JPH05133514A - Method for regenerating vulcanized rubber - Google Patents

Method for regenerating vulcanized rubber

Info

Publication number
JPH05133514A
JPH05133514A JP32231891A JP32231891A JPH05133514A JP H05133514 A JPH05133514 A JP H05133514A JP 32231891 A JP32231891 A JP 32231891A JP 32231891 A JP32231891 A JP 32231891A JP H05133514 A JPH05133514 A JP H05133514A
Authority
JP
Japan
Prior art keywords
rubber
desulfurization
temperature
gas
vulcanized rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32231891A
Other languages
Japanese (ja)
Inventor
Tomio Minobe
富男 美濃部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Denshi Co Ltd
Original Assignee
Micro Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Denshi Co Ltd filed Critical Micro Denshi Co Ltd
Priority to JP32231891A priority Critical patent/JPH05133514A/en
Publication of JPH05133514A publication Critical patent/JPH05133514A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PURPOSE:To avoid environmental pollution by a method wherein vulcanized rubber is heated to desulfurization temperature by imparting microwave energy and heating air thereto to regenerate it, while gas of bad smell generated is burned to deodorize it and part of the processed gas is used as heating gas for desulfurization. CONSTITUTION:After selection 12 of the kind of waste vulcanized rubber in a raw material 11, the rubber is formed into powder in a crushing process 13 and rubber processing oil or regenerating agent is added to the powder of the rubber, which is mixed and adjusted 14 and then is heated to a specified temperature in a microwave heating process 15 to effect depolimerization reaction, wherein a burning type deodorizing device 31 is connected to discharge gas of bad smell produced by heat in a desulfurization precess from the process 15 to deodorize it so that part of the processed gas is regulated to a temperature close to the desulfurization temperature of the rubber to return it to the process 15 for reuse as heating air. The desulfurized rubber is passed through a cooling process 32 and a refining process 17 to be prepared as regenerated rubber 18 or passed through a mechanical heating means 33 and cooling process 34 to produce a regenerated rubber 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、マイクロ波エネルギ
−を利用して加硫ゴムを再利用できるように再生する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reusing vulcanized rubber so that it can be reused by utilizing microwave energy.

【0002】[0002]

【従来の技術】従来の加硫ゴムを再利用する方法は、微
粉砕した未加硫ゴムを充填剤として利用する方法、再生
剤を加え加熱して再生ゴムとする方法が知られている。
2. Description of the Related Art As a conventional method for reusing vulcanized rubber, there are known a method of using finely pulverized unvulcanized rubber as a filler and a method of adding a regenerant and heating it to obtain a regenerated rubber.

【0003】しかしながら、前者は充填剤にするために
微粒粉砕する粉砕コストが高く、且つ、使用に関しても
制約を受けることが多い。後者の再生ゴムの製造方法
は、予め粉砕された加硫ゴムに再生剤、軟化剤またはそ
の他の薬剤を混合し、150〜250℃のオ−トクレ−
ブ内で数時間、詳しくは2〜6時間熱処理した後、リフ
ァインロ−ル(仕上ロ−ル機)で精練し、可塑性に富む
材料に転換するものである。
However, the former has a high crushing cost for finely pulverizing it into a filler, and is often restricted in use. The latter method for producing regenerated rubber is to mix regenerated agent, softening agent or other chemicals with vulcanized rubber which has been crushed in advance, and add autoclave at 150 to 250 ° C.
After heat-treating for several hours, specifically 2 to 6 hours in a slag, it is scoured by a refine roll (finishing roll machine) and converted into a material having high plasticity.

【0004】ところが、このように生産された再生ゴム
は、再生剤特有の悪臭気を伴うのが普通であり、その上
汚染性の上でも使用が限定されている。また、熱処理時
間、詳しくは解重合反応時間が長く、大量に処理するた
めには手間、費用がかさみ、経済性の面でも問題があ
る。
However, the recycled rubber produced in this way usually has a bad odor characteristic of a regenerant, and its use is limited due to its contamination. Further, the heat treatment time, more specifically the depolymerization reaction time, is long, and it takes time and cost to treat a large amount, and there is a problem in terms of economy.

【0005】上記のような実情から、本発明の出願人は
このような問題を解決するため、マイクロ波による加硫
ゴム再生装置として実用新案登録第1642633号を
既に提案してある。図6は、この実用新案権に係る加硫
ゴム再生装置における再生プロセスを示すブロック図で
ある。図示するように、まず、原料11中の廃棄加硫ゴ
ムの種類を選別工程12において選別機で選別した後、
粉砕工程13において粉砕機で粉末状にし、その粉末加
硫ゴムに調合混合工程14においてゴム加工油または再
生剤を必要に応じて添加し混合して調合する。そして、
マイクロ波加熱工程15において、マイクロ波加熱を利
用することにより、粉末加硫ゴムを所定温度まで昇温さ
せて解重合反応を起こさせる。更に好ましくは、マイク
ロ波加熱後、二次加熱工程16におて数分間熱風などで
保温して二次加熱処理する。このようにして解重合反応
を終了したゴムを、精製工程17においてロ−ル機で精
製することにより、再生ゴム製品18が得られる。
In view of the above circumstances, the applicant of the present invention has already proposed utility model registration No. 1642633 as a vulcanized rubber recycling apparatus using microwaves in order to solve such a problem. FIG. 6 is a block diagram showing a regeneration process in the vulcanized rubber recycling apparatus according to this utility model right. As shown in the figure, first, the type of waste vulcanized rubber in the raw material 11 is sorted by a sorting machine in the sorting step 12,
In the pulverizing step 13, the powder is pulverized by a pulverizer, and the rubber vulcanized oil or the regenerant is added to the powder vulcanized rubber in the blending and mixing step 14 as needed, and mixed. And
In the microwave heating step 15, the powder vulcanized rubber is heated to a predetermined temperature to cause a depolymerization reaction by utilizing microwave heating. More preferably, after the microwave heating, in the secondary heating step 16, the secondary heat treatment is performed by keeping the temperature for several minutes with hot air or the like. The reclaimed rubber product 18 is obtained by refining the depolymerized rubber thus obtained with a rolling machine in the refining step 17.

【0006】[0006]

【発明が解決しようとする課題】上記した加硫ゴム再生
装置においては、マイクロ波加熱工程15における脱硫
するまでの過程において、ゴム温度の上昇と共に多量の
悪臭毒性ガスが発生する。このガスは、加硫ゴム配合に
含まれるゴムポリマ−自身と、添加されるオイル加硫促
進剤、発砲剤等の薬品が分解して硫化水素、チッ素、塩
素、アルデヒド等を含有するガスになるもので、加熱再
生方法では避けることが出来ない現象である。
In the vulcanized rubber recycling apparatus described above, a large amount of malodorous toxic gas is generated as the rubber temperature rises in the process up to desulfurization in the microwave heating step 15. This gas is a gas containing hydrogen sulfide, nitrogen, chlorine, aldehyde, etc. when the rubber polymer itself contained in the vulcanized rubber composition and the added chemicals such as oil vulcanization accelerator and foaming agent are decomposed. This is a phenomenon that cannot be avoided by the heating regeneration method.

【0007】このため、マイクロ波加熱工程15に備え
るマイクロ波加熱室は適時発生するガスを外部に排出し
なければならない。マイクロ波加熱室内は常圧であるた
め、加硫ゴムの昇温に伴ってどんどん発生するガスで高
温、高濃度の雰囲気となる。このような雰囲気でマイク
ロ波が照射されていると、マイクロ波加熱室内の絶縁が
低下するため、放電によるスパ−クが起こり易くなり、
延いては、ガスに引火し爆発を起こすこととなり、非常
に危険で産業設備としては大きな問題となる。
For this reason, the microwave heating chamber provided in the microwave heating step 15 must discharge the generated gas to the outside in a timely manner. Since the inside of the microwave heating chamber is at normal pressure, the gas generated rapidly as the temperature of the vulcanized rubber rises creates a high-temperature, high-concentration atmosphere. When the microwave is irradiated in such an atmosphere, the insulation in the microwave heating chamber is deteriorated, and thus sparks due to electric discharge easily occur,
Eventually, the gas ignites and explodes, which is extremely dangerous and a serious problem for industrial equipment.

【0008】このような危険を防止するために、発生す
るガスを適時外部に排出しなければならないが、発生す
るガスは悪臭がひどく、ときには毒性を有しているの
で、公害の観点からそのまま外気に放出することは問題
が大きい。
In order to prevent such a danger, the generated gas must be discharged to the outside in a timely manner. However, the generated gas has a bad odor and is sometimes toxic, so from the viewpoint of pollution, it can be directly exposed to the outside air. It is a big problem to release it.

【0009】図7はゴム温度の昇温曲線19を示す。こ
の図に示す如く、マイクロ波エネルギ−(符号20で示
す)の投入で140℃付近までは直線で昇温する加硫ゴ
ムは、この温度から加硫ゴム配合に含まれるオイルや薬
剤の蒸発が始まり、脱硫温度に到達するまでの間に多量
の悪臭ガス(符号21で示す)が発生する。この時の蒸
発潜熱でゴム温度が降下するため昇温がだんだん悪くな
る。
FIG. 7 shows a temperature rise curve 19 for the rubber temperature. As shown in this figure, the vulcanized rubber that is heated linearly up to around 140 ° C. by the input of microwave energy (indicated by reference numeral 20) shows that from this temperature, oil and chemicals contained in the vulcanized rubber are evaporated. A large amount of malodorous gas (indicated by reference numeral 21) is generated until the desulfurization temperature is reached. At this time, the latent heat of vaporization lowers the rubber temperature, so that the temperature rise becomes worse.

【0010】また、ガス爆発を防止するために排気を繰
り返すため、益々ゴム温度の放熱が大きくなり目的の脱
硫温度に達するには長い時間と多くのマイクロ波エネル
ギ−を浪費し、経済的にも問題が大きい。なお、排気フ
ァンは符号22に示すタイムチャ−トにしたがって連続
的または断続的に排気するようになっている。
Further, since the exhaust is repeated to prevent the gas explosion, the heat radiation of the rubber temperature is further increased, and it takes a long time and a lot of microwave energy to reach the target desulfurization temperature, which is economically economical. The problem is big. The exhaust fan exhausts air continuously or intermittently according to the time chart indicated by reference numeral 22.

【0011】本発明は上記した実情にかんがみ、末加硫
ゴムをマイクロ波エネルギ−と加熱空気の同時加熱によ
り、高効率で解重合させることができ、また、脱硫過程
で発生する多量の悪臭ガスを脱臭処理し、脱臭処理した
ガスの一部を加熱エネルギ−として利用することができ
るようにした無公害の工業的に極めて有利な再生ゴムを
得る方法を開発することを目的とする。
In view of the above-mentioned circumstances, the present invention is capable of depolymerizing the unvulcanized rubber with high efficiency by simultaneously heating microwave energy and heated air, and a large amount of malodorous gas generated in the desulfurization process. It is an object of the present invention to develop a method of obtaining a pollution-free industrially extremely advantageous reclaimed rubber which is capable of deodorizing and treating a part of the deodorized gas as heating energy.

【0012】[0012]

【課題を解決するための手段】上記した目的を達成する
ため、本発明では、第1の発明として、マイクロ波エネ
ルギ−と加熱空気とを同時に与えて加硫ゴムを脱硫温度
まで加熱して再生するゴムの再生方法において、この脱
硫工程中に加熱により発生する悪臭ガスを燃焼式脱臭装
置の炎に直接接触させ、悪臭ガスを燃焼させて脱臭処理
を行い、その処理ガスの一部を脱硫対象とする加硫ゴム
の最適脱硫温度またはその温度付近に調整して脱硫のた
めに必要な加熱空気として利用し、その他の処理ガスは
外気に排煙することを特徴とする加硫ゴムの再生方法を
提案する。
In order to achieve the above object, in the present invention, as a first invention, microwave energy and heated air are simultaneously applied to heat a vulcanized rubber to a desulfurization temperature to regenerate it. In the rubber recycling method, the malodorous gas generated by heating during this desulfurization process is brought into direct contact with the flame of the combustion type deodorizing device to burn the malodorous gas for deodorizing treatment, and a part of the treated gas is desulfurized. A method for regenerating vulcanized rubber, characterized in that the vulcanized rubber is adjusted to or near the optimum desulfurization temperature of the vulcanized rubber and used as heated air required for desulfurization, and other process gas is exhausted to the outside air. To propose.

【0013】第2の発明として、加硫ゴムにマイクロ波
エネルギ−と加熱空気とを与えて部分解重合状態とした
後、このゴムを高速回転混練機、シェア−ヘッドを備え
る押出機などの機械的発熱手段によって加熱し脱硫を促
進させることを特徴とする第1の発明に記載した加硫ゴ
ムの再生方法を提案する。
In a second aspect of the invention, a vulcanized rubber is supplied with microwave energy and heated air to be in a partially decomposed and polymerized state, and then the rubber is machined at a high speed rotary kneader or an extruder equipped with a shear head. A method for regenerating a vulcanized rubber according to the first invention is characterized in that it is heated by a dynamic heat generating means to accelerate desulfurization.

【0014】[0014]

【作用】第1の発明は、マイクロ波エネルギ−と加熱空
気とを同時に加硫ゴムに与え、常温より脱硫温度に達す
るまでの間に、加硫ゴム材に含まれるオイルや薬剤の分
解でおこる蒸発ガスの温度降下と、排気によっておこる
温度低下とをさせることなく、直線的に短時間で昇温さ
せることができる。すなわち、公害の観点から脱硫過程
中に多量に発生する悪臭ガスを燃焼式脱臭装置で脱臭処
理し、その処理ガスの一部を脱硫対象とする加硫ゴムの
最適脱硫温度付近に温度調整して脱硫のために必要な加
熱空気とする。このため、脱臭処理ガスを常時再利用す
るためゴム温が温度降下なく直線的に昇温するため効率
の面から経済的であり、また、残りの処理ガスは外部に
排煙するが脱臭処理してあるので公害の面からも優れた
ゴムの再生方法と言える。
According to the first aspect of the present invention, microwave energy and heated air are simultaneously applied to the vulcanized rubber, and the oil and chemicals contained in the vulcanized rubber material are decomposed before the desulfurization temperature is reached from room temperature. It is possible to raise the temperature linearly in a short time without causing the temperature drop of the vaporized gas and the temperature drop caused by the exhaust. That is, from the viewpoint of pollution, a large amount of malodorous gas generated during the desulfurization process is deodorized by a combustion type deodorizing device, and a part of the treated gas is temperature-controlled near the optimum desulfurization temperature of the vulcanized rubber to be desulfurized. Use the heated air required for desulfurization. For this reason, since the deodorizing gas is constantly reused, the rubber temperature rises linearly without a temperature drop, which is economical in terms of efficiency.Also, the remaining gas is smoked to the outside but is deodorized. Therefore, it can be said that it is an excellent rubber recycling method in terms of pollution.

【0015】上記した第1の発明では、加硫ゴムがマイ
クロ波エネルギ−と加熱空気の作用により脱硫温度に到
達すると、炭素−炭素、硫黄−炭素の結合が切断され、
一部ゴムポリマ−分子も切断されて順次完全な解重合さ
れた状態となる。これに対し、第2の発明は、脱硫がま
だ充分に行なわれていない解重合の進行中の部分解重合
の状態のゴム(以下部分解重合状態のゴムと言う)を直
ちに機械的発熱手段を講じて、さらに発熱を利用して脱
硫を促進させるものである。すなわち、機械的発熱手段
は、例えば、溝付混練ロ−ル機、高速回転混練機、押出
機、シェア−ヘッド等により部分解重合状態のゴムにせ
ん断熱、摩擦熱を与えて、混練押出し、発熱させること
で脱硫を充分なものに促進させるようにしてある。ま
た、この方法では再生ゴムの精製と形状を作ることも兼
ねることができる。
In the above-mentioned first invention, when the vulcanized rubber reaches the desulfurization temperature by the action of microwave energy and heated air, the carbon-carbon and sulfur-carbon bonds are broken,
A part of the rubber polymer molecule is also cut into a completely depolymerized state. On the other hand, in the second invention, the rubber in the state of partial decomposition polymerization during the progress of depolymerization in which desulfurization has not yet been sufficiently performed (hereinafter referred to as rubber in the partial decomposition polymerization state) is immediately provided with a mechanical heating means. In addition, the heat generated is utilized to accelerate desulfurization. That is, the mechanical heat generating means, for example, a kneading roll machine with a groove, a high-speed rotary kneading machine, an extruder, shearing heat to the rubber in the partially decomposed and polymerized state by a shear-head, kneading and extruding, It is designed to accelerate desulfurization sufficiently by generating heat. In addition, this method can also serve to refine the recycled rubber and shape it.

【0016】[0016]

【実施例】次に、本発明の実施例について図面に沿って
説明する。図1は本発明に係る再生工程を示すブロック
図で、図6に示す従来例の再生工程と対応する部分には
同一符号が付してある。粉砕されたゴムはゴムの種類に
よるが、ゴム加工油または再生剤を必要に応じ添加し調
合混合工程14でミキシングされる。この工程を必要と
しないゴムは、粉砕のままマイクロ波加熱工程15に直
接投入される。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a block diagram showing a reproducing process according to the present invention, and parts corresponding to those of the conventional reproducing process shown in FIG. 6 are designated by the same reference numerals. The crushed rubber is mixed in the mixing and mixing step 14 by adding a rubber processing oil or a regenerant, if necessary, depending on the kind of the rubber. The rubber which does not require this step is directly put into the microwave heating step 15 while being crushed.

【0017】マイクロ波加熱工程15には、燃焼式の脱
臭装置31が接続されており、脱硫工程中に加熱により
発生する悪臭ガスをマイクロ波加熱工程15より排出し
脱臭装置31で脱臭処理し、その一部の処理ガスを対象
とする加硫ゴムの脱硫温度付近に調整して、マイクロ波
加熱工程15に戻し、加熱空気として再利用する。
A combustion type deodorizing device 31 is connected to the microwave heating process 15, and the malodorous gas generated by heating during the desulfurization process is discharged from the microwave heating process 15 and deodorized by the deodorizing device 31. A part of the treated gas is adjusted to near the desulfurization temperature of the vulcanized rubber of interest, returned to the microwave heating step 15, and reused as heated air.

【0018】さらに、残りの処理ガスは脱臭されて外気
に排煙して無公害化を可能にしている。脱臭処理直後の
処理ガス(排気空気)はかなり高温度のため、図1に示
すように前工程のたとえば調合混合工程14または粉砕
工程13後の粉砕ゴムに戻して予熱する熱エネルギ−と
して利用することができる。この場合のゴムの予熱温度
は少なくとも加熱昇温により悪臭ガスが発生しない範囲
で(好ましくは140℃以下)行なわれ、そのまま脱臭
装置31の排煙と同じ経路で外気に排出しても公害の上
で問題はない。
Further, the remaining processing gas is deodorized and smoked to the outside air to make it pollution-free. Since the treated gas (exhaust air) immediately after the deodorizing process has a considerably high temperature, it is used as heat energy for returning to the crushed rubber after the pre-process, for example, the mixing and mixing process 14 or the crushing process 13 to preheat it as shown in FIG. be able to. The preheating temperature of the rubber in this case is at least within a range where a foul-smelling gas is not generated due to the heating temperature rise (preferably 140 ° C. or lower), and even if the rubber is directly discharged to the outside through the same path as the smoke exhausted from the deodorizing device 31, it will cause pollution. There is no problem.

【0019】粉砕ゴムを予熱しておくことは、マイクロ
波加熱工程15での省エネルギ−化にも通じ、経済的手
段となる。ゴム予熱とせずに脱臭装置31からそのまま
外気に排煙する場合は、排気空気が高温度のため、送風
機でフレシュエア−を取り入れ(図示省略)、ミックス
し低温度にしたり、水の散水する雰囲気中を通過させて
低温度にしてから排煙することが好ましい。
Preheating the crushed rubber leads to energy saving in the microwave heating step 15 and is an economical means. When exhausting air as it is from the deodorizing device 31 without preheating the rubber, the exhaust air is at a high temperature, so fresh air is taken in by a blower (not shown) to mix and lower the temperature, or in an atmosphere where water is sprinkled. It is preferable to pass the gas to lower the temperature before exhausting the smoke.

【0020】このようにしてマイクロ波加熱工程15で
は処理されるゴムの種類にもよるが、190℃〜350
℃程度の温度まで直線的に加熱して短時間で解重合反応
させ脱硫させることが可能である。脱硫されたゴムは冷
却工程32と精製工程17を経て再生ゴム18を製造
し、或いは機械的発熱手段33と冷却工程34を経て再
生ゴム18を製造する。
In this way, depending on the kind of rubber to be treated in the microwave heating step 15, it is 190 ° C to 350 ° C.
It is possible to desulfurize by linearly heating to a temperature of about 0 ° C. to cause a depolymerization reaction in a short time. The desulfurized rubber undergoes a cooling step 32 and a refining step 17 to produce a recycled rubber 18, or a mechanical heating means 33 and a cooling step 34 to produce a recycled rubber 18.

【0021】脱硫温度まで昇温して解重合したゴムを冷
却することは、ゴム自身にこもった熱で酸化劣化が除々
に進行し、自己発熱を起こし、場合によっては過熱によ
る炭化または発火を引き起こすことを防ぐこと、また、
悪臭ガスの発生を押えることからも必要な工程である。
冷却工程32、34では水、フレオン、液化二酸化炭素
などの不活性液体の気化熱、或いは冷媒の循環による熱
伝導作用によって急速な冷却を行なう。
When the depolymerized rubber is heated to the desulfurization temperature and cooled, oxidative deterioration gradually progresses due to the heat accumulated in the rubber itself, self-heating occurs, and in some cases carbonization or ignition due to overheating is caused. To prevent
This is also a necessary process because it suppresses the generation of malodorous gas.
In the cooling steps 32 and 34, rapid cooling is performed by the heat of vaporization of an inert liquid such as water, freon, liquefied carbon dioxide, or the like, or by heat conduction by circulating a refrigerant.

【0022】なお、冷却手段として本発明の出願人が加
硫ゴムの再生法として特許第1419246号を既に提
案しているように、脱硫ゴムの酸化劣化が進行しない温
度まで水の添加により冷却し、その水の量は脱硫ゴムの
重量変化及び物性の低下をさせない範囲まで、好ましく
は100℃以上まで冷却することが迅速性、均一性、作
業性及び設備コスト、ランニングコストの面で有効であ
る。冷却後のゴムは必要に応じ精製工程17によってリ
ファィングロ−ル(仕上ロ−ル機)で精練、精製するこ
ともある。
As a cooling means, the applicant of the present invention has already proposed Japanese Patent No. 1419246 as a method for regenerating vulcanized rubber, and the desulfurized rubber is cooled by addition of water to a temperature at which oxidative deterioration does not proceed. It is effective in terms of speed, uniformity, workability and facility cost, and running cost to cool the amount of water to a range that does not cause a change in the weight of the desulfurized rubber and a decrease in physical properties, preferably 100 ° C. or higher. .. The rubber after cooling may be refined and refined by a refining roll (finishing roll machine) in the refining step 17 if necessary.

【0023】また、請求項2に述べる方法では、マイク
ロ波加熱工程15でマイクロ波エネルギ−と加熱空気の
同時加熱により、加硫ゴム脱硫を開始し、部分解重合状
態になったゴムを、機械的発熱手段33でせん断熱、摩
擦熱を与えて発熱させ解重合を促進するものである。こ
の手段は発熱を有効かつ効率的に行わせしめる。たとえ
ば、溝付ロ−ルの混練機、シェア−を充分に与えること
のできる高速回転混練機、シェア−ヘッドを備える押出
機で行うことができる。さらに、前記した、精製工程1
7と同様の精製機能をもたせることが可能となり良好な
再生ゴム18を製造することができる。
Further, in the method described in claim 2, in the microwave heating step 15, vulcanized rubber desulfurization is started by simultaneous heating of microwave energy and heated air, and the rubber which is in a partially decomposed and polymerized state is mechanically treated. The heat generating means 33 applies shear heat and frictional heat to generate heat to accelerate depolymerization. This measure allows heat to be generated effectively and efficiently. For example, a kneading machine with a grooved roll, a high-speed rotary kneading machine capable of sufficiently giving a shear, and an extruder equipped with a shear head can be used. Furthermore, the above-mentioned purification step 1
Since the same refining function as that of No. 7 can be provided, a good recycled rubber 18 can be manufactured.

【0024】次に、本発明による加硫ゴムの再生方法を
実施するための再生装置を図2、図3に示すが、この発
明の技術的思想を具体化する為の再生装置を例示するも
のであって、機械部品の材質、形状、構造、配置を下記
の構造に限定するものでない。この再生装置は本発明の
特許請求の範囲内に於いて種々の変更が加えられる。
Next, a regenerating apparatus for carrying out the method for regenerating vulcanized rubber according to the present invention is shown in FIG. 2 and FIG. 3, which illustrates a regenerating apparatus for embodying the technical idea of the present invention. However, the material, shape, structure, and arrangement of the mechanical parts are not limited to the following structures. Various modifications can be made to this reproducing apparatus within the scope of the claims of the present invention.

【0025】図2は加熱装置の簡略的な正面図、図3は
同加熱装置の簡略的な側面図である。これら図におい
て、41はマイクロ波加熱室で底面部は半円筒状とな
し、U字状に形成された底面部42にモ−タ43の駆動
で回転する移送用のスクリュ−44とスクリュ−のフィ
ンに被加熱物を掻揚げて混合、撹拌する羽根45がスク
リュ−の定ピッチごとに配備されている。(図2には図
示省略)被加熱物である粉砕された加硫ゴム46は、原
料タンク47より供給フィダ−48によって連続的にマ
イクロ波加熱室41に投下され、回転する移送スクリュ
−44とスクリュ−に付属された羽根45の働きにより
混合、撹拌されながら取出口まで移動し、取出口に備え
たロ−タリ−バルブ49により排出される。
FIG. 2 is a simplified front view of the heating device, and FIG. 3 is a simplified side view of the heating device. In these figures, reference numeral 41 denotes a microwave heating chamber, whose bottom portion has a semi-cylindrical shape, and a U-shaped bottom portion 42 is provided with a screw 44 and a screw for transfer which are rotated by driving a motor 43. The fins 45 are provided for each constant pitch of the screw to stir the object to be heated on the fins to mix and stir. The ground vulcanized rubber 46, which is an object to be heated, is continuously dropped from the raw material tank 47 into the microwave heating chamber 41 by the supply feeder 48, and the rotating transfer screw 44 and the rotating transfer screw 44 are provided. The blade 45 attached to the screw moves to the outlet while mixing and stirring, and the mixture is discharged by the rotary valve 49 provided at the outlet.

【0026】この混合、撹拌されて移送される間に加硫
ゴム46は、マイクロ波エネルギ−と加熱空気とを同時
に受けて、脱硫温度まで昇温することになるが、マイク
ロ波は、マイクロ波発振機50より発振されて導波管5
1の先端の照射口より照射される。なお、照射口にはテ
フロン・セラミック、石英ガラス等の材質を用いたシ−
ル板52が設けてある。また、マイクロ波加熱室41の
上方には点検用扉53が備えてある。
While being mixed, agitated and transferred, the vulcanized rubber 46 simultaneously receives microwave energy and heated air and is heated to the desulfurization temperature. Waveguide 5 oscillated by oscillator 50
It is irradiated from the irradiation opening at the tip of 1. The irradiation port is made of a material such as Teflon ceramic or quartz glass.
A rule plate 52 is provided. An inspection door 53 is provided above the microwave heating chamber 41.

【0027】加熱空気は燃焼式の脱臭装置54で脱臭処
理後マイクロ波加熱室41に送風されるが、脱臭装置5
4の燃料は重油、灯油及びLPG、LNG等のガスを使
用し、コントロ−ル弁55等の配管系を経て供給する。
The heated air is sent to the microwave heating chamber 41 after the deodorizing process by the combustion type deodorizing device 54.
The fuel of No. 4 uses heavy oil, kerosene and gas such as LPG and LNG, and is supplied through a piping system such as a control valve 55.

【0028】一方、燃焼するための空気は燃焼空気送入
ブロア−56より、エア−コントロ−ルバルブ57を経
由した後燃料とミツクスされて燃焼バ−ナ−58で着火
され、炎59を出して燃焼する。この時、脱臭炉内の燃
焼温度雰囲気は温度センサ60の信号により設定温度5
00℃以上(好ましくは550〜750℃)になるよう
に調整される。脱臭装置54の内壁はこのように高温と
なるので耐火レンガ等の耐火物で作られている。
On the other hand, the air for combustion is mixed with fuel by the combustion air feed blower 56 after passing through the air-control valve 57 and ignited by the combustion burner 58, and a flame 59 is emitted. To burn. At this time, the combustion temperature atmosphere in the deodorizing furnace is set to a set temperature of 5 by the signal of the temperature sensor 60.
The temperature is adjusted to be 00 ° C or higher (preferably 550 to 750 ° C). Since the inner wall of the deodorizing device 54 has such a high temperature, it is made of a refractory material such as refractory bricks.

【0029】マイクロ波加熱室41より発生する悪臭ガ
スは排気ファン61で吸気され、脱臭装置41の高温度
500℃以上で燃焼する炎59に直接接触させて瞬時に
燃焼させる。この接触時間は、好ましくは0.3〜1秒
間の範囲とすれば悪臭ガスに含有するオイル、硫化水
素、チッ素、塩素、アルデヒド等を確実に燃焼させて分
解することができる。燃焼直後の高温ガス(高温空気)
は室内にフレシュエアを供給するファン62と、その風
量を調整するダンパ−バルブ63により混合されて温度
を低下させる。ただし、この場合の温度は、マイクロ波
加熱室41に送風する条件温度を対象とする加硫ゴムの
脱硫温度付近かそれ以上でなければならない。
The malodorous gas generated from the microwave heating chamber 41 is sucked by the exhaust fan 61, and is brought into direct contact with the flame 59 of the deodorizing device 41 that burns at a high temperature of 500 ° C. or more to burn instantly. This contact time is preferably set in the range of 0.3 to 1 second so that oil, hydrogen sulfide, nitrogen, chlorine, aldehyde, etc. contained in the malodorous gas can be reliably burned and decomposed. Hot gas (hot air) immediately after combustion
Is mixed by a fan 62 that supplies fresh air into the room and a damper valve 63 that adjusts the amount of the air to lower the temperature. However, the temperature in this case must be near the desulfurization temperature of the vulcanized rubber or higher, which is the target temperature for blowing air to the microwave heating chamber 41.

【0030】このようにして脱臭処理され、しかも温度
が脱硫温度以上の加熱空気は、一部は排気ダクト64を
経て外気へ放出されるが、この時、触媒に接触させてN
Ox、CO2の処理を施すことや、水を散水する雰囲気
中を通過させて低温度にしてから排煙することもある。
The heated air that has been deodorized in this way and has a temperature higher than the desulfurization temperature is partly released to the outside air through the exhaust duct 64.
In some cases, Ox and CO 2 may be treated, or water may be passed through an atmosphere in which water is sprinkled to reduce the temperature and then smoke is discharged.

【0031】また、前述したようにこの加熱空気をゴム
粉砕製造工程13の直後(マイクロ波加熱室41に入る
直前)にゴム昇温の予熱エネルギ−として利用すれば省
エネルギ−の観点からも経済的である。さらに、排煙し
ない加熱空気は、送風分岐ダクト65を経由して温度セ
ンサ67と、その信号で動くコントロ−ルバルブ66の
働きにより、予めセットした加硫ゴムの脱硫温度付近
(180℃〜350℃)に調整されてマイクロ波加熱室
41に供給される。このように加熱空気の経路はマイク
ロ波加熱室41から見ると、供給−排気−脱臭−供給の
サイクルで循環されていることになる。
Further, as described above, if this heated air is used as preheating energy for raising the temperature of the rubber immediately after the rubber crushing manufacturing step 13 (just before entering the microwave heating chamber 41), it is economical from the viewpoint of energy saving. Target. Further, the heated air that does not emit smoke is operated near the desulfurization temperature (180 ° C. to 350 ° C.) of the vulcanized rubber set in advance by the function of the temperature sensor 67 and the control valve 66 that moves according to the signal via the blower branch duct 65. ) And is supplied to the microwave heating chamber 41. In this way, when viewed from the microwave heating chamber 41, the path of the heated air is circulated in the cycle of supply-exhaust-deodorization-supply.

【0032】マイクロ波加熱室41でマイクロ波エネル
ギ−と加熱空気とを同時に受けて脱硫温度まで昇温し解
重合したゴムは、適正な温度(適正な脱硫)であるか否
かを管理するために、ゴム取出口付近に電波漏洩対策と
エアパ−ジフィルタ−の施されたフィルタ−68を備え
た温度センサ69で検知することができる。また、この
測定信号と予め設定した温度を比較演算部70で信号処
理し、マイクロ波出力を自動制御して常に好適な再生条
件となるようにゴム温度を調整することができる。
In order to control whether or not the temperature of the depolymerized rubber that has been heated to the desulfurization temperature by simultaneously receiving microwave energy and heated air in the microwave heating chamber 41 is at an appropriate temperature (appropriate desulfurization). In addition, it can be detected by the temperature sensor 69 provided with a filter 68 provided with a radio wave leakage countermeasure and an air purge filter near the rubber outlet. Further, the measurement signal and the preset temperature are signal-processed by the comparison calculation unit 70, and the microwave output is automatically controlled so that the rubber temperature can be adjusted so that the reproduction condition is always suitable.

【0033】このようにして、脱硫を完了した加硫ゴム
46は直ちに前述したように冷却工程32(図1)で水
により冷却される。必要に応じリファイングロ−ル(仕
上ロ−ル機)で精練、精製する工程17を経由して再生
ゴム製品18とする。
Thus, the vulcanized rubber 46 which has been desulfurized is immediately cooled with water in the cooling step 32 (FIG. 1) as described above. If necessary, a reclaimed rubber product 18 is obtained via a step 17 of refining and refining with a refine roll (finishing roll machine).

【0034】次に、特許請求の範囲の請求項2に述べる
再生方法を実施するための機械的発熱手段としてシェア
−ヘッド押出機を図4に示す。なお、図5(A)は同押
出機における発熱先端部の縦断面図で、図5の(B)は
同押出機におけるスクリュ−発熱部の縦断面図である。
シリンダ−71は発熱先端部72と粉砕ゴムを供給する
供給口73からなり、この先端部72は浅い深さの多数
の凹溝74を有し、さらに、この部分を温調するために
循環する温水、オイルが流れる孔75が設けられた構造
になっている。シリンダ−71の内部には、スクリュ−
76が設けられ、その先端側にはシリンダ発熱先端部7
2に対応する位置に発熱部77が配置されており、表面
にはゴムにせん断と摩擦を効率よく起こさせるために高
さの低い凸条部78が付いている。さらに、スクリュ−
76は減速歯車79を経てモ−タ80によって回転され
る。
Next, FIG. 4 shows a shear-head extruder as a mechanical heating means for carrying out the regeneration method described in claim 2 of the claims. Note that FIG. 5A is a vertical cross-sectional view of a heat-generating tip portion of the extruder, and FIG. 5B is a vertical cross-sectional view of a screw-heat generating portion of the extruder.
The cylinder 71 comprises a heat generating tip 72 and a supply port 73 for supplying crushed rubber. The tip 72 has a large number of recessed grooves 74 with a shallow depth, and further circulates to control the temperature of this portion. The structure is provided with a hole 75 through which hot water and oil flow. Inside the cylinder 71, the screw
76 is provided, and the cylinder heat generating tip 7 is provided on the tip side thereof.
The heat generating portion 77 is arranged at a position corresponding to No. 2, and the surface thereof is provided with the ridge portion 78 having a low height in order to efficiently cause shear and friction in the rubber. In addition, the screw
76 is rotated by a motor 80 via a reduction gear 79.

【0035】マイクロ波加熱工程15で、マイクロ波エ
ネルギ−と加熱空気の同時過熱により脱硫を開始し、部
分解重合状態になって可塑化が進行している粉砕ゴム
は、供給口73より連続的に投入され、回転するスクリ
ュ−76の働きにより先端発熱部77の方へ順次圧送さ
れながら押し込まれて行く。先端部では凹溝74を多数
箇有した先端発熱部72とスクリュ−先端部との間隙8
1に充満し回転するスクリュ−ヘッド凸条部78の送り
効果も相乗して非常な勢いでせん断熱摩擦熱が起こり、
ゴム自身が発熱して解重合反応が進行し、充分に可塑化
された脱硫状態のゴムが発熱先端部72より、あたかも
撚られた紐の様な形状で連続的に放出される。連続的に
放出される脱硫ゴムは、直ちに前述する冷却工程34で
冷却されて再生ゴム製品18となる。
In the microwave heating step 15, desulfurization is started by the simultaneous overheating of microwave energy and heated air, and the pulverized rubber which is in the partial decomposition polymerization state and undergoes plasticization is continuously supplied from the supply port 73. The rotating screw 76 is pushed into the tip heat generating portion 77 while being sequentially fed under pressure. At the tip portion, the gap 8 between the tip heating portion 72 having a large number of concave grooves 74 and the screw tip portion 8
1, the screw head ridges 78 that rotate and fill up with 1 also synergistically generate shear heat and friction heat with great momentum.
The rubber itself generates heat and the depolymerization reaction proceeds, and the sufficiently plasticized desulfurized rubber is continuously discharged from the heat generating tip portion 72 in the shape of a twisted string. The desulfurized rubber that is continuously discharged is immediately cooled in the cooling step 34 described above to become the recycled rubber product 18.

【0036】この機械的発熱手段により可塑化を進めて
脱硫促進を計る間、すなわち、マイクロ波加熱室41の
取出口(図2)とシリンダ−71の供給口73の間のゴ
ム及びシリンダ−71の先端から放出されるゴムの温度
は高温度で、また多量の悪臭ガスを発生する。したがっ
て、これらの個所は排気を充分にしてマイクロ波加熱室
41で使用している燃焼式の脱臭装置54へ廻し脱臭処
理するようにする。このようにすれば本発明のシステム
を良好な作業環境で行なうために、さらに有効な手段と
なる。(図1には図示せず)
While the plasticization is promoted by the mechanical heat generating means to accelerate the desulfurization, that is, the rubber and cylinder 71 between the outlet of the microwave heating chamber 41 (FIG. 2) and the supply port 73 of the cylinder 71. The temperature of the rubber released from the tip of is high, and a large amount of malodorous gas is generated. Therefore, these parts are sufficiently exhausted to be passed to the combustion type deodorizing device 54 used in the microwave heating chamber 41 for deodorizing treatment. This is a more effective means for carrying out the system of the present invention in a good working environment. (Not shown in FIG. 1)

【0037】[0037]

【発明の効果】上記した通り、本発明に係る加硫ゴムの
再生方法は、マイクロ波エネルギ−と加熱空気と同時に
与えて直線的に脱硫温度まで昇温させ、解重合反応を促
進させる方法であり、従来では不可能に近かった連続短
時間化、システム化が可能になる。
As described above, the method for regenerating vulcanized rubber according to the present invention is a method in which microwave energy and heated air are simultaneously given to linearly raise the temperature to the desulfurization temperature to accelerate the depolymerization reaction. Therefore, it becomes possible to realize a continuous shortening of time and systematization, which was impossible in the past.

【0038】さらに、脱硫中に多量に発生する悪臭ガス
を常時排出するため、マイクロ波の放電によるスパ−ク
発生が起きても、発生ガスに着火して爆発する危険がな
くなる。また、放散する多量の悪臭ガスを脱臭処理する
ため作業環境排煙による公害の観点からも問題を解決し
ている。脱臭装置で排気ガスを脱臭処理した一部を加熱
再生のエネルギ−に再利用するため、省エネルギ−化、
短時間化の上でも優れている。
Further, since a large amount of malodorous gas generated during desulfurization is constantly discharged, even if spark is generated due to microwave discharge, there is no danger of igniting the generated gas and exploding. In addition, since a large amount of odorous gas that is emitted is deodorized, the problem is solved from the viewpoint of pollution due to smoke exhaust in the working environment. Energy is saved because a part of the exhaust gas deodorized by the deodorizer is reused as energy for heating and regeneration.
Excellent in shortening the time.

【0039】短時間脱硫処理のため、得られる再生ゴム
の物性は、例えば、従来の長時間解重合反応法(オ−ト
クレ−ブ法)のように、ゴムポリマ−分子の大きさが加
硫前本来のものより極端に小さく切断されることなく良
好な再生ゴムが得られる。
Due to the short-time desulfurization treatment, the physical properties of the regenerated rubber obtained are such that the size of the rubber polymer molecule before vulcanization is the same as in the conventional long-term depolymerization reaction method (autoclave method). A good recycled rubber can be obtained without being cut extremely smaller than the original one.

【0040】本発明の基本的理念は、熱による解重合反
応となる従来の再生方法のように再生剤、軟化剤等の薬
剤の混合をしないため、再生ゴムよりの悪臭の発生、汚
染の問題はない。ただし、特殊ゴム材で、脱硫中に酸化
反応が進みゴムが硬化、炭化(可塑化する温度範囲が非
常に狭いゴム材)しやすい場合は若干軟化剤を添加する
例外がある。
The basic idea of the present invention is that since a regenerating agent, a softening agent and the like are not mixed as in the conventional regenerating method which is a depolymerization reaction by heat, the problem of generation of offensive odor from the regenerated rubber and contamination. There is no. However, with special rubber materials, there is an exception to add a slight softening agent when the oxidation reaction progresses during desulfurization and the rubber tends to harden and carbonize (rubber material having a very narrow temperature range for plasticizing).

【0041】再生ゴム製品の脱硫状態(解重合状態)、
すなわち、脱硫温度条件は投入するマイクロ波エネルギ
−と加熱空気温度を任意に、しかも直ちに調整すること
で簡単に行うことができる。
Desulfurization state (depolymerization state) of recycled rubber products,
That is, the desulfurization temperature condition can be easily adjusted by arbitrarily and immediately adjusting the microwave energy and the heating air temperature to be applied.

【0042】さらに、本発明の方法では、加硫ゴムを加
熱し、脱硫が充分に終了していない部分解重合状態のゴ
ム(可塑化が進行している途中のゴム)に、機械的発熱
手段を講じて充分に脱硫させると共に再生ゴムの形状を
作る精製工程を兼ねることもできる。この場合、マイク
ロ波エネルギ−と加熱空気によるゴムの昇温条件を下げ
ることができる。
Further, according to the method of the present invention, the vulcanized rubber is heated, and a mechanical heat generating means is applied to the partially decomposed and polymerized rubber (rubber in the middle of plasticization) in which desulfurization has not been completed sufficiently. It is also possible to combine the steps of refining to sufficiently desulfurize and to form the shape of recycled rubber. In this case, it is possible to reduce the temperature rising condition of the rubber due to the microwave energy and the heated air.

【0043】以上のように本発明による加熱ゴムの再生
方法は、安全で作業環境にも優れ、しかも経済的、か
つ、高い生産性を有し、良好な再生ゴムを製造できるゴ
ムの再生方法である。
As described above, the method for regenerating a heated rubber according to the present invention is a method for regenerating a rubber which is safe, has an excellent working environment, is economical, has high productivity, and can produce a good regenerated rubber. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す再生方法のブロック図で
ある。
FIG. 1 is a block diagram of a reproducing method according to an embodiment of the present invention.

【図2】本発明の再生方法を実施するための加硫ゴム再
生装置を示す簡略的な正面図である。
FIG. 2 is a simplified front view showing a vulcanized rubber recycling apparatus for carrying out the recycling method of the present invention.

【図3】同加硫ゴム再生装置の簡略的な側面図である。FIG. 3 is a simplified side view of the vulcanized rubber recycling apparatus.

【図4】機械的発熱手段の一例として示したシェア−ヘ
ッド押出機の簡略的な縦断側面図である。
FIG. 4 is a schematic vertical sectional side view of a shear-head extruder shown as an example of a mechanical heating means.

【図5】図5の(A)はシェア−ヘッド押出機における
発熱先端部の縦断面図である。図5の(B)はシェア−
ヘッド押出機におけるスクリュ−発熱部の縦断面図であ
る。
FIG. 5 (A) is a vertical cross-sectional view of a heat-generating tip portion in a shear-head extruder. Fig. 5B shows the share-
It is a longitudinal cross-sectional view of a screw-heat generating portion in the head extruder.

【図6】従来例として示した加硫ゴム再生装置の再生プ
ロセスを示したブロツク図である。
FIG. 6 is a block diagram showing a regeneration process of a vulcanized rubber recycling apparatus shown as a conventional example.

【図7】加硫ゴムの昇温状態を説明するための図であ
る。
FIG. 7 is a diagram for explaining a temperature rising state of vulcanized rubber.

【符号の説明】[Explanation of symbols]

11 原料 12 選別工程 13 粉砕工程 14 調合混合工程 15 マイクロ波加熱工程 17 精製工程 18 再生ゴム製品 31 脱臭装置 32 冷却工程 33 機械的発熱手段 34 冷却工程 11 Raw Material 12 Sorting Step 13 Grinding Step 14 Mixing and Mixing Step 15 Microwave Heating Step 17 Refining Step 18 Reclaimed Rubber Product 31 Deodorizing Device 32 Cooling Step 33 Mechanical Heating Means 34 Cooling Step

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 21:00 105:24 105:26 C08L 21:00 8016−4J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location // B29K 21:00 105: 24 105: 26 C08L 21:00 8016-4J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波エネルギ−と加熱空気とを同
時に与えて加硫ゴムを脱硫温度まで加熱して再生するゴ
ムの再生方法において、この脱硫工程中に加熱により発
生する悪臭ガスを燃焼式脱臭装置の炎に直接接触させ、
悪臭ガスを燃焼させて脱臭処理を行い、その処理ガスの
一部を脱硫対象とする加硫ゴムの最適脱硫温度またはそ
の温度付近に調整して脱硫のために必要な加熱空気とし
て利用し、その他の処理ガスは外気に排煙することを特
徴とする加硫ゴムの再生方法。
1. A method of regenerating a rubber in which microwave energy and heated air are simultaneously applied to heat a vulcanized rubber to a desulfurization temperature to regenerate it, and a malodorous gas generated by heating during the desulfurization step is burned and deodorized. Direct contact with the flame of the device,
The odorous gas is burned to perform deodorizing treatment, and a part of the treated gas is adjusted to at or near the optimum desulfurization temperature of the vulcanized rubber to be desulfurized and used as heated air required for desulfurization. The method for recycling vulcanized rubber is characterized in that the treated gas is discharged to the outside air.
【請求項2】 加硫ゴムにマイクロ波エネルギ−と加熱
空気とを与えて部分解重合状態とした後、このゴムを高
速回転混練機、シェア−ヘッドを備える押出機などの機
械的発熱手段によって加熱し脱硫を促進させることを特
徴とする請求項(1)記載の加硫ゴムの再生方法。
2. A vulcanized rubber is supplied with microwave energy and heated air to be in a partial decomposition polymerization state, and then this rubber is subjected to a mechanical heating means such as a high-speed rotary kneading machine or an extruder equipped with a shear head. The method for regenerating vulcanized rubber according to claim 1, wherein heating is performed to accelerate desulfurization.
JP32231891A 1991-11-12 1991-11-12 Method for regenerating vulcanized rubber Pending JPH05133514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32231891A JPH05133514A (en) 1991-11-12 1991-11-12 Method for regenerating vulcanized rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32231891A JPH05133514A (en) 1991-11-12 1991-11-12 Method for regenerating vulcanized rubber

Publications (1)

Publication Number Publication Date
JPH05133514A true JPH05133514A (en) 1993-05-28

Family

ID=18142297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32231891A Pending JPH05133514A (en) 1991-11-12 1991-11-12 Method for regenerating vulcanized rubber

Country Status (1)

Country Link
JP (1) JPH05133514A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039148A1 (en) * 1997-03-03 1998-09-11 Reinhard Krieg Method for replastifying used rubber powder
WO2000074913A1 (en) * 1999-06-08 2000-12-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of reclaiming crosslinked rubber and molded article of reclaimed rubber
WO2000074914A1 (en) * 1999-06-08 2000-12-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of reclaiming crosslinked rubber
JP2006052375A (en) * 2004-08-13 2006-02-23 Hyundai Motor Co Ltd Continuous surface-modifying apparatus of waste rubber powder using microwave and surface-modifying method using the same
KR100867417B1 (en) * 2006-12-22 2008-11-06 (주)폴리싸이클 Apparatus and Method for devulcanization and deodorization of Reclaimed Rubber Powder
JP2013517372A (en) * 2010-01-20 2013-05-16 バーテックス リミティド ライアビリティ カンパニー Desulfurization of rubber and other elastomers
WO2014154018A1 (en) * 2013-03-25 2014-10-02 Wang Jianguo Rubber-reclaiming environmentally friendly desulfurization tank and desulfurization process thereof
CN107540872A (en) * 2017-10-17 2018-01-05 张旭 A kind of feeding system for reclaimed rubber desulfurizer
CN108359153A (en) * 2018-03-02 2018-08-03 徐州工业职业技术学院 A kind of magnetic reclaimed rubber of environmental protection and its preparation method and application
CN111647197A (en) * 2020-07-06 2020-09-11 安徽丰运高分子材料有限公司 Preparation method of chloroprene reclaimed rubber
CN113121873A (en) * 2021-05-06 2021-07-16 益路恒丰衡水沥青科技有限公司 Rubber asphalt production equipment based on activated rubber powder
CN114524972A (en) * 2022-03-07 2022-05-24 焦作市弘瑞橡胶有限责任公司 Low-temperature zero-pressure anhydrous rubber low-oxygen catalytic regeneration method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039148A1 (en) * 1997-03-03 1998-09-11 Reinhard Krieg Method for replastifying used rubber powder
WO2000074913A1 (en) * 1999-06-08 2000-12-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of reclaiming crosslinked rubber and molded article of reclaimed rubber
WO2000074914A1 (en) * 1999-06-08 2000-12-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of reclaiming crosslinked rubber
US6632918B1 (en) 1999-06-08 2003-10-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of reclaiming crosslinked rubber
US6777453B1 (en) 1999-06-08 2004-08-17 Kabushiki Kaisha Toyota Chuo Kenyusho Method of reclaiming crosslinked rubber, and molded article of reclaimed rubber
JP2006052375A (en) * 2004-08-13 2006-02-23 Hyundai Motor Co Ltd Continuous surface-modifying apparatus of waste rubber powder using microwave and surface-modifying method using the same
KR100867417B1 (en) * 2006-12-22 2008-11-06 (주)폴리싸이클 Apparatus and Method for devulcanization and deodorization of Reclaimed Rubber Powder
JP2013517372A (en) * 2010-01-20 2013-05-16 バーテックス リミティド ライアビリティ カンパニー Desulfurization of rubber and other elastomers
WO2014154018A1 (en) * 2013-03-25 2014-10-02 Wang Jianguo Rubber-reclaiming environmentally friendly desulfurization tank and desulfurization process thereof
CN107540872A (en) * 2017-10-17 2018-01-05 张旭 A kind of feeding system for reclaimed rubber desulfurizer
CN108359153A (en) * 2018-03-02 2018-08-03 徐州工业职业技术学院 A kind of magnetic reclaimed rubber of environmental protection and its preparation method and application
CN111647197A (en) * 2020-07-06 2020-09-11 安徽丰运高分子材料有限公司 Preparation method of chloroprene reclaimed rubber
CN113121873A (en) * 2021-05-06 2021-07-16 益路恒丰衡水沥青科技有限公司 Rubber asphalt production equipment based on activated rubber powder
CN113121873B (en) * 2021-05-06 2022-09-30 益路恒丰衡水沥青科技有限公司 Rubber asphalt production equipment based on activated rubber powder
CN114524972A (en) * 2022-03-07 2022-05-24 焦作市弘瑞橡胶有限责任公司 Low-temperature zero-pressure anhydrous rubber low-oxygen catalytic regeneration method

Similar Documents

Publication Publication Date Title
JPH05133514A (en) Method for regenerating vulcanized rubber
JP3051020B2 (en) Organic waste carbonization equipment
KR101062990B1 (en) Apparatus for manufacturing active carbon using sewage sludge and active carbon manufactured by the apparatus
WO1998011385A1 (en) Apparatus and process for removing unburned carbon in fly ash
GB2278606A (en) Dry process for recycling rubber waste
JPH06210633A (en) Reclaming device for waste vulcanized rubber
JP3858123B2 (en) Treatment method by carbonization of waste
JPH07227846A (en) Reclamation device of waste vulcanized rubber
KR102055099B1 (en) Method for drying the sludge by using a low-temperature hot air and microwave
KR100202462B1 (en) Apparatus for converting household and/or other waste to solid fuel
JP2974067B1 (en) Waste carbonization equipment
JPH0857453A (en) Apparatus and method for decomposition treatment of garbage
JPH11140222A (en) Deodorizer for vulcanized rubber-reclaiming line and deodorization process
JP2530256B2 (en) Asphalt pavement waste material recycling device
JP3545504B2 (en) Method and apparatus for producing solid fuel
JPH0699439A (en) Continuous bridging method for extrusion molded body such as organic-peroxide compounded polymer
JP3899563B2 (en) FRP waste disposal method
JPH05264020A (en) Incinerator
KR20080083926A (en) Method for carbonization and recycling of sludge
JPH06159644A (en) Heat treating method for oil swelling resin
JP2968767B2 (en) Waste carbonization method
JP2000176934A (en) Waste plastic treatment device
JP2002336899A (en) Method for carbonizing organic sludge and carbonization device
JPH0576890B2 (en)
JPH09234446A (en) Thermal energy generator by microorganism