JPH05133270A - Air quantity detecting device for engine - Google Patents

Air quantity detecting device for engine

Info

Publication number
JPH05133270A
JPH05133270A JP29019391A JP29019391A JPH05133270A JP H05133270 A JPH05133270 A JP H05133270A JP 29019391 A JP29019391 A JP 29019391A JP 29019391 A JP29019391 A JP 29019391A JP H05133270 A JPH05133270 A JP H05133270A
Authority
JP
Japan
Prior art keywords
air
intake
cylinder
ratio
air amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29019391A
Other languages
Japanese (ja)
Inventor
Hatsuo Nagaishi
初雄 永石
Hiroshi Iwano
岩野  浩
Hiroyuki Itoyama
浩之 糸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP29019391A priority Critical patent/JPH05133270A/en
Publication of JPH05133270A publication Critical patent/JPH05133270A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy of detecting the air quantity and reduce the manhours for development. CONSTITUTION:An air flow meter 1 for producing output in answer to the air quantity in the upstream of a throttle valve, a means 2 for calculating the pressure in an intake pipe based on the output of the air flow meter 1 and the calculated value of previous intake air flow into a cylinder, a means 3 for calculating the rate of intake air flowing into the cylinder based on at least the pressure in the intake pipe and the value equivalent to the throttle valve opening, and a means 4 for calculating the intake air flow flowing into the cylinder based on the rate of intake air and the pressure in the intake air pipe, are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、エンジンの空気量検
出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine air amount detecting device.

【0002】[0002]

【従来の技術】絞り弁上流の吸気通路にエアフローメー
タを設けた燃料噴射式のエンジンにおいて、エアフロー
メータの出力(吸入空気量)およびエンジン回転数から
求まる基本噴射パルス幅に、加重平均その他各補正を行
ってシリンダ吸入空気量に相当する噴射パルス幅を求
め、これを基に燃料インジェクタの燃料噴射量を制御す
るものがある。
2. Description of the Related Art In a fuel injection type engine in which an air flow meter is provided in an intake passage upstream of a throttle valve, a weighted average and other corrections are made to a basic injection pulse width obtained from the output (intake air amount) of the air flow meter and the engine speed. There is a method in which the injection pulse width corresponding to the cylinder intake air amount is obtained and the fuel injection amount of the fuel injector is controlled based on this.

【0003】吸気マニホールド内の圧力変化によって、
エアフローメータの出力と、シリンダの吸入空気量に差
が出てくるため、加重平均等の各補正を行うことで、シ
リンダ吸入空気量を予測し、予測した空気量に合わせて
燃料を噴射するのである(特開平2ー156117号公
報等参照)。
Due to pressure changes in the intake manifold,
Since there is a difference between the output of the air flow meter and the intake air amount of the cylinder, it is possible to predict the cylinder intake air amount by performing each correction such as weighted average and inject the fuel according to the predicted air amount. (See Japanese Patent Application Laid-Open No. 2-156117, etc.).

【0004】[0004]

【発明が解決しようとする課題】しかし、エンジンの各
性能を向上するために、吸、排気バルブのリフト、タイ
ミングを変える可変バルブ、圧縮比を変える圧縮比可変
装置、吸入空気に旋回流を付与するスワール弁等の可変
要素を装備したものがあるが、このようなエンジンにあ
っては、可変要素の切換時にはシリンダに流入する新気
の割合が急変することに伴う吸入空気量の急変をモニタ
できず、前述のように加重平均等の各補正を行っても、
シリンダ吸入空気量と予測空気量とでズレを生じること
があり、空燃比のエラーが残る。
However, in order to improve each performance of the engine, intake and exhaust valve lift, a variable valve that changes the timing, a compression ratio variable device that changes the compression ratio, and a swirling flow are added to the intake air. Some engines are equipped with variable elements such as a swirl valve, but in such an engine, a sudden change in the intake air amount due to a sudden change in the ratio of fresh air flowing into the cylinder when switching the variable elements is monitored. It is not possible, even if each correction such as weighted average is performed as described above,
A gap may occur between the cylinder intake air amount and the predicted air amount, and an air-fuel ratio error remains.

【0005】また、このような補正のロジックは実機で
の適合が必要となっており、そのため開発工数が大きい
という問題がある。
Further, such a correction logic needs to be adapted in an actual machine, which causes a problem that the man-hours for development are large.

【0006】本発明は、このような問題点を解決するこ
とを目的としている。
The present invention aims to solve such problems.

【0007】[0007]

【課題を解決するための手段】第1の発明は、図1に示
すように絞り弁上流の空気量に応じた出力をするエアフ
ローメータ1と、このエアフローメータ1の出力と前回
のシリンダ吸入空気量算出値を基に吸気管内圧を算出す
る手段2と、少なくともこの吸気管内圧もしくは絞り弁
開度相当値を基にシリンダに流入する新気の割合を算出
する手段3と、この新気割合ならびに吸気管内圧にてシ
リンダ吸入空気量を算出する手段4とを設けてなる。
A first aspect of the present invention is, as shown in FIG. 1, an air flow meter 1 that outputs according to the amount of air upstream of a throttle valve, the output of this air flow meter 1 and the previous cylinder intake air. Means 2 for calculating the intake pipe internal pressure based on the calculated value, means 3 for calculating the ratio of fresh air flowing into the cylinder based on at least the intake pipe internal pressure or the throttle valve opening equivalent value, and the fresh air ratio And means 4 for calculating the cylinder intake air amount based on the intake pipe internal pressure.

【0008】第2の発明は、図2に示すように前記新気
割合算出手段3が、吸、排気バルブのリフト、タイミン
グを変える可変バルブ、圧縮比を変える圧縮比可変装
置、吸入空気に旋回流を付与するスワール弁等の可変要
素の状態にしたがい複数の算出部5,6を有すると共
に、可変要素の状態に応じてこれらの算出部5,6を選
択する手段7を設けてなる。
In the second aspect of the invention, as shown in FIG. 2, the fresh air ratio calculating means 3 swirls intake and exhaust valves, a variable valve for changing the timing, a variable compression ratio device for changing the compression ratio, and intake air. It has a plurality of calculation units 5 and 6 according to the states of variable elements such as swirl valves that provide flow, and means 7 for selecting these calculation units 5 and 6 according to the states of the variable elements.

【0009】[0009]

【作用】過渡運転時等、エアフローメータ出力とシリン
ダ吸入空気量とで時間的ズレを生じるが、このエアフロ
ーメータ出力とシリンダ吸入空気量にしたがう吸気管内
圧、吸気管内圧等より定まるシリンダの新気割合、新気
割合ならびに吸気管内圧に基づいてシリンダ吸入空気量
を、分離して求めるので、精度の良いシリンダ吸入空気
量値が得られ、またエンジンへのマッチングを容易に行
える。
[Function] Although there is a time lag between the air flow meter output and the cylinder intake air amount during transient operation, etc., the cylinder fresh air determined by the intake pipe internal pressure, intake pipe internal pressure, etc. according to the air flow meter output and the cylinder intake air amount Since the cylinder intake air amount is determined separately based on the ratio, the fresh air ratio, and the intake pipe internal pressure, an accurate cylinder intake air amount value can be obtained and matching with the engine can be easily performed.

【0010】一方、吸、排気バルブのリフト、タイミン
グを変える可変バルブ、圧縮比を変える圧縮比可変装
置、吸入空気に旋回流を付与するスワール弁等の可変要
素の装備に対し、複数の新気割合算出部が可変要素の状
態に即してそれぞれの状態における新気割合を算出する
ので、可変要素の切換時にあっても精度良くシリンダ吸
入空気量を求められる。
[0010] On the other hand, a plurality of fresh air is provided for the equipment of variable elements such as lift of intake and exhaust valves, variable valve for changing timing, variable compression ratio device for changing compression ratio, and swirl valve for giving swirl flow to intake air. Since the ratio calculator calculates the fresh air ratio in each state according to the state of the variable element, the cylinder intake air amount can be accurately obtained even when the variable element is switched.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図3に示すように、エアクリーナ20より
吸気通路21に吸入された空気は、吸気ポート22に設
けた燃料インジェクタ23からの噴射燃料と混合して、
エンジンのシリンダ24に導かれる。
As shown in FIG. 3, the air taken into the intake passage 21 from the air cleaner 20 is mixed with the fuel injected from the fuel injector 23 provided in the intake port 22,
It is guided to the cylinder 24 of the engine.

【0013】シリンダ24内で点火火花の助けを借りて
燃焼するガスは、ピストンを押し下げる仕事を行い、仕
事をした後の燃焼ガスは排気通路25を経て有害三成分
(CO,HC,NOx)を浄化する触媒コンバータ26
に導かれる。
The gas that burns in the cylinder 24 with the help of ignition sparks performs the work of pushing down the piston, and the burned gas after the work passes through the exhaust passage 25 and contains harmful three components (CO, HC, NOx). Purifying catalytic converter 26
Be led to.

【0014】アクセルペダルを踏み込むと、これと連動
する絞り弁27が開き、シリンダ24に流入する空気量
が増加する。この空気量の変化は絞り弁27上流に設け
た熱線式のエアフローメータ28の信号に変化を与え
る。
When the accelerator pedal is depressed, the throttle valve 27 interlocking with the accelerator pedal is opened, and the amount of air flowing into the cylinder 24 increases. This change in the amount of air changes the signal of the hot-wire type air flow meter 28 provided upstream of the throttle valve 27.

【0015】エアフローメータ28は、空気量が多くな
るほどセンサ部が冷されるので、その温度が一定になる
ようにセンサ部に電流が供給され、これが電圧値に変換
されて空気量信号として出力される。
Since the sensor portion of the air flow meter 28 is cooled as the amount of air increases, a current is supplied to the sensor portion so that its temperature becomes constant, which is converted into a voltage value and output as an air amount signal. It

【0016】マイクロコンピュータからなるコントロー
ルユニット30は、前記吸気管内圧算出手段、新気割合
算出手段、シリンダ吸入空気量算出手段の機能を有し、
エアフローメータ28、絞り弁27の開度を検出する絞
り弁開度センサ31、クランク軸に同期して所定の信号
を発するクランク角センサ32、冷却水温を検出する水
温センサ33、排気通路25の空燃比センサ34等から
の信号が入力され、コントロールユニット30はエアフ
ローメータ28の信号に基づいてシリンダ吸入空気量を
演算し、燃料インジェクタ23からの燃料噴射量を決定
する。
The control unit 30 including a microcomputer has the functions of the intake pipe internal pressure calculating means, the fresh air ratio calculating means, and the cylinder intake air amount calculating means.
An air flow meter 28, a throttle valve opening sensor 31 that detects the opening of the throttle valve 27, a crank angle sensor 32 that outputs a predetermined signal in synchronization with the crankshaft, a water temperature sensor 33 that detects the cooling water temperature, and an empty space of the exhaust passage 25. A signal from the fuel ratio sensor 34 or the like is input, the control unit 30 calculates the cylinder intake air amount based on the signal from the air flow meter 28, and determines the fuel injection amount from the fuel injector 23.

【0017】次に、シリンダ吸入空気量の演算内容を図
4のフローチャートに基づいて説明する。このルーチン
は一定の時間毎(例えば4ms)に繰り返し行われる。
Next, the calculation contents of the cylinder intake air amount will be described with reference to the flowchart of FIG. This routine is repeatedly performed at regular intervals (for example, 4 ms).

【0018】まず、ステップ101でエアフローメータ
28からの信号をA/D変換し、そのA/D変換値が空
気量と比例するように一定の処理(リニアライズ処理と
いう)を行い、リニアライズした値をQshwにセットす
る。リニアライズするためのテーブル特性を図5に示
す。
First, in step 101, the signal from the air flow meter 28 is A / D converted, and a certain process (called linearization process) is performed so that the A / D converted value is proportional to the air amount, and is linearized. Set the value to Qshw. Table characteristics for linearization are shown in FIG.

【0019】このリニアライズ空気量Qshwがエアフロ
ーメータ部流量の基本値となるが、ステップ102では
エアフローメータ自体の応答遅れを考慮して、これに関
する補正を行う。
This linearized air amount Qshw becomes the basic value of the flow rate of the air flow meter portion, but in step 102, the response delay of the air flow meter itself is taken into consideration and a correction relating to this is performed.

【0020】これは、近年エアフローメータの耐久性を
高める一方で、コストも安く上がるように、エアフロー
メータがボビン形状のセラミックの周囲に発熱体を設け
たセンサ部を有するものに移ってきており、その熱容量
によって図6のような遅れを生じるため、これに対処す
るものである(特願平2ー15784号参照)。
Recently, in order to improve the durability of the air flow meter and to reduce the cost thereof, the air flow meter has been moved to the one having a sensor section in which a heating element is provided around a bobbin-shaped ceramic. Since the heat capacity causes a delay as shown in FIG. 6, this is dealt with (see Japanese Patent Application No. 2-15784).

【0021】ステップ103では、次式(1)にて吸気
脈動等に対する補正を行う。
In step 103, correction for intake pulsation and the like is performed by the following equation (1).

【0022】 Qth=Qd×Ktrm ‥‥(1) Ktrmは空気量のエラーをエンジン条件毎に補正するた
めの係数で、trmはトリミングを意味する。トリミング
係数Ktrmは、図7のようにエンジン回転数Nと絞り弁
開度相当値としてのαーN流量Qhoとで割り付けたマ
ップから求める。なお、Qhoは絞り弁開度TVOとエ
ンジン回転数Nから定まる絞り弁部の定常時の空気流量
で、公知のものである。
Qth = Qd × Ktrm (1) Ktrm is a coefficient for correcting an error of the air amount for each engine condition, and trm means trimming. The trimming coefficient Ktrm is obtained from a map allocated by the engine speed N and the α-N flow rate Qho as a throttle valve opening equivalent value as shown in FIG. Note that Qho is a known air flow rate in the steady state of the throttle valve portion, which is determined by the throttle valve opening TVO and the engine speed N.

【0023】次に、ステップ104では、エアフローメ
ータの空気量Qth(補正後)と前回算出したシリンダ
吸入空気量旧Qcを基に、次式(2)、(3)によって
吸気管内圧(マニホールド圧)Pmを算出する。
Next, at step 104, the intake pipe internal pressure (manifold pressure) is calculated by the following equations (2) and (3) on the basis of the air flow meter air amount Qth (after correction) and the previously calculated cylinder intake air amount old Qc. ) Calculate Pm.

【0024】 Cm=旧Cm+Qth・Δt−旧Qc・N・K1 ‥‥(2) Pm=Cm/Vm ‥‥(3) ただし、Cm;マニホールド空気量 Δt;計算間隔 K1;単位合わせの定数(シリンダ数を含む) Vm;マニホールド容積 エアフローメータの空気量Qth(補正後)とシリンダ
吸入空気量旧Qcにしたがう物理モデルの式を用いてマ
ニホールド空気量Cmを求め、その容積比から吸気管内
圧Pmを求めるので、新たに吸気管内圧センサ等を設け
ることなく正確なPmが得られる。
Cm = Old Cm + Qth · Δt−Old Qc · N · K1 (2) Pm = Cm / Vm (3) where Cm; Manifold air amount Δt; Calculation interval K1; Unit matching constant (cylinder Vm; Manifold volume Air flow meter air amount Qth (after correction) and cylinder intake air amount The manifold air amount Cm is calculated using the equation of the physical model according to the old Qc, and the intake pipe internal pressure Pm is calculated from the volume ratio. Since it is obtained, accurate Pm can be obtained without newly providing an intake pipe internal pressure sensor or the like.

【0025】なお、吸気管内圧Pmは、エンジン始動時
に初期値として大気圧相当値を取る。
The intake pipe internal pressure Pm takes an atmospheric pressure equivalent value as an initial value when the engine is started.

【0026】ステップ105では、その吸気管内圧Pm
にしたがってシリンダに流入する新気の割合ηを算出す
る。
In step 105, the intake pipe internal pressure Pm
Then, the ratio η of fresh air flowing into the cylinder is calculated in accordance with.

【0027】これは、図8、図9のように定めたマップ
から求める。この場合、ηはエンジン全性能のブースト
Pmと吸入空気量Qから次式(4)にて求まり、計算に
よってηマップが作成される。
This is obtained from the maps defined as shown in FIGS. In this case, η is obtained from the boost Pm of the entire engine performance and the intake air amount Q by the following equation (4), and an η map is created by calculation.

【0028】 η=2・Q・760/Ve・N・(760−Pm)‥‥(4) ただし、Ve;エンジン排気量 この新気割合ηは絞り弁開度相当値としてのαーN流量
Qhoを用いても、計算できる。また、Pmを大気圧比
として、ηマップを作成しても良い。
Η = 2Q760 / VeN (760-Pm) (4) where Ve; engine displacement This fresh air ratio η is the α-N flow rate as a value equivalent to the throttle valve opening. It can also be calculated using Qho. Further, the η map may be created with Pm as the atmospheric pressure ratio.

【0029】なお、エンジン高回転域には、吸気脈動等
にしたがって図9のようにηに幅を持たせてある。な
お、図9は図8の破線で示すエンジン回転数での特性図
を示す。
In the high engine speed region, η has a width according to the intake pulsation and the like as shown in FIG. Note that FIG. 9 shows a characteristic diagram at the engine speed shown by the broken line in FIG.

【0030】そして、ステップ106にて吸気管内圧P
mと新気割合ηとシリンダ容積Vcから次式(5)によ
りシリンダ吸入空気量Qcを算出する。
Then, in step 106, the intake pipe internal pressure P
The cylinder intake air amount Qc is calculated by the following equation (5) from m, the fresh air ratio η, and the cylinder volume Vc.

【0031】Qc=Vc・η・Pm ‥‥(5) 燃料インジェクタ23のシリンダ吸入空気量相当パルス
幅Avtpは、シリンダ吸入空気量Qcに噴射弁特性係
数Kを乗算することで求まる(ステップ107)。この
Avtpを基に燃料インジェクタ23の最終的な噴射パ
ルス幅を決定し、燃料噴射を行う。
Qc = VcηPm (5) The cylinder intake air amount equivalent pulse width Avtp of the fuel injector 23 is obtained by multiplying the cylinder intake air amount Qc by the injection valve characteristic coefficient K (step 107). .. Based on this Avtp, the final injection pulse width of the fuel injector 23 is determined and fuel injection is performed.

【0032】なお、パルス幅への換算を始めに行って、
パルス幅相当値で各演算を行うようにしても良い。
Note that the pulse width is converted first,
Each calculation may be performed with a pulse width equivalent value.

【0033】このように、エアフローメータの空気量、
シリンダ吸入空気量を基に吸気管内圧を、吸気管内圧等
を基にシリンダの新気割合を、新気割合、吸気管内圧を
基にシリンダ吸入空気量を、それぞれ物理モデル式にし
たがって求めるので、精度の良いシリンダ吸入空気量値
が得られる。
Thus, the air flow rate of the air flow meter,
Since the intake pipe internal pressure is calculated based on the cylinder intake air amount, the cylinder fresh air ratio is calculated based on the intake pipe internal pressure, etc., and the cylinder intake air amount is calculated based on the fresh air ratio and the intake pipe internal pressure according to the physical model formulas. A highly accurate cylinder intake air amount value can be obtained.

【0034】また、この場合シリンダ容積、シリンダ
数、マニホールド容積、エンジン排気量等の仕様を定め
れば良いため、実機での適合が不要となり、マッチング
の工数を大幅に低減できる。
Further, in this case, since the specifications of the cylinder volume, the number of cylinders, the manifold volume, the engine displacement, etc., may be set, it is not necessary to adapt the actual machine, and the number of matching steps can be greatly reduced.

【0035】ここで、図10に過渡時(エンジン始動
時)のタイムチャートを示すと、吸気管内圧Pmは初期
大気圧から低下していき、このときエアフローメータの
空気量Qthがある遅れで立ち上がるのに対して、シリ
ンダ吸入空気量Qcは実測どおり吸気管内圧Pmにした
がって減少し、後に一致する。
Here, FIG. 10 shows a time chart during transition (at engine start-up). The intake pipe internal pressure Pm decreases from the initial atmospheric pressure, and at this time, the air amount Qth of the air flow meter rises with a certain delay. On the other hand, the cylinder intake air amount Qc decreases in accordance with the intake pipe internal pressure Pm as measured, and later coincides.

【0036】図11は第2の発明の実施例を示すもの
で、吸、排気バルブのリフト、タイミングを変える可変
バルブ、圧縮比を変える圧縮比可変装置、吸入空気に旋
回流を付与するスワール弁等の可変要素を装備したエン
ジンに適用する。
FIG. 11 shows an embodiment of the second aspect of the invention, in which intake and exhaust valves are lifted, a variable valve for changing the timing, a compression ratio variable device for changing the compression ratio, and a swirl valve for giving a swirling flow to the intake air. Applies to engines equipped with variable elements such as.

【0037】このような可変要素を設けた場合、可変要
素の状態によってシリンダの新気の割合ηが変わるた
め、その状態に即した複数のηマップを設け、該当マッ
プから新気割合ηを求めるのである。
When such a variable element is provided, the rate η of fresh air in the cylinder changes depending on the state of the variable element. Therefore, a plurality of η maps corresponding to the state are provided and the fresh air rate η is obtained from the corresponding map. Of.

【0038】図11にて吸、排気バルブのリフトを変え
る第1、第2のカム(図12のように第1のカムはリフ
ト大、第2のカムはリフト小)を設けた可変バルブの場
合を説明すると、ステップ201〜204にてエアフロ
ーメータの補正後の空気量Qthとシリンダ吸入空気量
旧Qcを基に吸気管内圧Pmを算出した後、ステップ2
05にて第1のカムによる駆動かどうかを判定し、Ye
sであればステップ207にて第1のカムに該当するη
マップ(Tη1マップ)を選択し、Tη1マップから新
気割合ηを算出する。一方、ステップ205にてNOで
あれば、ステップ209にて第2のカムに該当するηマ
ップ(Tη2マップ)を選択し、Tη2マップから新気
割合ηを算出する。
In FIG. 11, a variable valve provided with first and second cams (first cam has a large lift and second cam has a small lift as shown in FIG. 12) for changing the intake and exhaust valve lifts. Explaining the case, in steps 201 to 204, after the intake pipe internal pressure Pm is calculated based on the corrected air amount Qth of the air flow meter and the cylinder intake air amount old Qc, step 2
In 05, it is determined whether or not the drive is performed by the first cam, and Yes
If s, in step 207, η corresponding to the first cam
A map (Tη1 map) is selected, and the fresh air ratio η is calculated from the Tη1 map. On the other hand, if NO in step 205, the η map (Tη2 map) corresponding to the second cam is selected in step 209, and the fresh air ratio η is calculated from the Tη2 map.

【0039】ステップ206,208では、カムの切換
えに対してディレイ時間を設定しており、カム切換時に
はカムが確実に切り換わってから該当ηマップを選択
し、新気割合ηを算出する。
In steps 206 and 208, the delay time is set for the cam switching, and when the cam is switched, the corresponding η map is selected after the cam is surely switched, and the fresh air ratio η is calculated.

【0040】ステップ210ではシリンダ吸入空気量Q
c、ステップ211ではシリンダ吸入空気量相当パルス
幅Avtpを決定する。
In step 210, the cylinder intake air amount Q
c. In step 211, the cylinder intake air amount equivalent pulse width Avtp is determined.

【0041】図13、図14にTη1マップ、Tη2マ
ップの例を示す。もちろん、これらのマップは図8に同
じく計算によって作成される。
13 and 14 show examples of the Tη1 map and Tη2 map. Of course, these maps are also created by calculation as in FIG.

【0042】このようにすると、シリンダ吸入空気量Q
cが急変するカムの切換時にあっても、図15のように
精度良くシリンダ吸入空気量Qcをモニタでき、即ちカ
ムの切換えを行う過渡運転時にあっても、的確な燃料噴
射制御を確保して、空燃比A/Fが失火ゾーンに入った
り、リッチ化して排気エミッションが悪化することを確
実に防止できる。
In this way, the cylinder intake air amount Q
Even when the cam changes suddenly when c changes, the cylinder intake air amount Qc can be accurately monitored as shown in FIG. 15, that is, accurate fuel injection control can be ensured even during the transient operation in which the cam is changed. It is possible to reliably prevent the exhaust emission from deteriorating due to the air-fuel ratio A / F entering the misfire zone or becoming rich.

【0043】[0043]

【発明の効果】第1の発明は、エアフローメータの出力
とシリンダ吸入空気量にしたがう吸気管内圧、吸気管内
圧等により定まるシリンダの新気割合、新気割合ならび
に吸気管内圧にしたがうシリンダ吸入空気量を、分離し
て算出するので、吸気管内圧センサ等の検出装置を新た
に設ける必要がなく、コストアップを招かずに精度の良
いシリンダ吸入空気量値を得ることができ、マッチング
工数を大幅に低減できる。
According to the first aspect of the present invention, the intake pipe internal pressure according to the output of the air flow meter and the cylinder intake air amount, the fresh air ratio of the cylinder determined by the intake pipe internal pressure, the fresh air ratio, and the cylinder intake air according to the intake pipe internal pressure. Since the amount is calculated separately, it is not necessary to newly install a detection device such as an intake pipe internal pressure sensor, and it is possible to obtain an accurate cylinder intake air amount value without incurring cost increase, and a large matching man-hour. Can be reduced to

【0044】第2の発明は、吸、排気バルブのリフト、
タイミングを変える可変バルブ等の可変要素を装備した
エンジンにあって、可変要素の状態にしたがって該当状
態の新気割合を算出するので、可変要素の切換時に新気
割合の急変に対応でき、精度良くシリンダ吸入空気量を
求めることができる。
A second invention is a lift of intake and exhaust valves,
In an engine equipped with variable elements such as variable valves that change timing, the fresh air ratio in the relevant state is calculated according to the state of the variable element, so it is possible to respond to sudden changes in the fresh air ratio when switching the variable elements, and with high accuracy. The cylinder intake air amount can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成図である。FIG. 1 is a configuration diagram of the present invention.

【図2】本発明の構成図である。FIG. 2 is a configuration diagram of the present invention.

【図3】実施例のシステム図である。FIG. 3 is a system diagram of an example.

【図4】演算のフローチャートである。FIG. 4 is a flowchart of calculation.

【図5】エアフローメータ出力のリニアライズ処理の特
性図である。
FIG. 5 is a characteristic diagram of a linearization process of an air flow meter output.

【図6】エアフローメータ出力の遅れを示す特性図であ
る。
FIG. 6 is a characteristic diagram showing a delay of an air flow meter output.

【図7】エアフローメータ出力のエラー補正データの特
性図である。
FIG. 7 is a characteristic diagram of error correction data output from an air flow meter.

【図8】新気割合のデータマップを示す特性図である。FIG. 8 is a characteristic diagram showing a data map of a fresh air ratio.

【図9】その部分特性図である。FIG. 9 is a partial characteristic diagram thereof.

【図10】作用を説明するための波形図である。FIG. 10 is a waveform diagram for explaining the operation.

【図11】他の実施例のフローチャートである。FIG. 11 is a flowchart of another embodiment.

【図12】カムのリフト特性図である。FIG. 12 is a lift characteristic diagram of a cam.

【図13】新気割合のデータマップを示す特性図であ
る。
FIG. 13 is a characteristic diagram showing a data map of a fresh air ratio.

【図14】新気割合のデータマップを示す特性図であ
る。
FIG. 14 is a characteristic diagram showing a data map of a fresh air ratio.

【図15】作用を説明するための波形図である。FIG. 15 is a waveform diagram for explaining the operation.

【符号の説明】[Explanation of symbols]

21 吸気通路 24 シリンダ 27 絞り弁 28 エアフローメータ 30 コントロールユニット 31 絞り弁開度センサ 32 クランク角センサ 33 水温センサ 21 Intake passage 24 Cylinder 27 Throttle valve 28 Air flow meter 30 Control unit 31 Throttle valve opening sensor 32 Crank angle sensor 33 Water temperature sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絞り弁上流の空気量に応じた出力をする
エアフローメータと、このエアフローメータの出力と前
回のシリンダ吸入空気量算出値を基に吸気管内圧を算出
する手段と、少なくともこの吸気管内圧もしくは絞り弁
開度相当値を基にシリンダに流入する新気の割合を算出
する手段と、この新気割合ならびに吸気管内圧に基づい
てシリンダ吸入空気量を算出する手段とを設けてなるエ
ンジンの空気量検出装置。
1. An air flow meter that outputs according to the amount of air upstream of a throttle valve, a means for calculating the intake pipe internal pressure based on the output of this air flow meter and the previous cylinder intake air amount calculation value, and at least this intake air Means for calculating the ratio of the fresh air flowing into the cylinder based on the pipe internal pressure or the throttle valve opening equivalent value, and means for calculating the cylinder intake air amount based on the fresh air ratio and the intake pipe internal pressure are provided. Engine air amount detection device.
【請求項2】 前記新気割合算出手段は、吸、排気バル
ブのリフト、タイミングを変える可変バルブ、圧縮比を
変える圧縮比可変装置、吸入空気に旋回流を付与するス
ワール弁等の可変要素の状態にしたがい複数の算出部を
有すると共に、可変要素の状態に応じてこれらの算出部
を選択する手段を設けた請求項1に記載のエンジンの空
気量検出装置。
2. The fresh air ratio calculation means includes variable elements such as intake and exhaust valve lifts, variable valves that change timing, variable compression ratio devices that change compression ratios, and swirl valves that give swirl flow to intake air. The air amount detection device for an engine according to claim 1, further comprising a plurality of calculation units according to a state, and a unit for selecting the calculation units according to a state of the variable element.
JP29019391A 1991-11-06 1991-11-06 Air quantity detecting device for engine Pending JPH05133270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29019391A JPH05133270A (en) 1991-11-06 1991-11-06 Air quantity detecting device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29019391A JPH05133270A (en) 1991-11-06 1991-11-06 Air quantity detecting device for engine

Publications (1)

Publication Number Publication Date
JPH05133270A true JPH05133270A (en) 1993-05-28

Family

ID=17752960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29019391A Pending JPH05133270A (en) 1991-11-06 1991-11-06 Air quantity detecting device for engine

Country Status (1)

Country Link
JP (1) JPH05133270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227687A (en) * 2001-02-05 2002-08-14 Nissan Motor Co Ltd Internal egr ratio estimate device for engine
WO2005071245A1 (en) * 2004-01-21 2005-08-04 Toyota Jidosha Kabushiki Kaisha Variable compression ratio internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150459A (en) * 1984-01-18 1985-08-08 Mazda Motor Corp Engine with fuel injection device
JPH0270957A (en) * 1988-01-29 1990-03-09 Hitachi Ltd Intake air amount estimating method for engine, fuel injection control method, and ignition timing control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150459A (en) * 1984-01-18 1985-08-08 Mazda Motor Corp Engine with fuel injection device
JPH0270957A (en) * 1988-01-29 1990-03-09 Hitachi Ltd Intake air amount estimating method for engine, fuel injection control method, and ignition timing control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227687A (en) * 2001-02-05 2002-08-14 Nissan Motor Co Ltd Internal egr ratio estimate device for engine
JP4524528B2 (en) * 2001-02-05 2010-08-18 日産自動車株式会社 Engine internal EGR rate estimation device
WO2005071245A1 (en) * 2004-01-21 2005-08-04 Toyota Jidosha Kabushiki Kaisha Variable compression ratio internal combustion engine
KR100807614B1 (en) * 2004-01-21 2008-02-28 도요다 지도샤 가부시끼가이샤 Variable compression ratio internal combustion engine
US7422004B2 (en) 2004-01-21 2008-09-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with variable compression ratio
US7840335B2 (en) 2004-01-21 2010-11-23 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with variable compression ratio

Similar Documents

Publication Publication Date Title
EP1705359B1 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and relative feedforward fuel injection control system
JP4683573B2 (en) Method for operating an internal combustion engine
US7287525B2 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
JP2005188392A (en) Control device for internal combustion engine
US20060130806A1 (en) Apparatus and method for controlling internal combustion engine
JPH01100336A (en) Electronic control device for internal combustion engine
JPH09170471A (en) Method for controlling air-fuel ratio of multi-cylinder engine
JPH01244138A (en) Fuel injection control device for engine for automobile
JP2007231884A (en) Control device for internal combustion engine
JPH05133270A (en) Air quantity detecting device for engine
JP5639918B2 (en) Engine intake air volume measuring device
JP6536299B2 (en) Internal combustion engine control method and internal combustion engine control device
JP4518405B2 (en) Fuel supply control device for internal combustion engine
JP2011252785A (en) Air intake volume correction method for internal combustion engines
JP3728844B2 (en) Engine air volume detection device
JPH07310577A (en) Fuel supply controller for internal combustion engine
JPH04252833A (en) Fuel supply controller for internal combustion engine
US4705012A (en) Air intake side secondary air supply system for an internal combustion engine with a duty ratio control operation
Takahashi et al. Air-fuel ratio control in gasoline engines based on state estimation and prediction using dynamic models
JP2657713B2 (en) Fuel leak diagnosis system for electronically controlled fuel injection type internal combustion engine
JP4068680B2 (en) Engine control device
JP2715685B2 (en) Engine air volume detector
JPH08189407A (en) Intake temperature estimating device for internal combustion engine
JPH0523815Y2 (en)
JP2002147280A (en) Engine control device