JPH0513389B2 - - Google Patents

Info

Publication number
JPH0513389B2
JPH0513389B2 JP60284581A JP28458185A JPH0513389B2 JP H0513389 B2 JPH0513389 B2 JP H0513389B2 JP 60284581 A JP60284581 A JP 60284581A JP 28458185 A JP28458185 A JP 28458185A JP H0513389 B2 JPH0513389 B2 JP H0513389B2
Authority
JP
Japan
Prior art keywords
solar cell
plating
amorphous silicon
silicon solar
cell substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60284581A
Other languages
Japanese (ja)
Other versions
JPS62143482A (en
Inventor
Yasusuke Irie
Masayoshi Tadano
Kaname Yamamoto
Eiji Watanabe
Juji Tomizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP60284581A priority Critical patent/JPS62143482A/en
Publication of JPS62143482A publication Critical patent/JPS62143482A/en
Publication of JPH0513389B2 publication Critical patent/JPH0513389B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は表面に微細な凹凸をNiめつきにより
均一に形成して、その表面にアモルフアスシリコ
ン(以下a−Siと略記する)を蒸着したときa−
Si層が凹凸になつて、入射光を表面で多重反射し
てエネルギー変換率を向上させるようにしたa−
Si太陽電池基板の製造法に関する。 (従来技術) 従来よりa−Si太陽電池基板にはガラス製の基
板とステンレス鋼板製の基板とが使用されている
が、基板は表面に1μm以内の薄いa−Si層を蒸着
により均一かつ連続的に形成できなければならな
いので、いずれも製造の際表面が極めて平滑にな
るようにしている。例えばステンレス鋼板の場合
は仕上げに電解研摩やバフ研摩を施し鏡面仕上げ
にしている。 しかし表面をこのように平滑にすると、蒸着に
より表面にa−Si層を形成しても、a−Si層表面
も平滑になるため、入射光はその表面で1次反射
しただけで、そのまま外部に反射されていつてし
まう。このため入射光を有効に活用できず、エネ
ルギー変換効率を向上させることができないもの
であつた。 (発明が解決しようとする問題点) そこで本発明者らはステンレス鋼板製基板のエ
ネルギー変換効率を向上させる方法について種々
検討した結果、ステンレス鋼板表面に薄いa−Si
層を均一かつ連続的に蒸着することができる程度
の凹凸を形成すれば、a−Siを蒸着した場合a−
Si層表面も凹凸になり、入射光がa−Si層表面で
多重反射するので、有効に利用できることを見出
したのである。 しかしステンレス鋼板表面に凹凸を形成するの
に従来一般的に行なわれている電解エツチング法
や機械研摩法を適用したのでは微細な凹凸を均一
に形成することができず、薄いa−Si層を均一か
つ連続的に蒸着することが困難であることが判明
した。例えば電解エツチング法によると、鋼中に
介在物が存在する場合、介在物が優先的に溶解さ
れたり、脱落したりして、無数の不定形ピツトが
形成されるため、凹凸を均一にすることができ
ず、かつ炭化物のスマツトも付着して、表面が汚
れてしまう。また機械研摩法によると、凹凸が研
摩剤粒度の混合割合や研摩圧力により変化してし
まうため、凹凸を均一にすることができず、しか
も小さい粒度の研摩剤を使用するにも限界がある
ため、あまり微細にすることができない。このた
めa−Si層を形成しても従来の表面が平滑なもの
よりエネルギー変換効率が低下するばかりでな
く、変動も大きいものであつた。 このため本発明者らは目的の凹凸を形成できる
方法について検討した結果、ステンレス鋼板とし
て表面が平滑なものを用いて、その表面に電気め
つきを施す方法の適用を試みたのである。すなわ
ちステンレス鋼板の表面にめつき層表面が粗くな
るめつきを施せば、鋼板表面に微細な凹凸が均一
に形成されるのではないかと推定したのである。
本発明者らはかかる推定のもとに種々の金属をス
テンレス鋼板に電気めつきして検討した結果、無
光沢Niめつきを施せば、ほぼ目的とする凹凸を
形成できることが判明した。 添付図面はステンレス鋼板表面にNiめつきを
施した基板にa−Si層を形成したものの断面図を
示したもので、1がステンレス鋼板、2がこのス
テンレス鋼板1の表面に電気めつきしたNiめつ
き層で、表面が凹凸になつている。このように凹
凸が形成されたNiめつき層2の表面にa−Siを
蒸着すると、a−Si層3がその凹凸に沿つて形成
される。従つて入射光はa−Si層3の表面で多重
反射し、エネルギー変換効率は向上する。 しかしかかるNiめつきを従来の公知Niめつき
浴で電気めつきしたのでは電析粒の大きさがやや
不揃いになり、従来の基板よりエネルギー変換効
率は向上するが、その向上は約18%が限界であつ
た。 (発明が解決しようとする問題点) 本発明はこのように従来のNiめつき浴でステ
ンレス鋼板に電気Niめつきを施して表面に凹凸
を形成したのでは太陽電池にした場合エネルギー
変換効率に限界があつたので、電析粒の大きさが
揃つて凹凸が均一微細になる電気Niめつき方法
によりエネルギー変換効率が18%以上になるa−
Si太陽電池基板の製造法を提供するものである。 (問題点を解決するための手段) 本発明者らは電析粒の大きさが揃つて凹凸が均
一微細になる電気Niめつき方法について種々検
討した結果、従来の公知Niめつき浴にFe2+
Ca2+、Mg2+、Al3+、Cr3+、Mn6+、Co2+、Mo6+
のうちの1種または2種以上を少量添加すればよ
いことを見出したのである。本発明はかかる知見
に基づいてステンレス鋼板にNiめつきを施して
表面粗さを形成した基板を製造する際、ステンレ
ス鋼板をFe2+、Ca2+、Mg2+、Al3+、Cr3+
Mn6+、Co2+、Mo6+の内の1種または2種以上を
添加したNiめつき浴で電気めつきしてエネルギ
ー変換効率が18%以上の基板製造を可能にしたの
である。 ここで少量とは具体的に述べれば、Fe2+=0.05
〜5g/、Ca2+=0.05〜1g/、Mg2+=0.5
〜20g/、Al3+=0.5〜20g/、Cr3+=0.1〜
3g/、Mn6+=0.05〜3g/、Co2+=0.5〜
10g/、Mo6+=0.05〜2g/の範囲である。
添加量がこれらの範囲の下限未満であると電析粒
を揃える効果が少なく、上限を越えると添加効果
が上限でほぼ飽和してしまうため、添加が無意味
となる。 上記のようなイオンを添加したNiめつき浴で
ステンレス鋼板に電気めつきを施す場合、電析粒
の大きさはめつき付着量の影響を受け、めつき付
着量が少ないと電析粒は小さくなり、めつき付着
量が多い程大きくなる。一方基板は電析粒の大き
さを0.01〜1.5μmの範囲に、また表面粗さを
Rmaxで0.01〜0.6μmの範囲にするのが好ましい。
これは電析粒および表面粗さが上記下限未満であ
ると凹凸によるエネルギー変換効率向上が認めら
れず、上限を越えるとa−Siを蒸着した場合にa
−Si層が均一かつ連続して形成されないためと思
われるが、エネルギー変換効率は表面が滑らかな
従来の基板よりむしろ低下するからである。そこ
で電析粒および表面粗さを上記の範囲にするめつ
き付着量の範囲を求めてみると、片面当り4〜50
g/m2にするればよいことが判明した。 本発明によれば基板めつき層の電析粒の大きさ
や表面粗さは従来の基板に比べると大幅に改善さ
れていて、めつき付着量が一定であれば、どの部
位でも変化しない。 ところで電析粒は上記のようにめつき付着量の
増加に伴つて大きくなるが、これはNiめつきを
パルス電解により行えば、通常の整流電解により
行つた場合の大きさの約1/2〜1/5にすることがで
きる。この場合大きさも揃うので、表面粗さの凹
凸も均一微細になり、高さも低くなる。 このパルス電解は周期1〜10-2秒、デユーテイ
サイクル0.02〜0.5の条件で行うのが好ましい。
これは周期およびデユーテイサイクルがそれぞれ
10-2秒および0.02より短い領域で電気めつきすれ
ば、電析粒をさらに小さくすることができるが、
パルス電流をこのような領域にするには高価なパ
ルス電源を使用しなければならず、表面粗さを確
保するうえであまり小さくするのは問題があり、
一方周期およびデユーテイサイクルが1秒および
0.05より長い領域で電気めつきすると電析粒の微
細化効果が認められないからである。 本発明はステンレス鋼板であれば、鋼種に関係
なく適用できるものであり、また本発明により製
造した基板がa−Si蒸着までの保管中にめつき層
が酸化されるようであれば、後処理を追加するこ
とも可能である。この場合の後処理としては、
Crめつきを電気めつきにより片面当り0.07〜4.0
g/m2施すのが好ましい。 以下実施例により本発明を説明する。 (実施例) ブライト仕上げのSUS430ステンレス鋼板
(0.2t×100W×100Lmm)に通常のNiめつき前処
理(脱脂→酸洗→電解還元→Niストライクめつ
き)を施した後、組成が硫酸ニツケル240g/、
塩化ニツケル45g/、ホウ酸30g/であるワ
ツト浴に第1表に示すようなイオンを添加して、
Niめつきを施し、その後超音波湯水洗した。水
洗後は試料を十分乾燥した後、第2表に示す条件
でプラズマCVD法によりa−Si層を形成し、エ
ネルギー変換効率を測定した。なおエネルギー変
換効率の測定は予めa−Si層上に透明電導性膜
(1000Å程度)を被覆したものを被測定用サンプ
ルに用い、入射エネルギーが100mw/cm2の光源
にて入射光をA.M.1.5にして行つた。第3表にめ
つき層表面の形態とともにエネルギー変換効率を
示す。なお第1表の比較例1はNiめつきを施さ
ない従来の表面が平滑なステンレス鋼板製基板で
ある。 第3表に示すごとく、本発明により製造した基
板はFe2+、Ca2+、Mg2+などのイオンを添加しな
いNiめつき浴を使用して製造したもののエネル
ギー変換効率上限である18%より向上する。
(Industrial Application Field) The present invention is characterized in that when fine irregularities are uniformly formed on the surface by Ni plating and amorphous silicon (hereinafter abbreviated as a-Si) is deposited on the surface, a-
A-
This article relates to a method for manufacturing a Si solar cell substrate. (Prior art) Conventionally, glass substrates and stainless steel plate substrates have been used for a-Si solar cell substrates, but the substrate has a uniform and continuous a-Si layer deposited on the surface with a thickness of less than 1 μm by vapor deposition. Because they must be able to be formed precisely, the surfaces are made to be extremely smooth during manufacture. For example, stainless steel plates are finished with electrolytic polishing or buffing to give them a mirror finish. However, when the surface is made smooth in this way, even if an a-Si layer is formed on the surface by vapor deposition, the surface of the a-Si layer is also smooth, so the incident light only undergoes a primary reflection on the surface and is directly transmitted to the outside. It's reflected on me and makes me laugh. For this reason, incident light could not be used effectively, and energy conversion efficiency could not be improved. (Problems to be Solved by the Invention) Therefore, the present inventors investigated various methods for improving the energy conversion efficiency of a stainless steel plate substrate, and found that a thin a-Si
If the unevenness is formed to the extent that a layer can be deposited uniformly and continuously, when a-Si is deposited, a-
They found that the surface of the Si layer is also uneven, and the incident light undergoes multiple reflections on the surface of the a-Si layer, which can be used effectively. However, when conventional electrolytic etching and mechanical polishing methods, which have been commonly used to form irregularities on the surface of stainless steel sheets, are used, it is not possible to uniformly form fine irregularities, and a thin a-Si layer cannot be formed. It has been found that it is difficult to deposit uniformly and continuously. For example, according to the electrolytic etching method, if inclusions exist in steel, the inclusions are preferentially dissolved or fallen off, forming countless irregularly shaped pits, so it is difficult to make unevenness uniform. Not only that, but carbide smut also adheres to the surface, making it dirty. Furthermore, according to the mechanical polishing method, the unevenness changes depending on the mixing ratio of the abrasive particle size and the polishing pressure, so it is not possible to make the unevenness uniform, and there is a limit to the use of abrasives with small particle sizes. , cannot be made very fine. For this reason, even if an a-Si layer is formed, the energy conversion efficiency is not only lower than that of a conventional structure with a smooth surface, but also has large fluctuations. For this reason, the inventors of the present invention investigated methods for forming the desired unevenness and, as a result, attempted to apply a method in which a stainless steel plate with a smooth surface was used and the surface was electroplated. In other words, they surmised that if the surface of a stainless steel sheet is plated so that the surface of the plating layer becomes rough, fine irregularities will be uniformly formed on the surface of the steel sheet.
Based on this assumption, the present inventors electroplated stainless steel plates with various metals and studied the results. As a result, it was found that by applying matte Ni plating, almost the desired unevenness could be formed. The attached drawings are cross-sectional views of a substrate in which an a-Si layer is formed on a substrate with Ni plating on the surface of a stainless steel plate. 1 is a stainless steel plate, and 2 is a Ni plated plate on the surface of this stainless steel plate 1. The plated layer has an uneven surface. When a-Si is vapor-deposited on the surface of the Ni plating layer 2 with the unevenness formed in this way, the a-Si layer 3 is formed along the unevenness. Therefore, the incident light undergoes multiple reflections on the surface of the a-Si layer 3, improving energy conversion efficiency. However, when such Ni plating is electroplated using a conventional known Ni plating bath, the size of the deposited grains becomes slightly uneven, and although the energy conversion efficiency is improved compared to the conventional substrate, the improvement is only about 18%. was the limit. (Problems to be Solved by the Invention) The present invention proposes that electrical Ni plating is applied to a stainless steel plate in a conventional Ni plating bath to form irregularities on the surface, but when used as a solar cell, energy conversion efficiency is reduced. Since we have reached the limit, we have developed an electric nickel plating method that makes the size of the deposited grains uniform and the irregularities uniform and fine, resulting in energy conversion efficiency of over 18%.
The present invention provides a method for manufacturing a Si solar cell substrate. (Means for Solving the Problems) The present inventors have investigated various methods for electrolytic Ni plating in which the size of the deposited grains is uniform and the irregularities are uniform and fine. 2+ ,
Ca 2+ , Mg 2+ , Al 3+ , Cr 3+ , Mn 6+ , Co 2+ , Mo 6+
They discovered that it is sufficient to add a small amount of one or more of them. Based on this knowledge, the present invention provides a method for manufacturing a substrate in which surface roughness is formed by applying Ni plating to a stainless steel plate . + ,
By electroplating in a Ni plating bath containing one or more of Mn 6+ , Co 2+ , and Mo 6+ , it became possible to manufacture a substrate with an energy conversion efficiency of 18% or more. Specifically speaking, a small amount is Fe 2+ = 0.05
~5g/, Ca 2+ =0.05~1g/, Mg2 + =0.5
~20g/, Al 3+ =0.5~20g/, Cr3 + =0.1~
3g/, Mn 6+ =0.05~3g/, Co2 + =0.5~
10 g/, Mo 6+ = 0.05 to 2 g/.
If the amount added is less than the lower limit of these ranges, the effect of aligning the deposited particles will be small, and if it exceeds the upper limit, the addition effect will be almost saturated at the upper limit, making the addition meaningless. When electroplating stainless steel sheets using a Ni plating bath containing ions as described above, the size of the deposited particles is affected by the amount of plating deposited, and if the amount of plating deposited is small, the deposited particles will be small. The larger the amount of plating, the larger it becomes. On the other hand, for the substrate, the size of the deposited particles should be set in the range of 0.01 to 1.5 μm, and the surface roughness should be adjusted.
It is preferable that Rmax is in the range of 0.01 to 0.6 μm.
This is because if the deposited grains and surface roughness are less than the lower limit above, no improvement in energy conversion efficiency due to unevenness will be observed, and if the upper limit is exceeded, when a-Si is deposited,
This is probably because the -Si layer is not formed uniformly and continuously, but the energy conversion efficiency is rather lower than that of a conventional substrate with a smooth surface. Therefore, when we tried to find the range of plating amount that would make the electrodeposited particles and surface roughness within the above range, we found that it was 4 to 50 plating per side.
It was found that it is sufficient to set the amount to g/m 2 . According to the present invention, the size and surface roughness of the deposited particles in the substrate plating layer are significantly improved compared to conventional substrates, and do not change in any part as long as the amount of plating is constant. By the way, as mentioned above, the size of the deposited particles increases as the amount of plating increases, but if Ni plating is performed by pulse electrolysis, the size is approximately 1/2 of the size when Ni plating is performed by normal rectification electrolysis. It can be reduced to ~1/5. In this case, since the sizes are uniform, the unevenness of the surface roughness becomes uniform and fine, and the height is also reduced. This pulse electrolysis is preferably carried out under conditions of a period of 1 to 10 -2 seconds and a duty cycle of 0.02 to 0.5.
This means that the period and duty cycle are
If electroplating is performed in a region shorter than 10 -2 seconds and 0.02 seconds, the deposited grains can be made even smaller.
In order to make the pulse current in this range, an expensive pulse power source must be used, and it is problematic to make the pulse current too small in order to ensure surface roughness.
On the other hand, the period and duty cycle are 1 second and
This is because if electroplating is performed in a region longer than 0.05, no effect of refining the deposited grains will be observed. The present invention can be applied to any stainless steel sheet regardless of the steel type, and if the plating layer of the substrate manufactured according to the present invention is oxidized during storage before a-Si deposition, post-treatment may be necessary. It is also possible to add In this case, post-processing is as follows:
Cr plating is 0.07 to 4.0 per side by electroplating.
g/m 2 is preferred. The present invention will be explained below with reference to Examples. (Example) A bright finish SUS430 stainless steel plate (0.2t x 100W x 100Lmm) was subjected to normal Ni plating pretreatment (degreasing → pickling → electrolytic reduction → Ni strike plating), and the composition was 240g of nickel sulfate. /,
Adding ions as shown in Table 1 to a Watts bath containing 45 g of nickel chloride and 30 g of boric acid,
Ni plating was applied and then ultrasonic hot water washing was performed. After washing with water, the samples were sufficiently dried, and then an a-Si layer was formed by plasma CVD under the conditions shown in Table 2, and the energy conversion efficiency was measured. In the measurement of energy conversion efficiency, a transparent conductive film (approximately 1000 Å) coated on the a-Si layer was used as the sample to be measured, and the incident light was AM1. I went with a 5. Table 3 shows the morphology of the surface of the plating layer and the energy conversion efficiency. Note that Comparative Example 1 in Table 1 is a conventional substrate made of a stainless steel plate with a smooth surface and without Ni plating. As shown in Table 3 , the energy conversion efficiency of the substrate manufactured according to the present invention is 18%, which is the upper limit of the energy conversion efficiency of the substrate manufactured using a Ni plating bath that does not contain ions such as Fe 2+ , Ca 2+ , Mg 2+ , etc. Improve more.

【表】【table】

【表】 (注) 整流波形の列の○印は使用した波形である。
[Table] (Note) The circle in the rectified waveform column is the waveform used.

【表】【table】

【表】【table】

【表】 (注) 電析粒の大きさおよび表面粗さで
測定困難なものは電析粒が極めて
小さいためである。
(効果) 以上のごとく、本発明の方法によりステンレス
製a−Si太陽電池基板を製造すればNiめつき層
が微細均一になるので、太陽電池にした場合エネ
ルギー変換効率を従来のものより18%以上向上さ
せることができる。
[Table] (Note) If it is difficult to measure the size and surface roughness of the deposited particles, the deposited particles may be extremely large.
This is because it is small.
(Effects) As described above, if a stainless steel a-Si solar cell substrate is manufactured by the method of the present invention, the Ni plating layer will be fine and uniform, so when used as a solar cell, the energy conversion efficiency will be 18% higher than that of the conventional method. This can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明により製造する基板にa−Si
層を形成したものの断面図である。 1……ステンレス鋼板、2……Niめつき層、
3……a−Si層。
The attached drawings show a-Si substrates manufactured according to the present invention.
FIG. 3 is a cross-sectional view of a layered structure. 1...Stainless steel plate, 2...Ni plating layer,
3...a-Si layer.

Claims (1)

【特許請求の範囲】 1 ステンレス鋼板にNiめつきを施して表面粗
さを形成した基板を製造する際、ステンレス鋼板
をFe2+、Ca2+、Mg2+、Al3+、Cr3+、Mn6+
Co2+、Mo6+の内の1種または2種以上を添加し
たNiめつき浴で電気めつきして製造することを
特徴とするアモルフアスシリコン太陽電池基板の
製造法。 2 Fe2+の添加を0.05〜5g/の範囲にするこ
とを特徴とする特許請求の範囲第1項に記載のア
モルフアスシリコン太陽電池基板の製造法。 3 Ca2+の添加を0.05〜1g/の範囲にするこ
とを特徴とする特許請求の範囲第1項に記載のア
モルフアスシリコン太陽電池基板の製造法。 4 Mg2+の添加を0.5〜20g/の範囲にするこ
とを特徴とする特許請求の範囲第1項に記載のア
モルフアスシリコン太陽電池基板の製造法。 5 Al3+の添加を0.5〜20g/の範囲にするこ
とを特徴とする特許請求の範囲第1項に記載のア
モルフアスシリコン太陽電池基板の製造法。 6 Cr3+の添加を0.1〜3g/の範囲にするこ
とを特徴とする特許請求の範囲第1項に記載のア
モルフアスシリコン太陽電池基板。 7 Mn6+の添加を0.05〜3g/の範囲にする
ことを特徴とする特許請求の範囲第1項に記載の
アモルフアスシリコン太陽電池基板の製造法。 8 Co2+の添加を0.5〜10g/の範囲にするこ
とを特徴とする特許請求の範囲第1項に記載のア
モルフアスシリコン太陽電池基板の製造法。 9 Mo6+の添加を0.05〜2g/の範囲にする
ことを特徴とする特許請求の範囲第1項に記載の
アモルフアスシリコン太陽電池基板の製造法。 10 Niめつきをパルス電解にて周期1〜10-2
秒、デユーテイサイクル0.02〜0.5の条件で行う
ことを特徴とする特許請求の範囲第1〜9項に記
載のいずれかのアモルフアスシリコン太陽電池基
板の製造法。 11 片面当り4〜50g/m2のNiめつきを施し、
めつき層表面のNi電析粒の大きさを0.01〜1.5μm
の範囲に、また表面粗さをRmaxで0.01〜0.6μm
の範囲にすることを特徴とする特許請求の範囲第
1〜10項に記載のいずれかのアモルフアスシリ
コン太陽電池基板の製造法。
[Claims] 1. When manufacturing a substrate with surface roughness formed by applying Ni plating to a stainless steel plate, the stainless steel plate is treated with Fe 2+ , Ca 2+ , Mg 2+ , Al 3+ , Cr 3+ , Mn 6+ ,
1. A method for producing an amorphous silicon solar cell substrate, comprising electroplating in a Ni plating bath containing one or more of Co 2+ and Mo 6+ . 2. The method for manufacturing an amorphous silicon solar cell substrate according to claim 1, characterized in that the amount of Fe 2+ added is in the range of 0.05 to 5 g/. 3. The method for producing an amorphous silicon solar cell substrate according to claim 1, characterized in that the amount of Ca 2+ added is in the range of 0.05 to 1 g/. 4. The method for manufacturing an amorphous silicon solar cell substrate according to claim 1, characterized in that the amount of Mg 2+ is added in a range of 0.5 to 20 g/. 5. The method for manufacturing an amorphous silicon solar cell substrate according to claim 1, characterized in that the amount of Al 3+ is added in a range of 0.5 to 20 g/. 6. The amorphous silicon solar cell substrate according to claim 1, wherein the amount of Cr 3+ added is in the range of 0.1 to 3 g/. 7. The method for producing an amorphous silicon solar cell substrate according to claim 1, characterized in that the amount of Mn 6+ is added in a range of 0.05 to 3 g/. 8. The method for manufacturing an amorphous silicon solar cell substrate according to claim 1, characterized in that the amount of Co 2+ is added in a range of 0.5 to 10 g/. 9. The method for manufacturing an amorphous silicon solar cell substrate according to claim 1, characterized in that the amount of Mo 6+ is added in a range of 0.05 to 2 g/. 10 Ni plating with pulse electrolysis at cycles of 1 to 10 -2
10. The method for manufacturing an amorphous silicon solar cell substrate according to any one of claims 1 to 9, characterized in that the manufacturing method is carried out under conditions of 0.02 to 0.5 seconds and a duty cycle of 0.02 to 0.5. 11 Apply Ni plating of 4 to 50 g/m 2 per side,
The size of Ni deposited particles on the surface of the plating layer is 0.01 to 1.5 μm.
and surface roughness Rmax of 0.01 to 0.6 μm.
11. The method for manufacturing an amorphous silicon solar cell substrate according to any one of claims 1 to 10, wherein
JP60284581A 1985-12-18 1985-12-18 Manufacture of amorphous silicon solar cell substrate Granted JPS62143482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60284581A JPS62143482A (en) 1985-12-18 1985-12-18 Manufacture of amorphous silicon solar cell substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60284581A JPS62143482A (en) 1985-12-18 1985-12-18 Manufacture of amorphous silicon solar cell substrate

Publications (2)

Publication Number Publication Date
JPS62143482A JPS62143482A (en) 1987-06-26
JPH0513389B2 true JPH0513389B2 (en) 1993-02-22

Family

ID=17680310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60284581A Granted JPS62143482A (en) 1985-12-18 1985-12-18 Manufacture of amorphous silicon solar cell substrate

Country Status (1)

Country Link
JP (1) JPS62143482A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952660B2 (en) * 1996-09-05 1999-09-27 日新製鋼株式会社 Method of manufacturing stainless steel for solar cell substrate, substrate for solar cell, solar cell, and method of manufacturing solar cell

Also Published As

Publication number Publication date
JPS62143482A (en) 1987-06-26

Similar Documents

Publication Publication Date Title
CN100577889C (en) A kind of thin belt continuous casting crystal roller surface electroplating method and electroplate liquid thereof
JPS6289369A (en) Photovoltaic device
CN101629313A (en) Double-pulse plating silver solution and technique thereof
JPS63186894A (en) Chrome plated steel sheet for welded can and its production
CN103540975B (en) A kind of method at copper electroplating surface metal manganese
JPH0513389B2 (en)
JPH06507678A (en) Processing of A1 sheet
CN100359048C (en) Conductor roll restoring method
JPH0564870B2 (en)
JPH02232395A (en) Production of resin coated rustproof steel sheet having superior suitability to coating by electrodeposition
Basirun et al. Studies of platinum electroplating baths Part VI: Influence of some experimental parameters on deposit quality
KR100528638B1 (en) Plating Process of Nickel on Magnesium Alloy
CN113215636B (en) Surface treatment method for pickled plate
JPS63150975A (en) Manufacture of amorphous silicon solar cell substrate
JP3222329B2 (en) Manufacturing method of stainless steel sheet for painting
Vairamuthu et al. Effect of α-picoline and quinoline on dc and pulse plating of nickel directly on aluminium
JPS6169998A (en) Manufacture of galvanized steel sheet forming hardly star mark during press working
Takaloo et al. A mechanism of nickel deposition on titanium substrate by high speed electroplating
CN104831337B (en) A kind of improved electro-deposition nano-composite plate of Zr particles and preparation method thereof
Cetin et al. Nickel and Gold Coatings of Germanium and Kovar Substrates
JPH10237672A (en) Diamond-coated steel material and its production
Mohan et al. Electrodeposition of nanocrystalline nickel
Nanis Sputter seeded nucleation of smooth electroless nickel growth
TWI254324B (en) Manufacturing method of metal conductive electrode of thermistor
CN104630850A (en) Co element modified electrodeposition nano composite coating and preparation method thereof