズム13を透
過し、ディスク9上に照射され、検出光学系100に導
きかれるまでは、第1の実施例と同じであるので説明は
割愛する。
The beam shaping prism of the present embodiment is obtained by reversing the positional relationship between the reflection type beam shaping prism 13 and the transmission type beam shaping prism 14 of the first embodiment. That is, the parallel light beam 4 emitted from the collimating lens 3 is
First, the beam is transmitted through the transmissive beam shaping prism 14 and then reflected by the reflective beam shaping prism 13 to obtain a beam.
Shaping is performed. The description is omitted because it is the same as that of the first embodiment until it passes through the reflection type beam shaping prism 13, is irradiated onto the disk 9, and is guided to the detection optical system 100.

【0037】以上、本実施例のビ−ム整形プリズム(反
射型ビ−ム整形プリズム13と透過型ビ−ム整形プリズ
ム14)を用いれば、レ−ザ光の非等方性を整形できる
と同時に新たにミラ−等の光学部品を光路中に設けるこ
となく、光路を90度偏向できる。これにより光ヘッド
を小型化でき装置に実装する上で有利となる。またレ−
ザ素子1の波長変動に伴う色収差も補正できる。
As described above, if the beam shaping prism of this embodiment (the reflection type beam shaping prism 13 and the transmission type beam shaping prism 14) is used, the anisotropy of the laser light can be shaped. At the same time, the optical path can be deflected by 90 degrees without newly providing an optical component such as a mirror in the optical path. As a result, the optical head can be downsized, which is advantageous in mounting the optical head on the apparatus. In addition,
It is also possible to correct chromatic aberration due to wavelength fluctuation of the element 1.

【0038】次に、本発明の第3の実施例について図4
を用いて説明する。図4において、図1と同じ記号は同
じ部品を示す。
Next, a third embodiment of the present invention will be described with reference to FIG.
Will be explained. 4, the same symbols as in FIG. 1 indicate the same parts.

【0039】本実施例のビ−ム整形プリズムは、第1の
実施例の透過型ビ−ム整形プリズム14をビ−ムスプリ
ッタ6と複合化したものである。すなわち、第1、第2
の実施例のビ−ムスプリッタ6の一つの三角柱プリズム
6aに代えて、入射面25dが入射光軸17aに対して
傾斜する三角柱プリズム25aとした。この傾斜角βを
実施例1の透過型ビ−ム整形プリズムの傾斜角βと等し
くする。これにより、反射型ビ−ム整形プリズム13に
入射する光束4の入射光軸4aとビ−ムスプリッタ25
を出射する光束26の光軸26aの成す角度は90度と
成る。ビ−ムスプリッタ25を透過し、ディスク9上に
照射され、検出光学系100に導きかれるまでは、第1
の実施例と同じであるので説明は割愛する。
The beam shaping prism of this embodiment is a combination of the transmission type beam shaping prism 14 of the first embodiment and the beam splitter 6. That is, the first and second
In place of one triangular prism 6a of the beam splitter 6 of the embodiment, an incident surface 25d is a triangular prism 25a having an inclination with respect to the incident optical axis 17a. This inclination angle β is made equal to the inclination angle β of the transmissive beam shaping prism of the first embodiment. As a result, the incident optical axis 4a of the light beam 4 entering the reflection type beam shaping prism 13 and the beam splitter 25.
The angle formed by the optical axis 26a of the luminous flux 26 that emits is 90 degrees. It passes through the beam splitter 25, irradiates the disk 9 and is guided to the detection optical system 100 until the first
The description is omitted because it is the same as the embodiment described above.

【0040】以上、本実施例の反射型ビ−ム整形プリズ
ム13とビ−ム整形機能を有するビ−ムスプリッタ25
を用いれば、光学部品数を削減すると同じに,レ−ザ光
の非等方性を整形でき,かつ新たにミラ−等の光学部品
を光路中に設けることなく、光路を90度偏向できる。
これにより光ヘッドを小型化でき装置に実装する上で有
利となる。またレ−ザ素子1の波長変動に伴う色収差も
補正できる。
As described above, the reflection type beam shaping prism 13 of this embodiment and the beam splitter 25 having a beam shaping function.
By using (1), it is possible to shape the anisotropy of the laser light and reduce the optical path by 90 degrees without newly providing an optical part such as a mirror in the optical path as well as reducing the number of optical parts.
As a result, the optical head can be downsized, which is advantageous in mounting the optical head on the apparatus. Further, it is possible to correct chromatic aberration due to the wavelength variation of the laser element 1.

【0041】以上詳細に説明したように、本発明のビ−
ム整形プリズムを用いれば、半導体レ−ザの非等方性を
補正すると同時に、光学系を小型化でき、かつ波長変動
に伴う出射光の光軸ずれを補正することが可能となる。
As described in detail above, the beam of the present invention is
If the beam shaping prism is used, it is possible to correct the anisotropy of the semiconductor laser, reduce the size of the optical system, and correct the deviation of the optical axis of the emitted light due to the wavelength variation.

【0042】[0042]

【発明の効果】本発明のビ−ム整形プリズムを用いれ
ば、レ−ザ光の非等方性を整形でき,かつ新たにミラ−
等の光学部品を光路中に設けることなく、光路を90度
偏向できると同時にレ−ザ素子1の波長変動に伴う色収
差も補正できる。これにより光ヘッドを小型化でき装置
に実装する上で有利となる。
By using the beam shaping prism of the present invention, the anisotropy of laser light can be shaped and a new mirror can be formed.
It is possible to deflect the optical path by 90 degrees without providing optical components such as the above in the optical path, and at the same time, it is possible to correct chromatic aberration due to wavelength fluctuation of the laser element 1. As a result, the optical head can be downsized, which is advantageous in mounting the optical head on the apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の光ヘッドの構成図であ
る。
FIG. 1 is a configuration diagram of an optical head according to a first embodiment of the present invention.

【図2】本発明の光ヘッドに用いるビ−ム整形プリズム
の説明図である。
FIG. 2 is an explanatory diagram of a beam shaping prism used in the optical head of the present invention.

【図3】本発明の第2の実施例の光ヘッドの構成図であ
る。
FIG. 3 is a configuration diagram of an optical head according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の光ヘッドの構成図であ
る。
FIG. 4 is a configuration diagram of an optical head according to a third embodiment of the present invention.

【図5】従来のビ−ム整形プリズムを用いた光ヘッドの
構成図である。
FIG. 5 is a configuration diagram of an optical head using a conventional beam shaping prism.

【符号の説明】 1…半導体レ−ザ素子、3…コリメ−トレンズ、9…デ
ィスク、13、14…ビ−ム整形プリズム、6、25…
ビ−ムスプリッタ
[Explanation of Codes] 1 ... Semiconductor laser element, 3 ... Collimating lens, 9 ... Disk, 13, 14 ... Beam shaping prism, 6, 25 ...
Beam splitter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 明 神奈川県小田原市国府津2880番地株式会社 日立製作所小田原工場内 (72)発明者 北田 保夫 神奈川県小田原市国府津2880番地株式会社 日立製作所小田原工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Saito Akira Saito 2880 Kokufu, Odawara, Kanagawa Hitachi Ltd. Odawara factory (72) Inventor Yasuo Kitada 2880 Kokufu, Odawara, Kanagawa Hitachi Ltd. Odawara factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体レ−ザ素子と、該半導体レ−ザ素子
から発射された発散光を平行光に変換するコリメ−トレ
ンズと、該レ−ザの非等方性を等方性に変換するビ−ム
整形プリズムと、該レ−ザを集光して光学的情報記録媒
体の情報記録面上に導くための対物レンズと、前記情報
記録面からの反射光束または透過光束を検出光学系に分
離する光分離手段とを少なくとも備えた光ヘッドにおい
て、 前記ビ−ム整形プリズムは、第1のビ−ム整形プリズム
と第2のビ−ム整形プリズムから構成され、該第1のビ
−ム整形プリズムは入射面と出射面が同一で、かつ反射
面を有する反射型ビ−ム整形プリズムで、該第2のビ−
ム整形プリズムは入射面と出射面を有する透過型ビ−ム
整形プリズムであることを特徴とする光ヘッド。
1. A semiconductor laser device, a collimating lens for converting divergent light emitted from the semiconductor laser device into parallel light, and anisotropy of the laser. Beam shaping prism, an objective lens for condensing the laser to guide it onto an information recording surface of an optical information recording medium, and an optical system for detecting a reflected light beam or a transmitted light beam from the information recording surface. In the optical head, the beam shaping prism is composed of a first beam shaping prism and a second beam shaping prism, and the first beam shaping prism is provided. The beam shaping prism is a reflection type beam shaping prism having an entrance surface and an exit surface and having a reflecting surface.
An optical head characterized in that the beam shaping prism is a transmissive beam shaping prism having an entrance surface and an exit surface.
【請求項2】前記ビ−ム整形プリズムを、前記第1のビ
−ム整形プリズムへの入射光軸と、前記第2のビ−ム整
形プリズムからの出射光軸の成す角度を90度とするこ
とを特徴とする請求項1に記載の光ヘッド。
2. An angle formed by an incident optical axis of the first beam shaping prism and an outgoing optical axis of the second beam shaping prism of the beam shaping prism is 90 degrees. The optical head according to claim 1, wherein:
【請求項3】前記光分離手段に、前記透過型ビ−ム整形
プリズムのビ−ム整形機能を付加したことを特徴とする
請求項1または請求項2に記載の光ヘッド。
3. The optical head according to claim 1 or 2, wherein a beam shaping function of the transmissive beam shaping prism is added to the light separating means.
【請求項4】前記半導体レ−ザ素子から出射される前記
レ−ザ光の波長変動に伴い発生する前記ビ−ム整形プリ
ズムから出射するレ−ザ光の光軸の傾きの変動を補正す
るように、前記反射型ビ−ム整形プリズムと、透過型ビ
−ム整形プリズムを設定したことを特徴とする請求項1
から請求項3のいずれかに記載の光ヘッド。
4. A variation in the inclination of the optical axis of the laser light emitted from the beam shaping prism, which occurs with the wavelength variation of the laser light emitted from the semiconductor laser element, is corrected. 2. The reflection type beam shaping prism and the transmission type beam shaping prism are set as described above.
4. The optical head according to claim 3.
【請求項5】前記ビ−ム整形プリズムを、前記レ−ザ光
の前記反射型ビ−ム整形プリズムの入射面への入射角θ
1と、該反射型ビ−ム整形プリズムの入射面と前記透過
型ビ−ム整形プリズムの入射面との相対角γと、反射型
ビ−ム整形プリズムの入射面と出射面との相対角αの関
係を、 sin(γ)−(cos(γ)/cos(2α))×sin(θ1)=0 を満たすように、前記反射型ビ−ム整形プリズムと、透
過型ビ−ム整形プリズムを設定したことを特徴とする請
求項1から請求項4のいずれかに記載の光ヘッド。
5. An incident angle .theta. Of the laser beam on the incident surface of the reflection type beam shaping prism.
1, the relative angle γ between the incident surface of the reflective beam shaping prism and the incident surface of the transmissive beam shaping prism, and the relative angle between the incident surface and the outgoing surface of the reflective beam shaping prism. The reflection-type beam shaping prism and the transmission-type beam shaping prism are set so that the relationship of α satisfies sin (γ)-(cos (γ) / cos (2α)) × sin (θ1) = 0. The optical head according to any one of claims 1 to 4, wherein:
JP3295472A 1991-11-12 1991-11-12 Optical head Pending JPH05135399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3295472A JPH05135399A (en) 1991-11-12 1991-11-12 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3295472A JPH05135399A (en) 1991-11-12 1991-11-12 Optical head

Publications (1)

Publication Number Publication Date
JPH05135399A true JPH05135399A (en) 1993-06-01

Family

ID=17821043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3295472A Pending JPH05135399A (en) 1991-11-12 1991-11-12 Optical head

Country Status (1)

Country Link
JP (1) JPH05135399A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594257A (en) * 2018-07-02 2018-09-28 北方民族大学 Tachogenerator and its scaling method based on Doppler effect and measurement method
CN116117304A (en) * 2023-02-03 2023-05-16 武汉引领光学技术有限公司 Rotation following optical device for shaping light beam and laser processing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594257A (en) * 2018-07-02 2018-09-28 北方民族大学 Tachogenerator and its scaling method based on Doppler effect and measurement method
CN108594257B (en) * 2018-07-02 2024-04-02 哈工科讯(沈阳)工业技术研究院有限公司 Speed measuring sensor based on Doppler effect and calibration method and measuring method thereof
CN116117304A (en) * 2023-02-03 2023-05-16 武汉引领光学技术有限公司 Rotation following optical device for shaping light beam and laser processing system

Similar Documents

Publication Publication Date Title
US5742383A (en) Apparatus for measuring degree of inclination of objective lens for optical pickup
US7321542B2 (en) Beam shaping prism and optical pickup employing the same
US5289313A (en) Optical head using semiconductor laser array as light source
US4607359A (en) Optical recording/reproducing apparatus
US6510119B2 (en) Optical head device
US6744720B2 (en) Optical element and optical pick-up
JPH05135399A (en) Optical head
JP4044034B2 (en) Optical pickup device equipped with an achromatic prism
US4954702A (en) Process for detecting a focal point in an optical head
JPH0434740A (en) Optical head
US5124970A (en) Optical head having a prism
JP3273673B2 (en) Optical pickup device
JPH0562238A (en) Optical device and optical pickup device
KR100244179B1 (en) optical pickup device pick-up
JPH0528531A (en) Optical system for optical disk device
JP2005189677A (en) Beam alignment polarization beam splitter and optical pickup
JPH08201698A (en) Light deflecting element and optical information recording and reproducing device
JPH09171633A (en) Integrated optical pickup system
JPH04209335A (en) Light emitting member
JPH05101422A (en) Optical pickup device
KR970000083Y1 (en) Scanning apparatus
JPH0636337A (en) Two-beam optical head
JPH07296410A (en) Optical head device on which laser beam is incident through optical fiber
JPH0515130U (en) Optical system of optical disk device
JPH0863775A (en) Optical recording/reproducing device