JPH051343A - Improvement of machinability of ti alloy and free cutting ti alloy - Google Patents

Improvement of machinability of ti alloy and free cutting ti alloy

Info

Publication number
JPH051343A
JPH051343A JP3246123A JP24612391A JPH051343A JP H051343 A JPH051343 A JP H051343A JP 3246123 A JP3246123 A JP 3246123A JP 24612391 A JP24612391 A JP 24612391A JP H051343 A JPH051343 A JP H051343A
Authority
JP
Japan
Prior art keywords
alloy
alloys
machinability
cutting
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3246123A
Other languages
Japanese (ja)
Other versions
JP2626344B2 (en
Inventor
Tatsuo Nagata
辰夫 永田
Wataru Takahashi
渉 高橋
Manabu Nishimoto
学 西元
Shiro Kitayama
司郎 北山
Yoshihito Sugimoto
由仁 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24612391A priority Critical patent/JP2626344B2/en
Publication of JPH051343A publication Critical patent/JPH051343A/en
Application granted granted Critical
Publication of JP2626344B2 publication Critical patent/JP2626344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the machinability of pure Ti or Ti alloy while maintaining hot workability and high fatigue strength or corrosion resistance. CONSTITUTION:P is blended by 0.01-1.0% together with 0.01-1.0% S and/or 0.01-2.0% Ni, and the improvement of machinability is attained by means of the embrittlement of matrix and by the formation of fine inclusions of proper shape. Further, 0.01-5.0% REM can be blended together with P, S, and Ni.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、Ti合金の快削性改善
方法、快削性Ti合金、さらにその製造方法に関する。特
に、航空機あるいは自動車等の輸送機器の構造部材ある
いはその機関部の可動部材のように、軽量性と強度が共
に要求される部位に適用できるTi合金の切削性の改善方
法、さらに切削性に優れたTi合金とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving the free-cutting property of a Ti alloy, a free-cutting Ti alloy and a method for producing the same. In particular, it is a method of improving the machinability of Ti alloy that can be applied to parts that require both lightness and strength, such as structural members of transportation equipment such as aircraft or automobiles or movable members of its engine parts, and also has excellent machinability. Ti alloy and its manufacturing method.

【0002】[0002]

【従来の技術】TiおよびTi合金は軽量であり、また高強
度でもあるために、航空機あるいは自動車の高速運動部
材等に使用されている。しかし、その製造に際してはTi
およびTi合金の切削性が悪いため、工具寿命が短いこ
と、切削速度が上げられないなどの問題が生じて加工経
費と時間が多くかかるため、大量生産は困難であった。
2. Description of the Related Art Since Ti and Ti alloys are lightweight and have high strength, they are used for high-speed moving members of aircraft or automobiles. However, when manufacturing
Moreover, since the Ti alloy has poor machinability, problems such as short tool life and inability to increase the cutting speed occur, resulting in high processing costs and time, which makes mass production difficult.

【0003】TiおよびTi合金の切削性改善方法として
は、特開昭60−251239号公報、特開昭61−153247号公
報、特開昭61−257445号公報、特開昭62−89834 号公
報、米国特許明細書第4,810,465 号、欧州特許公開明細
書第199,198 号において、S、Se、Te、REM(希土類金
属) 、Ca等の1種以上を加える方法が提案されている。
S、Se、Te、REM 、Ca等をTiおよびTi合金に加え、介在
物を形成することにより切削性は向上するが、熱間加工
性ならびに機械的強度 (特に疲労強度) の低下が生じる
ため、その添加量を増加することはできなかった。その
結果として切削性についての改善が不十分であるばかり
でなく、熱間加工性や疲労強度についても従来のTiおよ
びTi合金より劣っていた。
As a method for improving the machinability of Ti and Ti alloys, there are disclosed in JP-A-60-251239, JP-A-61-153247, JP-A-61-257445 and JP-A-62-89834. U.S. Pat. No. 4,810,465 and European Patent Publication No. 199,198 propose a method of adding one or more of S, Se, Te, REM (rare earth metal), Ca and the like.
Machinability is improved by adding inclusions of S, Se, Te, REM, Ca, etc. to Ti and Ti alloys, but the hot workability and mechanical strength (particularly fatigue strength) are reduced. , The amount added could not be increased. As a result, not only was the improvement in machinability insufficient, but the hot workability and fatigue strength were also inferior to those of conventional Ti and Ti alloys.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来より、
TiおよびTi合金の切削性は一般に鋼よりも低いとされて
いる。それは、切削屑生成機構の特徴から切削工具の刃
先にかかる力が大きいため切削工具刃が損傷しやすいこ
と、Tiは鋼と比較して熱伝導率が小さいため切削部の温
度が上昇すること、さらにTiが他の元素と反応し易いこ
とからも分かるように切削工具とも反応しやすいことな
どが原因と考えられている。
By the way, from the past,
Machinability of Ti and Ti alloys is generally lower than that of steel. It is because the force applied to the cutting edge of the cutting tool is large due to the characteristics of the cutting waste generation mechanism, the cutting tool blade is easily damaged, and the temperature of the cutting part rises because Ti has lower thermal conductivity than steel, Furthermore, as is clear from the fact that Ti easily reacts with other elements, it is thought that it is easy to react with cutting tools.

【0005】このように切削性が低いことは、加工のた
めの経費が大きくなるだけでなく、量産性をも低くする
ことを意味し、このことがTiおよびTi合金部材のコスト
アップの要因の一つとなっている。かくして、本発明の
目的は、TiおよびTi合金の切削性の改善方法を提供する
こと、また軽量であって疲労強度が高い又は耐食性が良
いという性質を維持しながら、同時に切削性にも優れる
Ti合金ならびにその製造方法を提供することである。
Such low machinability means that not only the cost for processing becomes large, but also the mass productivity is lowered, which is a factor for increasing the cost of Ti and Ti alloy members. It is one. Thus, the object of the present invention is to provide a method for improving the machinability of Ti and Ti alloys, and while maintaining the property of being lightweight and having high fatigue strength or good corrosion resistance, it is also excellent in machinability.
A Ti alloy and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明者等は、Tiおよび
Ti合金の切削性を改善すべく、鋭意研究開発を行いその
過程で下記のような知見を得た。すなわち、Tiおよび
Ti合金にPを添加すると、一部はTiに固溶しマトリック
スの延性を低下させ、残りはTiと反応し介在物を形成す
るが、マトリックスの延性低下とこの介在物の存在との
相乗作用により切削性が著しく向上する。しかし、生成
する介在物は粗大多角形状であり、熱間加工性が悪く、
疲労強度も低い。
The present inventors have found that Ti and
In order to improve the machinability of Ti alloy, earnest research and development were conducted, and the following knowledge was obtained in the process. That is, Ti and
When P is added to the Ti alloy, part of it dissolves in Ti to reduce the ductility of the matrix, and the rest reacts with Ti to form inclusions, but the ductility of the matrix decreases and the synergistic effect of the presence of these inclusions. This significantly improves the machinability. However, the generated inclusions have a coarse polygonal shape, and the hot workability is poor,
Fatigue strength is also low.

【0007】さらにSを添加すると、P単独添加の場
合に形成される介在物中にSが固溶し、介在物が微細化
しやすくなる。これにより、P単独添加の場合と介在物
量は同じであっても、PとSを複合添加した場合には介
在物は微細となり、熱間加工性や疲労強度の低下が小さ
い。
When S is further added, S becomes a solid solution in the inclusions formed when P is added alone, and the inclusions are likely to become finer. As a result, even if the amount of inclusions is the same as when P alone is added, the inclusions become finer when P and S are added in combination, and the hot workability and fatigue strength are less degraded.

【0008】TiおよびTi合金にPおよびNiを添加する
と、P単独添加の場合に形成される介在物にNiが一部固
溶し、介在物は粒状化しやすくなる。これにより、P単
独添加の場合と介在物量は同じであっても、PとNiを複
合添加した場合には、介在物は粒状化し、熱間加工性や
疲労強度の低下が小さい。さらに、介在物中に固溶しな
い過剰量のNiはTiとの間で金属間化合物を形成し、切削
性改善に寄与する。
When P and Ni are added to Ti and a Ti alloy, Ni partially forms a solid solution in the inclusions formed when P is added alone, and the inclusions are likely to be granulated. As a result, even if the amount of inclusions is the same as when P alone is added, when P and Ni are added together, the inclusions are granulated and the hot workability and the fatigue strength are less deteriorated. Furthermore, an excessive amount of Ni that does not form a solid solution in the inclusions forms an intermetallic compound with Ti and contributes to improving the machinability.

【0009】Sによる介在物の微細化効果、Niによる
介在物の粒状化効果は、Pを添加したTiおよびTi合金中
に、SとNiをともに添加した場合にも得られる。
The effect of refining inclusions by S and the effect of graining of inclusions by Ni can be obtained even when S and Ni are both added to Ti and Ti alloys to which P is added.

【0010】REM は、むしろPの固溶量を下げ、マト
リックスの延性低下を軽減し、熱間加工性や疲労強度の
低下を抑制する。ただし、固溶できなくなった過剰量の
Pは介在物を形成するため、今度は介在物量は増すこと
になり、介在物が粗大な場合や、粒状化していない場合
には、上記の熱間加工性や疲労強度の低下抑制効果が十
分でなくなることがある。したがって、PとともにREM
を添加する場合にはSとNiをともに添加して、介在物が
微細化・粒状化した状態とするのが好ましい。
REM rather lowers the solid solution amount of P, alleviates the deterioration of the ductility of the matrix, and suppresses the deterioration of hot workability and fatigue strength. However, since the excessive amount of P that cannot be solid-soluted forms inclusions, the amount of inclusions will increase this time. If the inclusions are coarse or are not granulated, the above hot working is performed. In some cases, the effect of suppressing the deterioration of the fatigue strength and fatigue strength becomes insufficient. Therefore, REM along with P
When S is added, it is preferable to add S and Ni together so that the inclusions are made fine and granular.

【0011】TiおよびTi合金にPおよびSを添加する
際には、硫化鉄、硫化アルミニウム、硫化チタン、リン
化鉄、またはリン化チタンを使用することができる。硫
化鉄とリン化鉄は安価であるが鉄も同時に加えられるの
で、その量が多すぎると切削性に悪影響を与えるため
に、鉄を含まない化合物と同時に加えることにより鉄の
添加量を調整するのが好ましい。
When adding P and S to Ti and Ti alloy, iron sulfide, aluminum sulfide, titanium sulfide, iron phosphide, or titanium phosphide can be used. Iron sulfide and iron phosphide are cheap, but iron is also added at the same time, so if the amount is too large, the machinability is adversely affected.Therefore, the amount of iron added is adjusted by adding it together with a compound that does not contain iron. Is preferred.

【0012】本発明は、以上の知見にもとずいてなされ
たものであって、その一つの面からは、TiまたはTi合金
に、重量%で、下記群〜のいずれかの快削成分を添
加することを特徴とするTiまたはTi合金の快削性改善方
法である。 P: 0.01〜1.0 %およびS: 0.01〜1.0 %、 P: 0.01〜1.0 %およびNi: 0.01〜2.0 %、 P: 0.01〜1.0 %、S: 0.01〜1.0 %およびNi: 0.01
〜2.0 %、 P: 0.01〜1.0 %、S: 0.01〜1.0 %、Ni: 0.01〜2.
0 %およびREM:0.01〜5.0 %。
The present invention has been made on the basis of the above findings, and from one aspect thereof, Ti or a Ti alloy is provided with a free-cutting component of any one of the following groups by weight%. It is a method of improving free-cutting property of Ti or Ti alloy, which is characterized by adding. P: 0.01 to 1.0% and S: 0.01 to 1.0%, P: 0.01 to 1.0% and Ni: 0.01 to 2.0%, P: 0.01 to 1.0%, S: 0.01 to 1.0% and Ni: 0.01
~ 2.0%, P: 0.01 ~ 1.0%, S: 0.01 ~ 1.0%, Ni: 0.01 ~ 2.
0% and REM: 0.01-5.0%.

【0013】また、別の面からは、本発明は、上述の快
削成分をTiまたはTi合金に配合して成る快削性Ti合金で
ある。かかるTi合金を製造するに際しては、PまたはS
の供給源として硫化鉄、硫化アルミニウム、硫化チタ
ン、リン化鉄およびリン化チタンから成る群から選んだ
1種または2種以上を使うことによって、PまたはPと
SとのTiまたはTi合金への配合が容易に行われる。
Further, from another aspect, the present invention is a free-cutting Ti alloy formed by mixing the above-mentioned free-cutting component with Ti or a Ti alloy. In producing such Ti alloy, P or S
By using one or more selected from the group consisting of iron sulfide, aluminum sulfide, titanium sulfide, iron phosphide and titanium phosphide as a source of Blending is easy.

【0014】[0014]

【作用】次に、本発明の作用についてさらに具体的に説
明する。まず、本発明にあって、上述のいわゆる快削成
分を配合するTiおよびTi合金のうちのTi合金とは、Ti合
金であれば特定のものに制限されず、すでに述べたとこ
ろから当業者には明らかなように、いずれの合金であっ
ても所期の快削性を発揮するのであるが、特に例示すれ
ば、下記の合金元素のうち少なくとも1つを最大で下記
成分量 (重量%) まで添加したもの (2種類あるいはそ
れ以上を添加する場合には合わせて50%まで) を包含す
る。
Next, the operation of the present invention will be described more specifically. First, in the present invention, Ti and Ti alloys of the above-mentioned so-called Ti and Ti alloys containing free-cutting components are not limited to specific ones as long as they are Ti alloys. It is clear that any alloy exhibits the desired free-cutting property. However, in particular, at least one of the following alloying elements can be used in a maximum amount of the following components (% by weight). Up to 50% in total when two or more types are added.

【0015】Al: 10%、 Sn: 15%、 Co: 10%、 C
u: 5%、 Ta: 15%、Mn: 10%、 Hf: 10%、 W: 1
0%、 Si: 0.5%、Nb: 20%、Zr: 10%、 Mo: 20%、
V: 25%、 Fe: 10%、 C: 5 %、Cr: 15%、
O: 0.5 %、Pt: 0.25%、Pd: 0.25%、Ru: 0.25%、O
s: 0.25%、Ir: 0.25%、Rh: 0.25%。
Al: 10%, Sn: 15%, Co: 10%, C
u: 5%, Ta: 15%, Mn: 10%, Hf: 10%, W: 1
0%, Si: 0.5%, Nb: 20%, Zr: 10%, Mo: 20%,
V: 25%, Fe: 10%, C: 5%, Cr: 15%,
O: 0.5%, Pt: 0.25%, Pd: 0.25%, Ru: 0.25%, O
s: 0.25%, Ir: 0.25%, Rh: 0.25%.

【0016】本発明が対象とする代表的なTi合金として
は、Ti-3Al-2.5V 、Ti-6Al-4V 、Ti-6Al-2Sn-4Zr-6Mo、
Ti-10V-2Fe-3Al、Ti-15Mo-5Zr-3Al 、Ti-15V-3Cr-3Sn-3
Al、Ti-3Al-8V-6Cr-4Mo-4Zr 、Ti-0.15Pd 等がある。次
に、前述の快削成分の組成配合割合の限定理由を説明す
ると次の通りである。なお、以下にあって「%」は特に
ことわりがない限り、「重量%」である。
Typical Ti alloys to which the present invention is applied include Ti-3Al-2.5V, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo,
Ti-10V-2Fe-3Al, Ti-15Mo-5Zr-3Al, Ti-15V-3Cr-3Sn-3
Al, Ti-3Al-8V-6Cr-4Mo-4Zr, Ti-0.15Pd, etc. are available. Next, the reasons for limiting the composition ratio of the above-mentioned free-cutting component will be described as follows. In the following, "%" is "% by weight" unless otherwise specified.

【0017】P:Pは、一部はTiに固溶しマトリックス
の延性を低下させるとともに、残りは介在物を形成し切
削性を改善する元素である。しかし、Pを単独添加した
場合には熱間加工性や疲労強度の低下が著しいので、こ
れを避けるために、Pの添加は、SとNiの一方または両
方、或いはSとNiとREM との複合添加にしなければなら
ない。Pは0.01%未満では十分な固溶量が確保できず、
また十分量の介在物も形成されず、切削性改善の効果が
ない。一方、1.0 %超では粗大な介在物が形成され切削
性改善の効果はあるものの、上記の複合添加によっても
熱間加工性や疲労強度の低下が著しくなる。好ましいP
量は、0.03〜0.3 %、特に0.04〜0.12%である。
P: P is an element that partly forms a solid solution with Ti to reduce the ductility of the matrix, and the rest forms inclusions to improve machinability. However, when P is added alone, the hot workability and the fatigue strength are remarkably deteriorated. Therefore, in order to avoid this, the addition of P should be one of S and Ni, or both, or S, Ni and REM. Must be compounded. If P is less than 0.01%, a sufficient solid solution amount cannot be secured,
Also, a sufficient amount of inclusions are not formed, and there is no effect of improving the machinability. On the other hand, if it exceeds 1.0%, coarse inclusions are formed and the effect of improving the machinability is obtained, but the hot addition workability and the fatigue strength decrease remarkably even by the above-mentioned composite addition. Preferred P
The amount is 0.03-0.3%, especially 0.04-0.12%.

【0018】S:SはPを添加した時に形成される介在
物を微細化することにより、熱間加工性や疲労強度の低
下を抑制する元素であるが、0.01%未満では介在物が微
細化されず、熱間加工性や疲労強度の低下の抑制効果が
ない。一方、1.0 %超では介在物は増え、その増えた介
在物が粒界に沿って多数形成されるため、熱間加工性や
疲労強度は逆に低下する。Sは、重量%でのP量との比
が、S:P = 1:3〜3:1 の範囲になるように添加すること
が好ましい。この範囲のS量において、介在物の微細化
効果は最も顕著であり、1〜10μmの微細介在物が形成
される。好ましいS量は0.03〜0.30%、特に0.08〜0.24
%である。
S: S is an element that suppresses reduction of hot workability and fatigue strength by refining inclusions formed when P is added, but if it is less than 0.01%, inclusions are refined. Therefore, there is no effect of suppressing the reduction of hot workability and fatigue strength. On the other hand, if it exceeds 1.0%, the number of inclusions increases, and a large number of the increased inclusions are formed along the grain boundaries, so that the hot workability and the fatigue strength decrease conversely. S is preferably added so that the ratio with respect to the amount of P in weight% is in the range of S: P = 1: 3 to 3: 1. With the S content in this range, the effect of refining inclusions is most remarkable, and fine inclusions of 1 to 10 μm are formed. The preferred S content is 0.03 to 0.30%, especially 0.08 to 0.24
%.

【0019】Ni:NiはPを添加した時に形成される介在
物を粒状化することにより、熱間加工性や疲労強度の低
下を抑制する元素である。また、Tiとの間で金属間化合
物を形成し、切削性を改善する。Ni添加量が0.01%未満
では介在物が粒状化されず、熱間加工性や疲労強度の低
下の抑制効果がない。一方、2.0 %超では多量のTi−Ni
間の金属間化合物が生成し、延性が低下し、熱間加工性
や疲労強度は逆に劣化する。好ましいNi量は0.05〜0.60
%、特に0.15〜0.50%である。
Ni: Ni is an element that suppresses reduction in hot workability and fatigue strength by granulating inclusions formed when P is added. It also forms an intermetallic compound with Ti to improve machinability. If the amount of Ni added is less than 0.01%, the inclusions are not granulated, and there is no effect of suppressing the deterioration of hot workability and fatigue strength. On the other hand, if it exceeds 2.0%, a large amount of Ti-Ni
Intermetallic compounds are generated between them, the ductility decreases, and the hot workability and fatigue strength conversely deteriorate. Preferred Ni content is 0.05 to 0.60
%, Especially 0.15 to 0.50%.

【0020】REM: (希土類元素) REM はPと化合しやすい元素であり、マトリックスへの
Pの固溶量を下げ、マトリックスの延性低下を軽減して
熱間加工性や疲労強度の低下を抑制する元素である。RE
M とはLa、Ce、Nd、Y、Sc等の希土類金属のことであ
り、その配合量が0.01%未満では、マトリックスの延性
低下を軽減する効果が小さく、熱間加工性や疲労強度の
低下抑制に寄与しない。一方、5.0 %超ではTiおよびTi
合金に配合・溶解する際にTi溶湯の粘性が上昇し、偏析
が生じやすくなる。REM の添加は、La、Ceを主成分とす
る市販のMm (ミッシュメタル) を用いれば安価に行え
る。好ましいREM の添加量は0.05〜1.5 %、特に0.20〜
1.0 %である。
REM: (rare earth element) REM is an element that is easily combined with P, and reduces the solid solution amount of P in the matrix to reduce the deterioration of ductility of the matrix and suppress the deterioration of hot workability and fatigue strength. It is an element that does. RE
M is a rare earth metal such as La, Ce, Nd, Y, Sc, etc. If its content is less than 0.01%, the effect of reducing the ductility of the matrix is small and the hot workability and fatigue strength are reduced. Does not contribute to suppression. On the other hand, if it exceeds 5.0%, Ti and Ti
The viscosity of the Ti melt increases when compounded and melted in the alloy, and segregation easily occurs. REM can be added at low cost by using commercially available Mm (Misch metal) containing La and Ce as main components. The preferred amount of REM added is 0.05 to 1.5%, especially 0.20 to
It is 1.0%.

【0021】本発明にかかる快削性チタン合金は、その
他付随不純物としてH、N等を含むことはあるが、それ
らは例えば合計して0.1 %以下、望ましくは0.05%以下
に抑制すればよい。本発明にかかる快削性Ti合金の製造
に際しては、従来のTi合金と同様に、VAR法およびアー
ク溶解法等、Ti合金製造に適用できるいかなる方法でも
適用できる。その場合、P、Sを添加する際にリン化
鉄、硫化鉄をTi溶湯に加えるとFeが同時に添加される
が、その量が余り多いと切削性が低下するため2.0 %以
下、さらに望ましくは1.0 %以下に抑制することが望ま
しい。したがって、リン化チタン、硫化アルミニウム、
硫化チタン等も同時に添加するのが好ましい。次に、本
発明を実施例を参照しながらさらに具体的に説明する
が、本発明は実施例に記載した特定の態様に限定される
ものではない。
The free-cutting titanium alloy according to the present invention may contain other incidental impurities such as H and N, but these may be suppressed to a total of 0.1% or less, preferably 0.05% or less. In the production of the free-machining Ti alloy according to the present invention, any method applicable to the production of Ti alloys, such as the VAR method and the arc melting method, can be applied, like the conventional Ti alloys. In that case, when iron phosphide and iron sulfide are added to the molten Ti at the time of adding P and S, Fe is also added at the same time, but if the amount is too large, the machinability deteriorates, so 2.0% or less, more preferably It is desirable to suppress it to 1.0% or less. Therefore, titanium phosphide, aluminum sulfide,
It is preferable to add titanium sulfide and the like at the same time. Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the specific modes described in the examples.

【0022】[0022]

【実施例】実施例1 表1および表2に示す化学組成をもった本発明例のTi合
金 (合金No.1〜25) 、従来例のTi合金 (合金No. 26〜3
1) ならびに比較例のTi合金 (合金No. 32〜46)をVAR 法
で溶解し、直径120 ×長さ400(mm)のインゴットを作製
した。このインゴットを1050℃×3hr→空冷の均質化処
理を行った。そして、1150℃に再加熱して直径90mmにま
で鍛伸し、さらに950 ℃に加熱して直径65mmにまで鍛伸
した。
EXAMPLES Example 1 Ti alloys of the present invention (alloy Nos. 1 to 25) having the chemical compositions shown in Tables 1 and 2 and conventional Ti alloys (alloys Nos. 26 to 3)
1) and the Ti alloys of Comparative Examples (alloy Nos. 32 to 46) were melted by the VAR method to prepare an ingot having a diameter of 120 and a length of 400 (mm). This ingot was subjected to homogenization treatment of 1050 ° C. × 3 hrs → air cooling. Then, it was reheated to 1150 ° C and forged to a diameter of 90 mm, and further heated to 950 ° C and forged to a diameter of 65 mm.

【0023】比較例のTi合金 (合金No. 32〜46) ではい
ずれもその表面に割れが発生したが、試験片は作製でき
る程度のものであった。
In each of the Ti alloys of the comparative examples (alloy Nos. 32 to 46), cracks were generated on the surface thereof, but the test pieces could be produced.

【0024】さらに、得られた鍛伸材に705 ℃×1.5 hr
→空冷の焼鈍処理を施した。この焼鈍後の材料より圧縮
試験片 (直径8×長さ12mm) 、回転曲げ試験片 (外寸直
径12×長さ110mm)、およびドリル穴あけ試験片 (厚み20
×幅50×長さ350mm)をそれぞれ採取し各試験に供した。
Further, the obtained forged material was subjected to 705 ° C. × 1.5 hr
→ Air-cooled annealing treatment was applied. From this annealed material, compression test pieces (diameter 8 x length 12 mm), rotary bending test pieces (outer diameter 12 x length 110 mm), and drill hole test pieces (thickness 20
X width 50 x length 350 mm) was sampled and subjected to each test.

【0025】合金No. 24とNo. 25の本発明例のTi合金お
よび合金No.30 とNo.31 の従来例のTi合金は、VAR 法で
溶解した直径120 ×長さ400(mm) のインゴットを1050℃
×3hr→空冷の均質化処理を行った後に、1050℃に再加
熱して直径65mmにまで鍛伸した。そして、800℃×1hr
→空冷の溶体化処理を行った後に、前述した圧縮試験片
およびドリル穴あけ試験片を採取しそれぞれの試験に供
した。さらに、残材に500 ℃×15hr→空冷の時効処理を
施し、回転曲げ疲労試験片を採取し試験に供した。試験
結果は同じく表1および表2にまとめて示す。
Alloys No. 24 and No. 25 of the present invention, and alloy Nos. 30 and 31 of the conventional Ti alloys were melted by the VAR method and had a diameter of 120 × a length of 400 (mm). 1050 ℃ ingot
After performing a homogenizing treatment of × 3 hr → air cooling, it was reheated to 1050 ° C. and forged to a diameter of 65 mm. And 800 ℃ × 1hr
→ After performing the solution treatment of air cooling, the above-mentioned compression test piece and drill hole test piece were sampled and subjected to the respective tests. Furthermore, the residual material was subjected to an aging treatment of 500 ° C. × 15 hours → air cooling, and a rotary bending fatigue test piece was sampled and used for the test. The test results are also summarized in Table 1 and Table 2.

【0026】圧縮試験は以下に示す条件で行った。 温 度 : 750 ℃ 歪速度 : 1s-1 圧下率 : 75% 圧縮による熱間加工性は試験後の試料表面の割れの有無
により評価した。
The compression test was conducted under the following conditions. Temperature: 750 ℃ Strain rate: 1 s -1 Reduction ratio: 75% The hot workability by compression was evaluated by the presence or absence of cracks on the sample surface after the test.

【0027】比較例の合金No. 32、33、43のP単独添加
の材料およびNo. 34〜42、44、46のREM 、Ni、P、Sを
多く含む材料のいずれでも割れの発生が認められたが、
本発明例にかかるTi合金 (合金No.1〜25) では割れは認
められなかった。疲労試験は以下に示す条件で行い107
回数での疲労強度を求めた。快削成分を加えない従来例
の特性を考慮して、純Tiに快削成分を加えたものでは24
kgf/mm2以上、快削成分を加えないTi−6Al−4V合金で
は45kgf/mm2 以上を合格と判断した。
The occurrence of cracks was observed in all the alloys of Comparative Examples Nos. 32, 33 and 43 with P added alone and Nos. 34 to 42, 44 and 46 containing a large amount of REM, Ni, P and S. Was
No cracks were observed in the Ti alloys according to the present invention (alloy Nos. 1 to 25). Fatigue test is performed under the following conditions 10 7
Fatigue strength was determined by the number of times. In consideration of the characteristics of the conventional example in which no free-cutting component is added, it is 24 with the free-cutting component added to pure Ti.
kgf / mm 2 or more, and Ti-6Al-4V alloy containing no free-cutting component was judged to pass 45 kgf / mm 2 or more.

【0028】 試料形状: 直径8mmの小野式回転曲げ疲労試験片 温 度 : 室温 比較例の合金No.32 〜46では、いずれも本発明合金No.1
〜25よりも疲労強度が劣っており上記基準を越えるもの
はなかった。ドリル穴あけ試験は以下に示す条件で行っ
た。
Sample shape: Ono-type rotating bending fatigue test piece with a diameter of 8 mm Temperature: Room temperature Comparative examples of alloy Nos. 32 to 46 were all alloys of the present invention No. 1
Fatigue strength was inferior to ~ 25, and none exceeded the above criteria. The drilling test was performed under the following conditions.

【0029】工具材質 : 超硬 (K20 相当) ドリル径 : 6 mm 送 り : 0.1 mm/rev. 回転数 : 980 rpm 潤 滑 : 水溶性潤滑剤 (商品名: コスモクール) 、
4 l/min 穴の深さ : 15 mm(不貫通孔) ドリル穿孔性は純Tiを基準として評価し、次式により算
出される値である。ここで、穿孔距離とはドリルの寿命
までに穿孔できた穴の数と、穴の深さの積である。
Tool material: Carbide (K20 equivalent) Drill diameter: 6 mm Feed: 0.1 mm / rev. Rotation speed: 980 rpm Lubrication: Water-soluble lubricant (trade name: Cosmo Cool),
4 l / min Hole depth: 15 mm (Impervious hole) Drill piercing property is a value calculated by the following formula after evaluating pure Ti as a standard. Here, the drilling distance is the product of the number of holes drilled by the life of the drill and the depth of the holes.

【0030】[0030]

【数1】 [Equation 1]

【0031】Pを含む本発明合金は、いづれも対応する
その母材のTiあるいはTi合金よりも優れたドリル穿孔性
を示した。しかし、Pを含んでいても、比較例の合金N
o. 37、41、42のように、Ni、SまたはREM 量が過大で
あると、ドリル穿孔性は母材合金より低下した。以上の
結果、本発明合金は熱間加工性および疲労強度が従来合
金と同等以上であり、かつ切削性が非常に優れているこ
とが明らかとなった。
The alloys of the present invention containing P each showed better drillability than the corresponding parent Ti or Ti alloys. However, even if P is contained, the alloy N of the comparative example
o. As shown in 37, 41, and 42, when the amount of Ni, S, or REM was excessive, drillability was lower than that of the base alloy. As a result, it has been clarified that the alloy of the present invention has hot workability and fatigue strength equal to or higher than those of the conventional alloy, and has excellent machinability.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】実施例2 実施例1に用いた合金No.1、3、11、13、15およびNo.1
6 の本発明例のTi合金について、さらに圧下率を大きく
して、圧縮試験を実施した。温度、歪速度は実施例1と
同じく750 ℃、1s-1、圧下率は85%と、90%の2条件
で行い、実施例1と同様、熱間加工性は試料表面の割れ
の有無により評価した。試験結果を、実施例1の圧下率
75%の結果とともに、表3に示す。表中の○は、割れが
認められなかったもの、×は割れが発生したものを示し
ている。
Example 2 Alloy Nos. 1, 3, 11, 13, 15 and No. 1 used in Example 1
For the Ti alloys of Example 6 of the present invention, a compression test was carried out while further increasing the rolling reduction. The temperature and strain rate were the same as in Example 1 at 750 ° C., 1 s −1 , and the rolling reduction was 85% and 90%. The hot workability was determined by the presence or absence of cracks on the sample surface, as in Example 1. evaluated. The test result is the rolling reduction of Example 1.
It is shown in Table 3 together with the result of 75%. In the table, ○ indicates that no crack was observed, and × indicates that crack occurred.

【0035】純Tiに快削成分のPとSをともに添加した
No.1の本発明の合金は、圧下率90%の試験では割れが発
生したが、P、SおよびNiを添加したNo.3の合金は、圧
下率90%でも割れは発生しなかった。また、Ti−6Al−
4V合金にPとSを添加したNo.11 の合金およびPとNiを
添加したNo.13 の合金では、85%の圧下率で割れが生じ
たが、P、SおよびNiを含むNo.15 の合金では85%、さ
らにREM を添加したNo.16 の合金では、90%の圧下率で
も割れは発生しなかった。
Both free-cutting components P and S were added to pure Ti.
The No. 1 alloy of the present invention cracked in a test with a rolling reduction of 90%, whereas the No. 3 alloy containing P, S and Ni did not crack even at a rolling reduction of 90%. Also, Ti-6Al-
In the No. 11 alloy in which P and S were added to the 4V alloy and in the No. 13 alloy in which P and Ni were added, cracking occurred at a reduction rate of 85%, but No. 15 containing P, S and Ni. No cracking occurred in the alloy No. 16 with 85%, and in the alloy No. 16 with REM added, even at a rolling reduction of 90%.

【0036】[0036]

【表3】 [Table 3]

【0037】実施例3 耐食性に優れる貴金属含有Ti合金についても、本発明の
効果があることを確認した。表4に示す化学組成をもっ
た本発明例のTi合金 (合金No. 51〜58) ならびに従来例
のTi合金 (合金No. 59〜66) をVAR 法で溶解し、直径12
0×長さ400(mm) のインゴットを作製した。そして、こ
のインゴットを1050℃×3hr→空冷の均質化処理を行っ
た。
Example 3 It was confirmed that the effect of the present invention is also exerted on a Ti alloy containing a noble metal which is excellent in corrosion resistance. The Ti alloys of the present invention (alloy Nos. 51 to 58) and the conventional Ti alloys (alloys No. 59 to 66) having the chemical compositions shown in Table 4 were melted by the VAR method to obtain a diameter of 12
An ingot of 0 x length 400 (mm) was produced. Then, this ingot was subjected to homogenization treatment of 1050 ° C. × 3 hrs → air cooling.

【0038】そして、合金No. 51〜55およびNo. 58の本
発明例のTi合金と合金No. 59〜63およびNo. 66の従来例
のTi合金のインゴットは、1150℃に再加熱して直径90mm
にまで鍛伸し、さらに950 ℃に加熱して直径65mmにまで
鍛伸した。さらに、得られた鍛伸材に705 ℃×1.5hr →
空冷の焼鈍処理を施した。この焼鈍後の材料より、実施
例1と同一の寸法形状のドリル穴あけ試験片に加え、耐
酸性試験用小片 (厚み3mm×幅10mm×長さ40mm) 、耐す
き間腐食試験片 (厚み3mm×幅30mm×長さ30mm) および
耐硫化腐食試験用小片 (厚み2mm×幅10mm×長さ75mm)
を採取し、試験片加工して、各試験に供した。
Then, the ingots of the Ti alloys of the present invention of alloy Nos. 51 to 55 and No. 58 and the conventional Ti alloys of alloys No. 59 to 63 and No. 66 were reheated to 1150 ° C. 90mm diameter
And then heated to 950 ° C to a diameter of 65 mm. Furthermore, the obtained forged material is 705 ℃ × 1.5hr →
Air-cooled annealing treatment was performed. From this annealed material, in addition to the drill hole test piece having the same size and shape as in Example 1, a small piece for acid resistance test (thickness 3 mm x width 10 mm x length 40 mm) and a crevice corrosion test piece (thickness 3 mm x width) 30mm x length 30mm) and small piece for sulfidation corrosion resistance test (thickness 2mm x width 10mm x length 75mm)
Was collected, processed into test pieces, and subjected to each test.

【0039】また、合金No. 56およびNo. 57の本発明例
のTi合金と合金No. 64およびNo. 65の従来例のTi合金の
インゴットの場合には、均質化処理後のインゴットを10
50℃に再加熱して直径65mmに鍛伸した。そして、800 ℃
×1hr→空冷の溶体化処理を行った後に、前述したドリ
ル穴あけ試験片、耐酸性試験用小片、耐すき間腐食試験
片および耐硫化腐食試験用小片をそれぞれ採取し、試験
片に加工して、それぞれの試験に供した。
Further, in the case of the ingots of the Ti alloys of the present invention of alloys No. 56 and No. 57 and the conventional Ti alloys of alloys No. 64 and No. 65, the ingot after the homogenization treatment was 10
It was reheated to 50 ° C and forged to a diameter of 65 mm. And 800 ℃
After carrying out the solution treatment of x1 hr → air cooling, the above-mentioned drill hole test piece, acid resistance test piece, crevice corrosion resistance test piece and sulfidation corrosion resistance test piece were taken and processed into test pieces, It was subjected to each test.

【0040】耐酸性試験は、厚み3mm×幅10mm×長さ40
mmの短冊型に採取した小片を600 番エメリー紙にて研磨
仕上げした後、沸騰5%HCl 水溶液中に6時間浸漬し、
その際の全面腐食量を測定する方法を採用した。そして
各2枚の試験片について腐食量から腐食速度を算出し、
その平均値を比較することにより、耐酸性を評価した。
The acid resistance test is 3 mm thick x 10 mm wide x 40 mm long
After stripping the small pieces collected in a rectangular strip of mm with No. 600 emery paper, soak them in boiling 5% HCl aqueous solution for 6 hours,
The method of measuring the amount of general corrosion at that time was adopted. Then, calculate the corrosion rate from the amount of corrosion for each of the two test pieces,
The acid resistance was evaluated by comparing the average values.

【0041】すき間腐食試験片対は、採取した厚み3mm
×幅30mm×長さ30mmの2枚の試験片中央部に直径7mmの
穴をあけ、さらにその表面を600 番エメリー紙にて研磨
仕上げした後、これら2枚の試験片の間にジメタクリレ
ート系樹脂 (嫌気性接着剤)を塗布し、テフロンブッシ
ュを介して、チタン製ボルト・ナットで締め付けること
により作製した。このすき間腐食試験片対を材質毎に3
個ずつ用意し、150 ℃の25%NaCl水溶液(pH2) に50
0 時間浸漬して、すき間腐食状況を観察することによ
り、耐すき間腐食性を評価した。
The crevice corrosion test piece pair has a thickness of 3 mm.
A hole with a diameter of 7 mm was made in the center of two test pieces of width 30 mm and length 30 mm, and the surface was polished with No. 600 emery paper. It was prepared by applying a resin (anaerobic adhesive) and tightening it with titanium bolts and nuts through a Teflon bush. This crevice corrosion test piece pair 3 for each material
Prepare them individually and add 50% to a 25% NaCl aqueous solution (pH 2) at 150 ° C.
The crevice corrosion resistance was evaluated by immersing it for 0 hour and observing the crevice corrosion state.

【0042】耐硫化腐食試験片は、採取した厚み2mm×
幅10mm×長さ75mmの短冊状の平板の中央部に、0.25mmR
で0.25mmの深さの半円状溝を幅方向に設けることで製作
した。図1に示すように、この小型切欠付4点曲げ試験
片1は、4点曲げ治具2により、4箇所のガラス丸棒で
構成する支点3によって支持される。試験に際しては応
力付加ボルト4によってこの試験片に、100 %降伏応力
に相当する応力を付加しつつ、下記の条件下でオートク
レーブ中に保持した。所定の時間が経過した後、試験片
を取り出し、腐食速度と、応力腐食割れ発生の有無をし
らべ、耐硫化腐食性を評価した。結果は表4にまとめて
示す。
The sulfidation-corrosion resistance test piece had a thickness of 2 mm ×
0.25mmR at the center of a rectangular plate with a width of 10mm and a length of 75mm
It was manufactured by providing a semi-circular groove with a depth of 0.25 mm in the width direction. As shown in FIG. 1, this small notched 4-point bending test piece 1 is supported by a 4-point bending jig 2 by fulcrums 3 composed of four glass round bars. During the test, a stress corresponding to 100% yield stress was applied to the test piece by the stress application bolt 4, and the test piece was held in the autoclave under the following conditions. After a predetermined time had elapsed, the test piece was taken out, and the sulfidation corrosion resistance was evaluated by examining the corrosion rate and the presence or absence of stress corrosion cracking. The results are summarized in Table 4.

【0043】[腐食条件] 液温 : 250 ℃ 試験液組成 : 25%NaCl+1(g/l)S水溶液 気相中ガス分圧: 10kgf/cm2 H2S +10kgf/cm2 CO2 試験時間 : 720 hr 付加応力 : 1 ×σ0.2 ドリル穿孔性は、実施例1と同様の方法で試験し、評価
した。
[Corrosion conditions] Liquid temperature: 250 ° C. Test liquid composition: 25% NaCl + 1 (g / l) S aqueous solution Gas partial pressure in gas phase: 10kgf / cm 2 H 2 S + 10kgf / cm 2 CO 2 Test time: 720 hr Additional stress: 1 × σ 0.2 The drill piercing property was tested and evaluated in the same manner as in Example 1.

【0044】表4から明らかなように、本発明に係るN
o.51 〜No.58 のTi合金は従来例のTi合金であるNo.59
〜No.60 のTi合金に比べ、ドリル穿孔性に優れる。さら
に、各耐食性も従来のTi合金に劣っておらず、本発明
は、白金族元素を含有するTi合金にも適用できること
は、明らかである。
As is clear from Table 4, N according to the present invention
The Ti alloys of o.51 to No.58 are the conventional Ti alloys of No.59.
Excellent drilling performance compared to No.60 Ti alloy. Furthermore, each corrosion resistance is not inferior to the conventional Ti alloy, and it is clear that the present invention can be applied to the Ti alloy containing the platinum group element.

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【発明の効果】本発明の快削性Ti合金は、純TiおよびTi
合金の本来有する軽量性と強度あるいは耐食性を有し、
しかも快削性においては従来の純TiおよびTi合金よりも
優れているため、機械加工コストが非常に低くなり、自
動車部品等の輸送用材器に適用可能であり、純チタンお
よびチタン合金の部材の製造コスト低減に大きく寄与で
きる。
The free-cutting Ti alloy of the present invention is made of pure Ti and Ti.
It has the original lightness and strength or corrosion resistance of alloys,
Moreover, because it is superior to conventional pure Ti and Ti alloys in free-cutting properties, machining costs are extremely low, and it can be applied to transportation equipment such as automobile parts. It can greatly contribute to the reduction of manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐硫化腐食試験での小型切欠付4点曲げ試験片
への応力付加手段を説明した概略模式図である。
FIG. 1 is a schematic diagram illustrating a means for applying stress to a small-sized notched 4-point bending test piece in a sulfidation corrosion resistance test.

【符号の説明】[Explanation of symbols]

1 : 小型切欠付4点曲げ試験片 2 : 4点曲げ治具 3 : 支点 (ガラス丸棒) 4 : 応力付加ボルト 1: Small 4-point bending test piece with notch 2: 4-point bending jig 3: Support point (round glass rod) 4: Stressed bolt

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北山 司郎 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 杉本 由仁 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shiro Kitayama             Sumitomo Kin 4-3-33 Kitahama, Chuo-ku, Osaka             Inside the industry (72) Inventor Yuni Sugimoto             Sumitomo Kin 4-3-33 Kitahama, Chuo-ku, Osaka             Inside the industry

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 TiまたはTi合金に、重量%で、下記群
〜のいずれかの快削成分を添加することを特徴とする
TiまたはTi合金の快削性改善方法。 P: 0.01〜1.0 %およびS: 0.01〜1.0 %、 P: 0.01〜1.0 %およびNi: 0.01〜2.0 %、 P: 0.01〜1.0 %、S: 0.01〜1.0 %およびNi: 0.01
〜2.0 %、 P: 0.01〜1.0 %、S: 0.01〜1.0 %、Ni: 0.01〜2.
0 %およびREM:0.01〜5.0 %。
1. A free-cutting component of any one of the following groups (1) to (5) is added to Ti or a Ti alloy in weight%.
A method for improving the free cutting property of Ti or Ti alloy. P: 0.01 to 1.0% and S: 0.01 to 1.0%, P: 0.01 to 1.0% and Ni: 0.01 to 2.0%, P: 0.01 to 1.0%, S: 0.01 to 1.0% and Ni: 0.01
~ 2.0%, P: 0.01 ~ 1.0%, S: 0.01 ~ 1.0%, Ni: 0.01 ~ 2.
0% and REM: 0.01-5.0%.
【請求項2】 重量%で、下記群〜のいずれかの快
削成分、および残部TiまたはTi合金からなる快削性Ti合
金。 P: 0.01〜1.0 %およびS: 0.01〜1.0 %、 P: 0.01〜1.0 %およびNi: 0.01〜2.0 %、 P: 0.01〜1.0 %、S: 0.01〜1.0 %およびNi: 0.01
〜2.0 %、 P: 0.01〜1.0 %、S: 0.01〜1.0 %、Ni: 0.01〜2.
0 %およびREM:0.01〜5.0 %。
2. A free-cutting Ti alloy, which comprises the free-cutting component of any one of the following groups, and the balance Ti or Ti alloy, in weight%. P: 0.01 to 1.0% and S: 0.01 to 1.0%, P: 0.01 to 1.0% and Ni: 0.01 to 2.0%, P: 0.01 to 1.0%, S: 0.01 to 1.0% and Ni: 0.01
~ 2.0%, P: 0.01 ~ 1.0%, S: 0.01 ~ 1.0%, Ni: 0.01 ~ 2.
0% and REM: 0.01-5.0%.
【請求項3】 請求項2記載の快削性Ti合金の製造に際
して、SまたはPの供給源として、硫化鉄、硫化アルミ
ニウム、硫化チタン、リン化鉄およびリン化チタンから
成る群から選んだ1種または2種以上を使うことを特徴
とする快削性Ti合金の製造方法。
3. In the production of the free-cutting Ti alloy according to claim 2, as a source of S or P, 1 selected from the group consisting of iron sulfide, aluminum sulfide, titanium sulfide, iron phosphide and titanium phosphide. A method for producing a free-cutting Ti alloy, which comprises using two or more kinds.
JP24612391A 1990-10-01 1991-09-25 Method for improving free-cutting ability of Ti alloy and free-cutting Ti alloy Expired - Fee Related JP2626344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24612391A JP2626344B2 (en) 1990-10-01 1991-09-25 Method for improving free-cutting ability of Ti alloy and free-cutting Ti alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26342790 1990-10-01
JP2-263427 1990-10-01
JP24612391A JP2626344B2 (en) 1990-10-01 1991-09-25 Method for improving free-cutting ability of Ti alloy and free-cutting Ti alloy

Publications (2)

Publication Number Publication Date
JPH051343A true JPH051343A (en) 1993-01-08
JP2626344B2 JP2626344B2 (en) 1997-07-02

Family

ID=26537573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24612391A Expired - Fee Related JP2626344B2 (en) 1990-10-01 1991-09-25 Method for improving free-cutting ability of Ti alloy and free-cutting Ti alloy

Country Status (1)

Country Link
JP (1) JP2626344B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002181A (en) * 2004-06-15 2006-01-05 Daido Steel Co Ltd FREE-CUTTING beta-TYPE Ti ALLOY
JP2019131883A (en) * 2017-10-19 2019-08-08 ザ・ボーイング・カンパニーThe Boeing Company Titanium-based alloy and method for manufacturing titanium-based alloy component by additive manufacturing process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6719216B2 (en) 2015-03-26 2020-07-08 株式会社神戸製鋼所 α-β type titanium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002181A (en) * 2004-06-15 2006-01-05 Daido Steel Co Ltd FREE-CUTTING beta-TYPE Ti ALLOY
JP4524584B2 (en) * 2004-06-15 2010-08-18 大同特殊鋼株式会社 Free-cutting β-type Ti alloy
JP2019131883A (en) * 2017-10-19 2019-08-08 ザ・ボーイング・カンパニーThe Boeing Company Titanium-based alloy and method for manufacturing titanium-based alloy component by additive manufacturing process

Also Published As

Publication number Publication date
JP2626344B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
EP0479212B1 (en) Method for improving machinability of titanium and titanium alloys and free-cutting titanium alloys
EP2435591B1 (en) Near-beta titanium alloy for high strength applications and methods for manufacturing the same
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
EP1340825B1 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
EP2778241B1 (en) Heat-resistant nickel-based superalloy
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
JP3395443B2 (en) High creep strength titanium alloy and its manufacturing method
EP2479302B1 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
EP1736560B1 (en) High-strength alpha+beta-type titanium alloy
EP3330013A1 (en) Titanium material for hot rolling
JP2015510035A (en) Titanium alloys with improved properties
JP3308090B2 (en) Fe-based super heat-resistant alloy
EP3844314B1 (en) Creep resistant titanium alloys
KR102574153B1 (en) bar material
JP2002363674A (en) FREE CUTTING Ni BASED HEAT RESISTANT ALLOY
EP0379798A1 (en) Titanium base alloy for superplastic forming
JP2626344B2 (en) Method for improving free-cutting ability of Ti alloy and free-cutting Ti alloy
JP3625262B2 (en) Spark plug electrode material with excellent high-temperature oxidation resistance and hot workability
JP5007708B2 (en) Free-cutting aluminum alloy
JP2686140B2 (en) Alloy for high temperature bolt and method for producing the same
JP7222047B1 (en) Aluminum alloy extruded material for piping connector, manufacturing method thereof, and piping connector
JP2001329324A (en) Titanium alloy
JPH06207234A (en) Free cutting ti alloy with high rigidity
JPH06200341A (en) Free cutting ti alloy with high rigidity
JPH083668A (en) Nickel-base alloy excellent in strength and corrosion resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees