JPH05134281A - Production of nonlinear optical element - Google Patents

Production of nonlinear optical element

Info

Publication number
JPH05134281A
JPH05134281A JP32115491A JP32115491A JPH05134281A JP H05134281 A JPH05134281 A JP H05134281A JP 32115491 A JP32115491 A JP 32115491A JP 32115491 A JP32115491 A JP 32115491A JP H05134281 A JPH05134281 A JP H05134281A
Authority
JP
Japan
Prior art keywords
substrate
optical element
nonlinear optical
melt
organic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32115491A
Other languages
Japanese (ja)
Inventor
Takafumi Kuboki
尚文 久保木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP32115491A priority Critical patent/JPH05134281A/en
Publication of JPH05134281A publication Critical patent/JPH05134281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To easily produce the nonlinear optical element having periodic structures with a simple apparatus. CONSTITUTION:A substrate 11 constituted with gratings having the coherent length of an org. material having optical nonlinearity as a pitch and a flat planar substrate 12 are superposed on each other. These substrates are immersed in this state into a melt 13 of the org. material having the optical nonlinearity and is then pulled up to crystallize the org. material intruding into the spacing between the substrate 11 constituted with the gratings and the flat planar 12 substrate. The resulted nonlinear optical element can easily collimate beams in application, since the radiation pattern of the SHG light beam to be emitted is spotty. The element satisfies a phase matching conditions and generates the SHG light with the high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光情報処理分野で期待
されている高効率で波長変換が可能な非線形光学素子の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a nonlinear optical element capable of wavelength conversion with high efficiency, which is expected in the field of optical information processing.

【0002】[0002]

【従来の技術】現在、波長変換のための非線形光学素子
は、光のエネルギーを微小領域に閉じ込めることで、そ
の変換効率を上げることが行われており、チャネル型導
波路を利用した素子とファイバを利用した素子の二つの
形状が有力とされている。
2. Description of the Related Art At present, a nonlinear optical element for wavelength conversion is being improved in efficiency by confining light energy in a minute region, and an element using a channel type waveguide and a fiber are used. Two shapes of the element utilizing the are believed to be influential.

【0003】高効率で波長を変換するためには、位相整
合をとる必要がある。位相整合の取り方としては数通り
が提案されており、複屈折性の材料であれば、温度等の
コントロールを行うことにより、位相整合をとることが
可能である。しかし、温度、光の入射角を精密にコント
ロールしなければならない等の実用上大きな問題があ
る。他の位相整合の取り方として、チェレンコフ放射を
利用するもの、疑似位相整合、周期構造をもたせるもの
等の方法が検討されている。
In order to convert the wavelength with high efficiency, it is necessary to achieve phase matching. Several methods have been proposed for achieving phase matching, and a birefringent material can achieve phase matching by controlling temperature and the like. However, there are practical problems such as the need to precisely control the temperature and the incident angle of light. As other methods of phase matching, methods using Cherenkov radiation, quasi phase matching, and those having a periodic structure are being studied.

【0004】特に、現在までに、波長変換非線形光学素
子用として、単結晶コアファイバや平板状導波路素子
で、チェレンコフ放射を利用した素子は位相整合がとり
易いことからその検討が進んでいる。
In particular, for wavelength conversion nonlinear optical elements, a single crystal core fiber or a flat plate waveguide element, which uses Cherenkov radiation, can be easily phase-matched, and its investigation has been advanced.

【0005】チェレンコフ放射を利用した平板状導波路
の波長変換素子では、ニオブ酸リチウムを使用した素子
の検討が進んでおり、ニオブ酸リチウムの基板上にチタ
ニウムを拡散させ導波路を作製している。また有機低分
子材料を用いて導波路を作製するものは、クラッド層と
なるスライドガラス等を2枚張り合わせて、これを有機
材料の融液もしくは溶液中に浸漬させた後引き上げ、温
度を降下させるもしくは溶媒を揮発させることで、スラ
ブ型の薄膜導波路が作成されている。
As a wavelength conversion element for a flat waveguide using Cherenkov radiation, an element using lithium niobate is under study, and a waveguide is produced by diffusing titanium on a substrate of lithium niobate. .. In the case of producing a waveguide using an organic low molecular weight material, two glass slides or the like to be the clad layer are stuck together, immersed in a melt or solution of an organic material, and then pulled up to lower the temperature. Alternatively, a slab type thin film waveguide is created by volatilizing the solvent.

【0006】チェレンコフ放射を利用したファイバ型の
波長変換素子では、ニオブ酸リチウム等の無機酸化物単
結晶ファイバが検討されており、レーザペデスタル法や
マイクロチョクラルスキー法が用いられている。また有
機低分子材料では、その融液もしくは溶液中にキャピラ
リ管を浸漬させた後引き上げたり、温度を降下させるも
しくは溶媒を揮発させることで作製されている。
As a fiber type wavelength conversion element utilizing Cherenkov radiation, an inorganic oxide single crystal fiber such as lithium niobate has been studied, and a laser pedestal method and a micro Czochralski method are used. Further, the organic low molecular weight material is produced by immersing the capillary tube in the melt or solution and then pulling it up, lowering the temperature or volatilizing the solvent.

【0007】[0007]

【発明が解決しようとする課題】チェレンコフ放射を利
用してSHG(Second Harmonic Ge
neration、第2次高調波発生)光を発生させた
場合、位相整合条件はゆるいものであるが、出射ビーム
の状態が悪く(出射ビームは円錐型方向に出射され
る)、その応用デバイスを考える上で、大きな障害とな
っている。
SUMMARY OF THE INVENTION SHG (Second Harmonic Ge) is utilized by utilizing Cherenkov radiation.
When the light is generated, the phase matching condition is loose, but the condition of the output beam is bad (the output beam is output in the conical direction), so consider an application device thereof. Above is a big obstacle.

【0008】特に、平板導波路を利用した素子(例え
ば、特開昭63−279231号等)からのチェレンコ
フ放射のFFP(ファー・フィールド・パターン)は、
円弧状であり、レンズ等を使用しても、ビームを絞りき
ることができず、例えば、光ディスクピックアップ用の
光源に適さない。
In particular, an FFP (far field pattern) of Cherenkov radiation from an element using a flat waveguide (for example, Japanese Patent Laid-Open No. 63-279231) is
It has an arc shape, and even if a lens or the like is used, the beam cannot be narrowed down, and it is not suitable as a light source for an optical disk pickup, for example.

【0009】ファイバ型の素子(例えば、特開昭62−
231945)であっても、出射ビームのFFPはリン
グ状であり、アクシコレンズ等を使用することでビーム
を回折限界まで絞ることが可能ではあるが、光学系の調
整に困難が伴う。
A fiber type element (for example, Japanese Unexamined Patent Publication No. 62-
231945), the FFP of the outgoing beam is ring-shaped, and it is possible to narrow the beam to the diffraction limit by using an axico lens or the like, but it is difficult to adjust the optical system.

【0010】また、単結晶コアファイバを製作する場
合、円筒状の筒の中に有機化合物の単結晶を作製しなけ
ればならないことから、どうしてもファイバの長手方向
に均質である素子を製作することが困難である。
Further, when manufacturing a single crystal core fiber, since it is necessary to manufacture a single crystal of an organic compound in a cylindrical tube, it is inevitable to manufacture an element that is homogeneous in the longitudinal direction of the fiber. Have difficulty.

【0011】一方で、疑似位相整合をとる検討が酸化物
誘導体のニオブ酸リチウム結晶で行われている。疑似位
相整合の原理はArmstrongらによって1962
年に提案されているが、ミクロンオーダーでの分域反転
技術が必要なためデバイス化の検討は進んでいなかっ
た。レーザーペデスタル法を用いて単結晶ファイバが作
製されているが、分域を任意の周期に反転させるのは非
常に困難な技術である。
On the other hand, studies to obtain quasi-phase matching have been carried out with lithium niobate crystals which are oxide derivatives. The principle of quasi-phase matching is 1962 by Armstrong et al.
It was proposed in 1980, but since the domain inversion technology on the order of micron is necessary, the study of making it into a device has not progressed. Although a single crystal fiber is produced by using the laser pedestal method, it is a very difficult technique to invert the domain into an arbitrary period.

【0012】高効率でSHG光を発生させるためには位
相整合をとることが必須条件であり、高効率で変換する
ことが可能な他の位相整合方法が期待されている。本発
明は、位相整合が取れて、高効率で波長変換できる素子
の製造方法を提供することを目的とする。
In order to generate SHG light with high efficiency, phase matching is an essential condition, and another phase matching method capable of high efficiency conversion is expected. It is an object of the present invention to provide a method for manufacturing an element that is phase-matched and that can perform wavelength conversion with high efficiency.

【0013】[0013]

【課題を解決するための手段】本発明は、光学的非線形
性を有する有機材料のコヒーレンス長をピッチとするグ
レーティングが構成されている基板と、平板状の基板を
重ね合わせた状態で、光学的非線形性を有する有機材料
の融液中に浸漬した後引き上げ、該グレーティングが構
成されている基板と該平板状の基板の間に入り込んだ有
機材料を結晶化させることを特徴とする非線形光学素子
の製造方法を提供する。
According to the present invention, a substrate in which a grating having a pitch of a coherence length of an organic material having optical nonlinearity is formed and a plate-shaped substrate are superposed on each other, A non-linear optical element characterized by immersing in a melt of an organic material having nonlinearity and then pulling up to crystallize the organic material that has entered between the substrate on which the grating is formed and the flat substrate. A manufacturing method is provided.

【0014】図1に本発明の非線形光学素子の製造方法
を説明するための図を示す。光学的非線形性を有する有
機材料のコヒーレンス長をピッチとするグレーティング
が構成されている基板11と、平板状の基板12を重ね
合わせ、そしてMNA等に代表される光学的非線形性を
有する有機材料の融液13中に浸漬する。すると重ね合
わせた基板の隙間に、毛細管現象で融液が進入し、重ね
合わせた基板の隙間は融液で満たされる。
FIG. 1 is a diagram for explaining a method of manufacturing a nonlinear optical element according to the present invention. A substrate 11 on which a grating having a pitch of coherence length of an organic material having optical nonlinearity is formed and a flat substrate 12 are overlapped, and an organic material having optical nonlinearity represented by MNA or the like is used. Immerse in the melt 13. Then, the melt enters into the gap between the superposed substrates by a capillary phenomenon, and the gap between the superposed substrates is filled with the melt.

【0015】一方、融液上空には、適度な温度勾配が付
けられており、光学的非線形性を有する有機材料のコヒ
ーレンス長をピッチとするグレーティングが構成されて
いる基板11と、平板状の基板12を重ね合わせた状態
で徐々に光学的非線形性を有する有機材料の融液13か
ら引き上げることで、重ね合わせた基板の隙間に入り込
んだ有機材料が冷やされた部分から結晶化して行く。
On the other hand, an appropriate temperature gradient is provided above the melt, and a substrate 11 having a grating having a pitch of the coherence length of an organic material having optical nonlinearity and a plate-shaped substrate are provided. By gradually pulling 12 from the melt 13 of the organic material having optical nonlinearity in a state of being superposed, the organic material entering the gap of the superposed substrates is crystallized from the cooled portion.

【0016】このようにして、コヒーレンス長と同一ピ
ッチの周期構造を有する非線形光学素子が作製できる。
In this way, a nonlinear optical element having a periodic structure with the same pitch as the coherence length can be manufactured.

【0017】また、引き上げ方向とグレーティングの切
ってある方向の組み合わせで、素子の結晶の方向を制御
・選択できる。
Further, the crystal direction of the device can be controlled and selected by a combination of the pulling direction and the direction in which the grating is cut.

【0018】[0018]

【実施例】光学的非線形性を有する有機材料としてMB
A−NP(2ニトロベンジルアミノ,5ニトロピリジ
ン)を使用した。MBA−NPの最大の2次非線形光学
定数はd22であり、コーヒレンス長は、約2μmであ
る。
EXAMPLES MB as an organic material having optical nonlinearity
A-NP (2nitrobenzylamino, 5nitropyridine) was used. The maximum second-order nonlinear optical constant of MBA-NP is d 22 , and the coherence length is about 2 μm.

【0019】ピッチが2μmのグレーティングを構成し
たガラス基板と、平板状のガラス基板を重ねあわせた状
態で、MBA−NP融液(温度82.5±0.1℃)
に、浸漬した。MBA−NP融液の表面上から上方にか
けての温度勾配−0.5deg/cmとされた融液上空
に、浸漬したガラス基板を引き上げ速度1mm/hrs
で引き上げ、厚さ約0.2μm、引き上げ方向の長さ約
10mmの薄膜状のMBA−NPの単結晶を得た。
MBA-NP melt (temperature: 82.5 ± 0.1 ° C.) in a state where a glass substrate having a grating with a pitch of 2 μm and a flat glass substrate are stacked.
It was dipped in. The glass substrate immersed in the MBA-NP melt above the melt having a temperature gradient of −0.5 deg / cm from the surface to the top is pulled up at a speed of 1 mm / hrs.
The thin film MBA-NP single crystal having a thickness of about 0.2 μm and a length in the pulling direction of about 10 mm was obtained.

【0020】図2のようにプリズム26を介してNd:
YAGレーザー光(波長λ=1.064μm)24を、
グレーティングを構成したガラス基板21と、平板状の
ガラス基板間22の非線形有機材料単結晶23に入射
し、プリズム27からSHG光(波長λ=0.532)
25を取り出した。このようにして入射光1Wに対して
SHG光約90nWが得られた。
As shown in FIG. 2, Nd:
YAG laser light (wavelength λ = 1.064 μm) 24,
The SHG light (wavelength λ = 0.532) is incident on the glass substrate 21 forming the grating and the non-linear organic material single crystal 23 between the flat glass substrates 22 and from the prism 27.
25 was taken out. In this way, about 90 nW of SHG light was obtained for 1 W of incident light.

【0021】[0021]

【本発明の効果】本発明の製造方法によれば、周期構造
を有する非線形光学素子を単純な装置で簡単に製造する
ことができる。また本発明の製造方法で得られる非線形
光学素子は、出射されるSHG光ビームの放射パターン
がスポット状であるため応用上ビームのコリメートを容
易に行うことができ、位相整合条件を満たしSHG光を
高効率で発生させることができる。
According to the manufacturing method of the present invention, a nonlinear optical element having a periodic structure can be easily manufactured with a simple apparatus. Further, the nonlinear optical element obtained by the manufacturing method of the present invention can easily collimate the beam because the emission pattern of the emitted SHG light beam is spot-like, and satisfies the phase matching condition to meet the SHG light. It can be generated with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非線形光学素子の製造方法を説明する
ための図である。
FIG. 1 is a drawing for explaining the manufacturing method of the nonlinear optical element of the present invention.

【図2】波長変換素子の構成図である。FIG. 2 is a configuration diagram of a wavelength conversion element.

【符号の説明】[Explanation of symbols]

11 グレーティングが構成されている基板 12 平板状の基板 13 光学的非線形性を有する有機材料の融液 21 グレーティングが構成されている基板 22 平板状の基板 23 光学的非線形性を有する有機材料の単結晶 24 レーザー光 25 SHG光 26 プリズム 27 プリズム 11 Substrate Constituting Grating 12 Flat Plate Substrate 13 Melt of Organic Material Having Optical Nonlinearity 21 Substrate Comprising Grating 22 Flat Plate Substrate 23 Single Crystal of Organic Material Having Optical Nonlinearity 24 Laser light 25 SHG light 26 Prism 27 Prism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光学的非線形性を有する有機材料のコヒ
ーレンス長をピッチとするグレーティングが構成されて
いる基板と平板状の基板を重ね合わせた状態で光学的非
線形性を有する有機材料の融液中に浸漬した後引き上
げ、該グレーティングが構成されている基板と該平板状
の基板の間に入り込んだ有機材料を結晶化することを特
徴とする非線形光学素子の製造方法。
1. A melt of an organic material having optical non-linearity in a state in which a substrate having a grating having a pitch of coherence length of the organic material having optical non-linearity and a flat substrate are superposed on each other. A method for manufacturing a non-linear optical element, which comprises immersing the substrate in the substrate and then pulling it up to crystallize the organic material that has entered between the substrate on which the grating is formed and the plate-shaped substrate.
JP32115491A 1991-11-08 1991-11-08 Production of nonlinear optical element Pending JPH05134281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32115491A JPH05134281A (en) 1991-11-08 1991-11-08 Production of nonlinear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32115491A JPH05134281A (en) 1991-11-08 1991-11-08 Production of nonlinear optical element

Publications (1)

Publication Number Publication Date
JPH05134281A true JPH05134281A (en) 1993-05-28

Family

ID=18129410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32115491A Pending JPH05134281A (en) 1991-11-08 1991-11-08 Production of nonlinear optical element

Country Status (1)

Country Link
JP (1) JPH05134281A (en)

Similar Documents

Publication Publication Date Title
JP3432993B2 (en) Manufacturing method of optical waveguide device
JPH10503602A (en) Fabrication of patterned polarized dielectric structures and devices
CN113196163B (en) Method for manufacturing patterned SrB4BO7 and PbB4O7 crystals
US5247601A (en) Arrangement for producing large second-order optical nonlinearities in a waveguide structure including amorphous SiO2
US20040207903A1 (en) Electric field poling of ferroelectric materials
JP6228509B2 (en) Method for manufacturing wavelength conversion element
JPH05134281A (en) Production of nonlinear optical element
JP2640452B2 (en) Optical wavelength conversion element
JP2972375B2 (en) Wavelength conversion by quasi-phase matching and production and use of optical articles therefor
JPH03113428A (en) Optical wavelength converting element and production thereof
JP2967598B2 (en) Wavelength conversion element and manufacturing method
RU2811419C2 (en) Nonlinear optical element with quasicontinuous circuit and method of its manufacture
JPH01172936A (en) Manufacture of optical wavelength converting element
WO2024100865A1 (en) Optical waveguide element and method for manufacturing same
JPH0820657B2 (en) Optical wavelength conversion element
JP2002287191A (en) Method for generating polarization reversal structure by femtosecond laser irradiation
JP7127472B2 (en) Manufacturing method of wavelength conversion element
JPH05333392A (en) Wavelength conversion element and its production
EP1433022A2 (en) Non-linear optical stacks
JPH06281982A (en) Laser beam generation device
JPS6377035A (en) Nonlinear second order higher harmonic element and its production
JP2666540B2 (en) Waveguide type wavelength conversion element
JPH06180462A (en) Optical wavelength conversion element and production
JPS6315233A (en) Production of optical wavelength converting element
JPH09211512A (en) Second order nonlinear optical element