JPH05133820A - Method for measuring residual stress in surface of mg alloy - Google Patents

Method for measuring residual stress in surface of mg alloy

Info

Publication number
JPH05133820A
JPH05133820A JP32715991A JP32715991A JPH05133820A JP H05133820 A JPH05133820 A JP H05133820A JP 32715991 A JP32715991 A JP 32715991A JP 32715991 A JP32715991 A JP 32715991A JP H05133820 A JPH05133820 A JP H05133820A
Authority
JP
Japan
Prior art keywords
alloy
residual stress
ray
diffraction
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32715991A
Other languages
Japanese (ja)
Inventor
Katsuhiko Akasaki
勝彦 赤崎
Masaharu Usuki
正治 臼杵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32715991A priority Critical patent/JPH05133820A/en
Publication of JPH05133820A publication Critical patent/JPH05133820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure a residual stress of a surface part of Mg alloy by performing X-ray diffraction by using CrKalpha as characteristic X rays and a surface with a large diffraction angle as a crystalline surface for measuring conditions of an X-ray diffraction device. CONSTITUTION:When X-ray diffraction of Mg alloy are performed by using CrKalpha as characteristic X rays and a surface with a large diffraction angle as a crystalline surface, an X-ray diffraction curve indicating a vivid diffraction line peak can be obtained. An X-ray diffraction angle (2theta) which is suited for the residual stress measurement is selected out of it and then a stress constant K and a residual stress deltakgf/mm<2> are calculated by an expression I using the diffraction angle and by an expression II, respectively. A diffraction angle of 140.1 degrees of a crystalline surface (202) and a diffraction angle of 152.7 degrees of a crystalline surface (104) are used for an Mg alloy AZ80A and Mg alloy ZK60A, respectively; expression I (K=-Ecottheta0Xpi/[2(1+gamma)X180], where E=4570kgf/mm<2>, gamma/0.35, theta0=70.05 deg. or 76.35 deg.), expression II (delta=K.(2theta)/(SIN<2>PSI), where PSI=X-rays incidence angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、X線回折法を利用し
てMg合金の表面部の残留応力を測定する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the residual stress on the surface of a Mg alloy by using the X-ray diffraction method.

【0002】[0002]

【従来の技術】X線回折法は、多結晶材の表面の微小部
分の弾性ひずみを検出できるので、一般に任意方向の残
留応力の測定が可能で、多くの金属材料の残留応力の測
定に利用されていることは周知のとおりである。
2. Description of the Related Art Since the X-ray diffraction method can detect the elastic strain of a minute portion of the surface of a polycrystalline material, it is generally possible to measure the residual stress in an arbitrary direction and is used for measuring the residual stress of many metal materials. It is well known that this is done.

【0003】しかし、MgおよびMg合金に関しては弾
性係数E、ポアソン比νはわかっているが、X線回折法
を利用した残留応力σの測定方法は確立されていない。
However, although the elastic modulus E and the Poisson's ratio ν are known for Mg and Mg alloys, a method for measuring the residual stress σ using the X-ray diffraction method has not been established.

【0004】[0004]

【発明が解決しようとする課題】上記のごとく、Mgお
よびMg合金に関してはX線回折法を利用した残留応力
の測定方法は確立されていない現状にある。しかしなが
ら、Mg合金を使用する際には、強度検討などのために
表面部の残留応力を知る必要がある。この発明は、かか
る現状にかんがみX線回折装置を用いて表面部の残留応
力を測定するのに必要な測定条件を確立することにより
Mg合金に対する残留応力の測定を可能とし、かつその
方法を提供するものである。
As described above, as for Mg and Mg alloys, there is no established method for measuring residual stress using the X-ray diffraction method. However, when using a Mg alloy, it is necessary to know the residual stress of the surface portion for strength examination and the like. The present invention makes it possible to measure the residual stress with respect to the Mg alloy by establishing the measurement conditions necessary for measuring the residual stress of the surface portion by using the X-ray diffractometer in view of the current situation, and to provide a method therefor. To do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、発明者らは、X線回折法によりMgおよびMg合金
の残留応力の測定を確立するため測定条件について種々
検討した。すなわち、X線回折装置とX線回折曲線との
関係、残留応力の測定、X線回折角度(2θ)、応力定
数などについて.検討を加えた。その結果、特定の測定
条件の下でX線回折を行うことにより残留応力の測定が
可能なことを見出した。この発明は、上記の知見に基づ
いて完成されたものである。
In order to achieve the above object, the present inventors have made various studies on measurement conditions for establishing measurement of residual stress of Mg and Mg alloy by X-ray diffraction method. That is, regarding the relationship between the X-ray diffractometer and the X-ray diffraction curve, measurement of residual stress, X-ray diffraction angle (2θ), stress constant, etc. Considered. As a result, they have found that the residual stress can be measured by performing X-ray diffraction under specific measurement conditions. The present invention has been completed based on the above findings.

【0006】この発明は、X線回折装置を利用し、その
測定条件に、特性X線としてCrKαを、結晶面として
回折角度の大きい面を用いてX線回折を行ってMg合金
の表面部の残留応力を測定する方法である。
The present invention utilizes an X-ray diffractometer and performs X-ray diffraction using CrKα as a characteristic X-ray and a face having a large diffraction angle as a crystal plane under the measurement conditions, and the surface portion of the Mg alloy is measured. This is a method of measuring residual stress.

【0007】そして、Mg合金AZ80A(JIS 4
203 MB3)に対するX線回折装置の測定条件とし
ては、特性X線としてCrKαを、結晶面として(20
2)の回折角度140.1度を用いて表面部の残留応力
の測定を行う。
Then, the Mg alloy AZ80A (JIS 4
The measurement conditions of the X-ray diffractometer for 203 MB3) are CrKα as the characteristic X-ray and (20) as the crystal plane.
The residual stress of the surface portion is measured using the diffraction angle of 140.1 degrees in 2).

【0008】また、Mg合金ZK60A(JIS 42
03 MB6)に対するX線回折装置の測定条件として
は、特性X線としてCrKαを、結晶面として(10
4)回折角度152.7度を用いて表面部の残留応力の
測定を行う。
In addition, Mg alloy ZK60A (JIS 42
The measurement conditions of the X-ray diffractometer for 03 MB6) are CrKα as the characteristic X-ray and (10) as the crystal plane.
4) The residual stress of the surface portion is measured using the diffraction angle of 152.7 degrees.

【0009】[0009]

【作用】上記測定条件、すなわち特性X線としてCrK
αを、結晶面として回折角度の大きい面を用いてMg合
金のX線回折を行えば、明瞭な回折線ピ−クが示される
X線回折曲線が得られる。そして、その中から残留応力
測定に適したX線回折角度(2θ)を選び出し、その回
折角度を用いて下記(1)式から応力定数Kを算出し、
さらに(2)式から残留応力σKgf/mm2を求め
る。 K=−Ecotθο×π/〔2(1+ν)×180〕 (1)式 ただし、E=4570Kgf/mm2、 ν=0.3
5、 θο=70.05°(実施例1)又は76.35°(実
施例2) σ=K・ (2θ)/ (sin2Ψ) (2)式 ただし、 Ψ:X線入射角度
The above-mentioned measurement conditions, that is, CrK as the characteristic X-ray
When the X-ray diffraction of the Mg alloy is performed using α as a crystal plane having a large diffraction angle, an X-ray diffraction curve showing a clear diffraction line peak can be obtained. Then, an X-ray diffraction angle (2θ) suitable for residual stress measurement is selected from them, and the stress constant K is calculated from the following equation (1) using the diffraction angle,
Further, the residual stress σKgf / mm 2 is calculated from the equation (2). K = −Ecot θο × π / [2 (1 + ν) × 180] Equation (1) where E = 4570 Kgf / mm 2 , ν = 0.3
5, θο = 70.05 ° (Example 1) or 76.35 ° (Example 2) σ = K · (2θ) / (sin 2 Ψ) Equation (2) where Ψ: X-ray incident angle

【0010】なお、上記(1)式は、波長λのX線を入
射したときの回折角2θと回折面間隔dの関係式(ブラ
ッグの式:λ=2dsinθ)に基づく式である。すな
わち、試料表面の結晶の面間隔が応力により無歪状態の
dοからdο+Δdに変化したとき、波長を一定とし
て、この式を微分すると、Δθο=θ−θο=tanθ
ο(Δd/dο)=−εtanθοとなり、回折角の変
化Δθを測定することから格子歪Δd/dοに対してt
anθοは無歪状態のときの回折角であり、同一Δd/
dοに対してtanθοが大きいほど、つまりθοが9
0°に近いほど大きな角度変化となり検出感度が高い。
したがって、測定制度上X線回折角度(2θ)が大きい
方が望ましい。
The above equation (1) is an equation based on the relational expression (Bragg's equation: λ = 2d sin θ) between the diffraction angle 2θ and the diffraction plane spacing d when an X-ray of wavelength λ is incident. That is, when the interplanar spacing of the crystal on the sample surface changes from dο in the unstrained state to dο + Δd due to stress, when the formula is differentiated with the wavelength kept constant, Δθο = θ−θο = tan θ
ο (Δd / dο) =-εtan θο, and the change Δθ in the diffraction angle is measured, so t for lattice strain Δd / dο
anθο is the diffraction angle in the undistorted state, and the same Δd /
The larger tan θο is relative to dο, that is, θο is 9
The closer to 0 °, the larger the angle change and the higher the detection sensitivity.
Therefore, it is desirable that the X-ray diffraction angle (2θ) is large in terms of measurement accuracy.

【0011】[0011]

【実施例】【Example】

実施例1 この発明をMg合金AZ80A(JIS 4203 M
B6)に実施した場合について説明する。Mg合金(A
Z80A)鋳塊を加熱して据え込んで成形した試験材よ
り寸法が30×30×20(mm)の試験片を切り出
し、この発明によるX線回折法により残留応力測定を行
った。
Example 1 This invention was applied to the Mg alloy AZ80A (JIS 4203 M
The case of performing B6) will be described. Mg alloy (A
Z80A) A test piece having a size of 30 × 30 × 20 (mm) was cut out from a test material formed by heating and setting up an ingot, and the residual stress was measured by the X-ray diffraction method according to the present invention.

【0012】強力X線源(管電圧Max.60KV、管
電流Max.30mA)を有するX線回折装置(理学電
機(株)製:RAD−2C型)を用いてCrKαによる
AZ80A合金のX線回折ピ−クプロファイルを調べ
た。その結果を図1に示す。この結果、回折角度(2
θ)が40〜150°の範囲でMgの結晶面が5種類あ
り、いずれも明瞭な回折線ピ−クが得られている。その
5種類の結晶面の内、どの結晶面のX線回折角度が残留
応力測定に適しているか検討した。前記したように、X
線回折角度(2θ)は大きい方が良いため、ここでは2
θが最も大きい(202)面の140.1°を用いるこ
とにした。
X-ray diffraction of AZ80A alloy by CrKα using an X-ray diffractometer (RAD-2C type manufactured by Rigaku Denki Co., Ltd.) having a strong X-ray source (tube voltage Max.60 KV, tube current Max.30 mA). The peak profile was examined. The result is shown in FIG. As a result, the diffraction angle (2
There are five types of Mg crystal planes in the range of θ) of 40 to 150 °, and clear diffraction line peaks are obtained for all of them. Of the five types of crystal planes, it was examined which crystal plane was suitable for the residual stress measurement. As mentioned above, X
Since the larger the line diffraction angle (2θ), the better, here
It was decided to use 140.1 ° of the (202) plane with the largest θ.

【0013】表1に示す測定条件により、上記試験片を
用いて、X線入射角0°における回折角度を調査して得
た140.1°を用いて上記(1)式により応力定数K
を算出した結果、−10.72Kgf/mm2が得られ
た。
Under the measurement conditions shown in Table 1, using the above test piece, 140.1 ° obtained by investigating the diffraction angle at an X-ray incident angle of 0 ° was used, and the stress constant K was calculated by the above equation (1).
As a result of calculation, −10.72 Kgf / mm 2 was obtained.

【0014】[0014]

【表1】 [Table 1]

【0015】そして、表面残留応力を表1に示す測定条
件により、X線回折曲線を測定し、半価幅中点法を用い
て回折角度(2θ)を求めた。この2θ−sin2Ψ線
図を表2および図2に示す。これにより、上記(2)式
を使って残留応力値σを算出したところσ=−5.0K
gf/mm2であった。
Then, the X-ray diffraction curve was measured under the measuring conditions shown in Table 1 for the surface residual stress, and the diffraction angle (2θ) was determined by using the half-value width midpoint method. The 2θ-sin 2 Ψ diagram is shown in Table 2 and FIG. As a result, when the residual stress value σ was calculated using the equation (2), σ = −5.0K
It was gf / mm 2 .

【0016】[0016]

【表2】 [Table 2]

【0017】また、68.3%信頼限界を(3)式によ
り算出した結果、信頼限界値Δσ=1.3Kgf/mm
2の良好な値が得られた。 Δσ=K・ΔM (3)式 ただし、
Further, as a result of calculating the 68.3% confidence limit by the equation (3), the confidence limit value Δσ = 1.3 Kgf / mm
A good value of 2 was obtained. Δσ = K · ΔM Equation (3)

【0018】[0018]

【数1】 [Equation 1]

【0019】[0019]

【数2】 [Equation 2]

【0020】ΔM:測定値のバラツキによる2θ−si
2Ψ線図の勾配の信頼限界 t(α,n−2):自由度(n−2)のt分布,信頼限
度(1−α)のt分布
ΔM: 2θ-si due to variations in measured values
Confidence limit of gradient of n 2 Ψ diagram t (α, n-2): t distribution of degrees of freedom (n-2), t distribution of confidence limit (1-α)

【0021】曲げ試験片による残留応力の較正試験 曲げ試験片を用いて、歪ケージによる応力値との較正試
験を実施するため、日本材料学会の標準4点曲げ試験用
治具を用いて、寸法が幅30mm、厚さ3mm、長さ1
05mmの曲げ試験片に曲げ荷重を負荷した状態で、上
記X線回折装置を用い表1に示す測定条件でX線残留応
力測定を行い、曲げ試験片の反対面に添付した歪ゲ−ジ
による応力値との比較を行った。その結果を表3および
図5に示す。その結果より本発明による残留応力値と歪
ゲ−ジによる応力値の差は±1.3Kgf/mm2以下
でX線回折法によりMg合金の残留応力を測定できるこ
とが確認できた。
Calibration test of residual stress by bending test piece In order to carry out a calibration test with a stress value by a strain cage using a bending test piece, a standard 4-point bending test jig of the Japan Society of Materials is used to measure the dimensions. Has a width of 30 mm, a thickness of 3 mm, and a length of 1.
With a bending load applied to the 05 mm bending test piece, X-ray residual stress was measured under the measurement conditions shown in Table 1 using the X-ray diffractometer, and a strain gauge attached to the opposite surface of the bending test piece was used. A comparison with the stress value was made. The results are shown in Table 3 and FIG. From the results, it was confirmed that the difference between the residual stress value according to the present invention and the stress value due to the strain gauge was ± 1.3 Kgf / mm 2 or less, and the residual stress of the Mg alloy could be measured by the X-ray diffraction method.

【0022】なお、試験片表面部の深さ方向の残留応力
分布を調べるのに欠かすことのできない電解研磨の方法
について検討した。すなわち、日本材料学会編X線応力
測定法に記載されているMg合金の電解研磨液であるリ
ン酸(3)+エチルアルコ−ル(5)およびチタン合金
の残留応力測定に適用されている電解研磨液などを用い
て、図6に示す要領で電解電圧、電流を検討し、研磨速
度(時間当たりの研磨深さ)を調べた。なお、図6の装
置は、1はMg合金試験片、2は電極(ステンレス
鋼)、3は塩化ビニル製の円筒で試験片1上に載せ、蜜
ろう4およびテ−ピング5で取着され、円筒3内に電解
研磨液6が入れられている。
An electrolytic polishing method, which is indispensable for investigating the residual stress distribution in the depth direction on the surface of the test piece, was examined. That is, the electrolytic polishing applied to the residual stress measurement of phosphoric acid (3) + ethyl alcohol (5), which is an electrolytic polishing liquid of Mg alloy, and titanium alloy described in the X-ray stress measurement method edited by the Society of Materials Science, Japan. Using a liquid or the like, the electrolytic voltage and current were examined in the manner shown in FIG. 6, and the polishing rate (polishing depth per hour) was examined. In the apparatus of FIG. 6, 1 is a Mg alloy test piece, 2 is an electrode (stainless steel), 3 is a vinyl chloride cylinder placed on the test piece 1, and is attached with a beeswax 4 and a taping 5. The electrolytic polishing liquid 6 is contained in the cylinder 3.

【0023】上記検討の結果、 リン酸(3)+エチルアルコ−ル(5)は化学的に
反応するが、電解電圧10〜30Vの条件で殆ど反応し
ない。 過塩素酸(7)+ブチルセロソルブ(35)+メチ
ルアルコ−ル(59)は、電解電圧20Vの条件では反
応が弱いが、30Vの条件では1.6〜1.3Aの電流
値が得られ、2μm/30secの研磨速度が得られ
た。 塩化アンモニウム飽和溶液(70)+グリセリン
(30)は、電解電圧20Vでは0.4〜0.8Aの電
流値であるが、30Vの条件では0.8〜1.5Aの電
流値が得られ、10μm/30secの研磨速度が得ら
れた。 10%水酸化ナトリウム溶液では、電解電圧20,
30Vの条件で全く反応しない。
As a result of the above examination, phosphoric acid (3) + ethyl alcohol (5) chemically react, but hardly react under the condition of electrolysis voltage of 10 to 30V. Perchloric acid (7) + butyl cellosolve (35) + methyl alcohol (59) has a weak reaction under the condition of electrolytic voltage of 20 V, but a current value of 1.6 to 1.3 A is obtained under the condition of 30 V, A polishing rate of 2 μm / 30 sec was obtained. The ammonium chloride saturated solution (70) + glycerin (30) has a current value of 0.4 to 0.8 A at an electrolysis voltage of 20 V, but a current value of 0.8 to 1.5 A is obtained under the condition of 30 V. A polishing rate of 10 μm / 30 sec was obtained. With a 10% sodium hydroxide solution, the electrolysis voltage is 20,
No reaction at 30V.

【0024】実施例2 次に、この発明をMg合金ZK60A(JIS 420
3 MB6)に実施した場合について説明する。実施例
1と同様にして試験片を作り、同じX線回折装置を用い
て残留応力測定を行った。その結果を図3に示す。図か
らわかるように2θが30〜110°の範囲でMgの結
晶面が15種類あり、いずれも明瞭な回折線ピ−クが得
られているが、ここでは2θが大きい(104)面の1
52.7°を用いた。
Example 2 Next, the present invention will be described with reference to Mg alloy ZK60A (JIS 420).
3 MB6) will be described. A test piece was prepared in the same manner as in Example 1, and the residual stress was measured using the same X-ray diffractometer. The result is shown in FIG. As can be seen from the figure, there are 15 types of Mg crystal planes in the range of 2θ of 30 to 110 °, and all have clear diffraction line peaks.
52.7 ° was used.

【0025】表3に示す測定条件により、上記試験片を
用いて、X線入射角0°における回折角度を調査して得
た152.7°を用いて上記(1)式により応力定数K
を算出した結果、−7.17Kgf/mm2が得られ
た。
Under the measurement conditions shown in Table 3, the stress constant K was calculated by the above equation (1) using 152.7 ° obtained by investigating the diffraction angle at the X-ray incident angle of 0 ° using the above test piece.
As a result of calculation, −7.17 Kgf / mm 2 was obtained.

【0026】[0026]

【表3】 [Table 3]

【0027】そして、表面残留応力を表3に示す測定条
件により、X線回折曲線を測定し、半価幅中点法を用い
て回折角度(2θ)を求めた。この2θ−sin2Ψ線
図を表4および図4に示す。これにより、上記(2)式
を使って残留応力値σを算出したところσ=−1.2K
gf/mm2であった。
Then, the X-ray diffraction curve was measured under the measuring conditions shown in Table 3 for the surface residual stress, and the diffraction angle (2θ) was determined by using the half-value width midpoint method. The 2θ-sin 2 Ψ diagram is shown in Table 4 and FIG. As a result, when the residual stress value σ was calculated using the equation (2), σ = −1.2K
It was gf / mm 2 .

【0028】[0028]

【表4】 [Table 4]

【0029】また、68.3%信頼限界を(3)式によ
り算出した結果、信頼限界値Δσ=0.5Kgf/mm
2の良好な値が得られた。
Further, as a result of calculating the 68.3% confidence limit by the equation (3), the confidence limit value Δσ = 0.5 Kgf / mm
A good value of 2 was obtained.

【0030】[0030]

【発明の効果】この発明によれば、X線回折法を用いた
Mg合金の残留応力測定法を確立することができ、強度
検討などにおいてその残留応力値を利用することによ
り、Mg合金による各種製品の設計に有益である。
According to the present invention, it is possible to establish a residual stress measuring method for Mg alloys using the X-ray diffraction method, and by utilizing the residual stress value in strength studies, various types of Mg alloys can be obtained. Useful for product design.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1においてAZ80A合金のX線回折曲
線調査を行った結果のグラフで、図中のA:(101)
面、B:(103)面、C:(112)面、D:(00
4)面、E:(202)面である。
FIG. 1 is a graph showing the results of X-ray diffraction curve investigation of AZ80A alloy in Example 1, where A: (101) in the figure.
Plane, B: (103) plane, C: (112) plane, D: (00
4) plane and E: (202) plane.

【図2】実施例1におけるAZ80A合金の2θ−si
2Ψ線図である。
2 is 2θ-si of AZ80A alloy in Example 1. FIG.
It is a n < 2 > (psi) diagram.

【図3】実施例2においてZK60A合金のX線回折曲
線調査を行った結果のグラフで、回折ピ−クの数字は結
晶面を示す。
FIG. 3 is a graph showing the results of an X-ray diffraction curve investigation of the ZK60A alloy in Example 2, and the numbers on the diffraction peaks indicate the crystal planes.

【図4】実施例2におけるZK60A合金の2θ−si
2Ψ線図である。
4 is a 2θ-si of ZK60A alloy in Example 2. FIG.
It is a n < 2 > (psi) diagram.

【図5】実施例1におけるAZ80A合金のX線残留応
力測定の較正試験結果を示すグラフである。
5 is a graph showing a calibration test result of X-ray residual stress measurement of the AZ80A alloy in Example 1. FIG.

【図6】この発明おいて試験片の電解研磨に用いた電解
研磨装置の説明図である。
FIG. 6 is an explanatory view of an electropolishing apparatus used for electropolishing a test piece in the present invention.

【符号の説明】[Explanation of symbols]

1 試験片 2 電極 3 塩化ビニル製の円筒 4 蜜ろう 5 テ−ピング 6 電解液 1 Test piece 2 Electrode 3 Vinyl chloride cylinder 4 Beeswax 5 Taping 6 Electrolyte

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】X線回折装置を利用し、その測定条件に、
特性X線としてCrKαを、結晶面として回折角度の大
きい面を用いてMg合金のX線回折を行うことを特徴と
するMg合金の表面部残留応力測定方法。
1. An X-ray diffractometer is used, and the measurement conditions are as follows:
A method for measuring a residual stress in a surface portion of an Mg alloy, wherein X-ray diffraction of the Mg alloy is performed using CrKα as a characteristic X-ray and a surface having a large diffraction angle as a crystal plane.
【請求項2】X線回折装置の測定条件に、特性X線とし
てCrKαを、結晶面として(202)の回折角度14
0.1度を用いて、Mg合金AZ80A(JIS420
3MB3)をX線回折して残留応力を測定することを特
徴とするMg合金の表面部残留応力測定方法。
2. The measurement conditions of an X-ray diffractometer are CrKα as a characteristic X-ray and a diffraction angle 14 of (202) as a crystal plane.
Mg alloy AZ80A (JIS420
3MB3) is subjected to X-ray diffraction to measure the residual stress.
【請求項3】X線回折装置の測定条件に、特性X線とし
てCrKαを、結晶面として(104)の回折角度15
2.7度を用いて、Mg合金ZK60A(JIS420
3MB6)をX線回折して残留応力を測定することを特
徴とするMg合金の表面部残留応力測定方法。
3. The measurement conditions of an X-ray diffractometer are CrKα as a characteristic X-ray and a (104) diffraction angle of 15 as a crystal plane.
Mg alloy ZK60A (JIS420
3MB6) is subjected to X-ray diffraction to measure the residual stress.
JP32715991A 1991-11-14 1991-11-14 Method for measuring residual stress in surface of mg alloy Pending JPH05133820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32715991A JPH05133820A (en) 1991-11-14 1991-11-14 Method for measuring residual stress in surface of mg alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32715991A JPH05133820A (en) 1991-11-14 1991-11-14 Method for measuring residual stress in surface of mg alloy

Publications (1)

Publication Number Publication Date
JPH05133820A true JPH05133820A (en) 1993-05-28

Family

ID=18195969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32715991A Pending JPH05133820A (en) 1991-11-14 1991-11-14 Method for measuring residual stress in surface of mg alloy

Country Status (1)

Country Link
JP (1) JPH05133820A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482523B1 (en) * 2002-08-08 2005-04-14 현대자동차주식회사 Analysis method of residual stress in retained austenite mixed with martensite microstruture of carburized steel alloy surface
CN103983386A (en) * 2014-05-19 2014-08-13 盐城工学院 Cylindrical part surface machining stress measuring method based on finite element compensation coefficient
CN104913866A (en) * 2015-06-17 2015-09-16 上海大学 Method of assisting ray diffraction method to measure residual stress of thin plate, device and applications
JP2016083696A (en) * 2014-10-29 2016-05-19 権田金属工業株式会社 Magnesium alloy plate material, production method of magnesium alloy plate material, magnesium alloy product, production method of magnesium alloy product and magnesium alloy final product
KR102366284B1 (en) * 2020-12-28 2022-02-23 현대제철 주식회사 Hot stamping component and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482523B1 (en) * 2002-08-08 2005-04-14 현대자동차주식회사 Analysis method of residual stress in retained austenite mixed with martensite microstruture of carburized steel alloy surface
CN103983386A (en) * 2014-05-19 2014-08-13 盐城工学院 Cylindrical part surface machining stress measuring method based on finite element compensation coefficient
JP2016083696A (en) * 2014-10-29 2016-05-19 権田金属工業株式会社 Magnesium alloy plate material, production method of magnesium alloy plate material, magnesium alloy product, production method of magnesium alloy product and magnesium alloy final product
CN104913866A (en) * 2015-06-17 2015-09-16 上海大学 Method of assisting ray diffraction method to measure residual stress of thin plate, device and applications
KR102366284B1 (en) * 2020-12-28 2022-02-23 현대제철 주식회사 Hot stamping component and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Rapperport Room temperature deformation processes in zirconium
Jones et al. Role of Mg in the stress corrosion cracking of an Al-Mg alloy
Dickerson et al. Effect of hydrostatic pressure on the self-diffusion rate in single crystals of gold
McWhan Linear compression of α‐quartz to 150 kbar
JPH05133820A (en) Method for measuring residual stress in surface of mg alloy
Nawwar et al. A modified hole-drilling technique for determining residual stresses in thin plates: A modification to the hole-drilling technique is made which extends the range of measurements to plates as thin as 0.050 in.(1.27 mm). The necessity of calibration for each experimental hole-gage assembly is eliminated
Liu et al. Energy calibration and full-pattern refinement for strain analysis using energy-dispersive and monochromatic X-ray diffraction
Goedjen et al. Evaluation of stresses in Ni NiO and Cr Cr2O3 during high temperature oxidation by in situ X-ray diffraction
Evans et al. Methods of measuring oxidation growth stresses
Papantonis et al. Isothermal compression and bcc→ hcp phase transition of iron‐cobalt alloys up to 300 kbar at room temperature
Welch et al. The Effect of Cold-Work on the X-Ray Diffraction Pattern of a Copper-Silicon-Manganese Alloy
Stickle et al. A new technique for measuring the effects of oxygen activity on surface energies: application to nickel
Lal et al. High resolution experimental techniques of measurement of diffuse X-ray scattering from single crystals
O’Connor et al. Improving the accuracy of Rietveld-derived lattice parameters by an order of magnitude
Schlosberg et al. The plastic zone and residual stress near a notch and a fatigue crack in HSLA steel
Wagner et al. The ϕ-Integral Method for X-Ray Residual Stress Measurements
Peterson et al. Partial molar volumes of hydrogen and deuterium in niobium, vanadium, and tantalum
Druez et al. Through-thickness measurement of residual stresses in thin tubes
Mohr et al. Experimental correlation between the elemental composition and the lattice dimensions in alloys using AlCu as a model substance
Fenn Jr et al. Test Methods for Mechanical Properties of Anisotropic Materials (Beryllium Sheet)
Guinan et al. Defect production in thorium by low-temperature electron irradiation
Gadalińska et al. X-ray stress measurements in the institute of aviation possibilities and examples
Montgomery Simple Volume Measurements at High Pressures
Greenough Strain measurement by x-ray diffraction methods
Swallowe et al. Plastic strain estimation from neutron Bragg peaks