JPH0513271B2 - - Google Patents

Info

Publication number
JPH0513271B2
JPH0513271B2 JP60036223A JP3622385A JPH0513271B2 JP H0513271 B2 JPH0513271 B2 JP H0513271B2 JP 60036223 A JP60036223 A JP 60036223A JP 3622385 A JP3622385 A JP 3622385A JP H0513271 B2 JPH0513271 B2 JP H0513271B2
Authority
JP
Japan
Prior art keywords
serum
magnesium chloride
sodium phosphotungstate
supernatant
final concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60036223A
Other languages
Japanese (ja)
Other versions
JPS61195359A (en
Inventor
Hajime Yamaguchi
Fujio Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissui Pharmacetuical Co Ltd
Original Assignee
Nissui Pharmacetuical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissui Pharmacetuical Co Ltd filed Critical Nissui Pharmacetuical Co Ltd
Priority to JP60036223A priority Critical patent/JPS61195359A/en
Publication of JPS61195359A publication Critical patent/JPS61195359A/en
Publication of JPH0513271B2 publication Critical patent/JPH0513271B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は長期間保存しても濁りを生じない澄明
な血清の製造法に関する。 〔従来の技術〕 従来から、生体液中成分を測定するために、測
定値算出用として標準血清、管理用血清として精
度管理用プール血清、正確度管理用コントロール
血清等が使用されている。 最近、臨床検査では、SRID法(一元免疫拡散
法)やレーザーネフエロメトリーなど種々の方法
で生体液中の微量タンパク質、補体、ホルモン、
薬物等の測定が定量的にできるようになりつつあ
り、ルーチン検査として広く普及している。特に
抗原と特異抗血清とを溶液内で反応させ、生成さ
れた抗原・抗体複合体の量を吸光度測定によつて
定量化する方法(免疫比濁法)が開発され、これ
により自動分析装置での定量が可能となつた。こ
の光学的測定法の原理は、抗原抗体反応が抗体過
剰域では抗原量に依存して反応物を生じることを
利用している。したがつて、特異抗血清と検体中
の抗原とを反応させて生じた濁度を光学的に測定
し、標準血清についても同様に反応させて作成し
た検量線から検体中の抗原濃度を求めることがで
きる。 この測定法で用いる標準血清は、濁りのないも
のが好ましいので薬剤製造業者が脱脂処理や部分
精製などした上、あらかじめ適当な濃度に希釈し
て、すぐ使用しうる形態として供給し、測定者は
そのまま使用している。また、機械や試薬の精
度・正確度を管理するための血清主要蛋白質を含
有する免疫測定用の澄明な血清は現在のところ皆
無である。 〔発明が解決しようとする問題点〕 従来、血清を澄明にするため、例えばフレオ
ン、エーテル等の有機溶媒で抽出処理する方法が
知られている。しかし、フレオン処理は、脱脂効
果が不充分で、これを生理食塩水で希釈する際、
あるいは凍結乾燥後溶解する際に濁りを生ずると
いう欠点があると共に、フレオン自体高価であ
り、しかも処理済みフレオンは燃焼消去できない
等の問題があつた。また、エーテル処理の場合
は、脱脂効果はよいが、−20℃という低温でエー
テル抽出を行わなければならないため、操作が煩
雑であり、危険を伴うなどの問題があつた。そし
て、どちらの処理も大量に扱うのが困難であつ
た。 〔問題点を解決するための手段〕 斯かる実情において、本発明者は簡単な操作で
長期間保存しても濁りを生じない安定な血清を製
造すべく種々研究を行つた。 本発明者は、まず血清に高濃度のリンタングス
テン酸ナトリウム及び塩化マグネシウムの混液を
加えて、血清中の低比重リポ蛋白(LDL)及び
超低比重リポ蛋白(VLDL)等のリポ蛋白を沈澱
させて除去したところ澄明な血清が得られた。し
かしながら、斯くして得られた血清は1日放置す
ると濁りを生じ、上記目的を達成することができ
なかつた。 また、反応にあずからなかつたリンタングステ
ン酸ナトリウムおよび塩化マグネシウムが残存
し、これが測定に影響を及ぼすこともあつた。 そこで、本発明者は、更に鋭意研究を行つた結
果、上記の如くして血清中からLDL及びVLDL
等のリポ蛋白を沈澱除去して得た上清を限外過
して脱塩すれば長期間安定で澄明な血清が得られ
ることを見出し、本発明を完成した。 すなわち、本発明は、血清にリンタングステン
酸ナトリウム(最終濃度として0.2〜0.3%)及び
塩化マグネシウム(最終濃度として約0.025M)
を含有する混液を加えて、生ずるリポ蛋白を主体
とする沈澱物を除去し、次いでその上清液を限外
過することを特徴とする澄明な血清の製造法を
提供するものである。 本発明方法を実施するには、まず血清に最終濃
度として0.2〜0.3%となる量のリンタングステン
酸ナトリウムと最終濃度として約0.025Mとなる
量の塩化マグネシウムを含む混液を加える。例え
ば当該混液としては、リンタングステン酸ナトリ
ウムが0.4〜0.6%、塩化マグネシウムが約0.05M
になるような濃度で、PH5〜7の緩衝液に溶かし
たものが好ましい。当該混液の量は血清とほぼ等
量が好ましい。血清に混液を添加した後室温で約
1時間ゆつくり攪拌し、冷所に一夜放置して沈澱
を完結させる。生じた沈澱は遠心分離等によつて
除去する。 このようにして得た上清を限外過する。限外
過装置としては何れのものも使用できるが、分
子篩膜を用いる型のもの(例えば、アミコン社製
8400型)の場合には圧力3〜5Kg/cm2。中空糸を
用いる型のもの(例えばアミコン社製DC4)の場
合には0.8〜1.2Kg/cm2で行うのが好ましい。斯く
すると、血清の上清は脱塩、濃縮される。このも
のは、これに生理食塩水を加えて適当な濃度に希
釈し、そのまま使用することもできるが、凍結乾
燥して保存することもできる。 〔発明の効果〕 本発明で調製した血清及び凍結乾燥物を精製水
に溶解したものは、長期間保存しても濁りを生じ
ないので、反応を濁度の存在によつて測定する免
疫用、あるいは生化学用の標準血清、コントロー
ル血清及びプール血清として極めて有利に使用で
きる。 〔実施例〕 次に実施例を挙げて説明する。 実施例 1 (i) 0.6%リンタングステン酸ナトリウム・18水
塩、0.05M塩化マグネシウム・6H2Oを含有す
る0.1Mトリス−塩酸緩衝液(PH6.7〜6.8、室
温)を調製した。 上記処理液とヒト血清とを等量ずつ混合し、
これを室温にて1時間ゆつくり攪拌した。その
後、冷所にて一夜放置し、3000×gで30分間遠
心し、沈澱を除去し、上清を得た。この上清を
0.45μmのフイルターに通し、限外過器(ア
ミコン社製、DC4型)にて1.0Kg/cm2で脱塩・
濃縮した。この場合、上記処理前血清の量以下
になるのを避け、生理食塩水を加えた。次に、
NaN3を0.1%になるように加え、もう一度
0.2μmフイルターに通し、2mlずつ10mlの茶瓶
に分注し、凍結乾燥した。凍結乾燥品は冷所に
保存し、必要時に精製水で溶解して使用した。 (ii) 濁度(ブランク値)試験 (i)で得た凍結乾燥品200mgを精製水2mlに溶解
し、溶解直後及び室温で1週間保存したときの濁
度を吸光度A340,A600,A660で測定した。その結
果は第1表のとおりであり、溶解後1週間保存し
ても濁りを生じなかつた。
[Industrial Application Field] The present invention relates to a method for producing clear serum that does not become cloudy even after long-term storage. [Prior Art] Conventionally, in order to measure components in biological fluids, standard serum for calculating measured values, pooled serum for quality control, control serum for accuracy management, etc. have been used as control serum. Recently, in clinical testing, various methods such as SRID (single immunodiffusion) and laser nephelometry are used to measure trace amounts of proteins, complements, hormones, etc. in biological fluids.
It is becoming possible to quantitatively measure drugs, etc., and it is becoming widely used as a routine test. In particular, a method (immunoturbidimetry) has been developed in which an antigen and a specific antiserum are reacted in a solution and the amount of the generated antigen-antibody complex is quantified by absorbance measurement. It became possible to quantify. The principle of this optical measurement method utilizes the fact that the antigen-antibody reaction produces reactants depending on the amount of antigen in the antibody excess region. Therefore, the turbidity produced by reacting the specific antiserum with the antigen in the specimen is measured optically, and the antigen concentration in the specimen is determined from a standard curve created by reacting the standard serum in the same manner. I can do it. The standard serum used in this measurement method is preferably free of turbidity, so the drug manufacturer degreases it, partially purifies it, dilutes it to an appropriate concentration, and supplies it in a ready-to-use form. I am using it as is. Furthermore, there is currently no clear serum for immunoassays containing major serum proteins for controlling the precision and accuracy of machines and reagents. [Problems to be Solved by the Invention] Conventionally, in order to clarify serum, a method of extracting it with an organic solvent such as Freon or ether has been known. However, Freon treatment has insufficient degreasing effect, and when diluted with physiological saline,
Another problem is that turbidity occurs when dissolved after freeze-drying, Freon itself is expensive, and treated Freon cannot be destroyed by combustion. In addition, in the case of ether treatment, although the degreasing effect is good, the ether extraction must be carried out at a low temperature of -20°C, which causes problems such as complicated and dangerous operations. Both processes are difficult to handle in large quantities. [Means for Solving the Problems] Under these circumstances, the present inventor conducted various studies in order to produce a stable serum that does not become cloudy even when stored for a long period of time using simple operations. The present inventor first added a highly concentrated mixture of sodium phosphotungstate and magnesium chloride to serum to precipitate lipoproteins such as low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) in the serum. When the serum was removed, clear serum was obtained. However, the serum thus obtained became cloudy when left for one day, and the above objective could not be achieved. In addition, sodium phosphotungstate and magnesium chloride that had not taken part in the reaction remained, which sometimes affected the measurements. Therefore, as a result of further intensive research, the inventors of the present invention discovered that LDL and VLDL were extracted from serum as described above.
The present inventors have discovered that a clear serum that is stable for a long period of time can be obtained by desalting the supernatant obtained by precipitating and removing lipoproteins such as the above by ultrafiltration, and have completed the present invention. That is, the present invention provides serum with sodium phosphotungstate (0.2-0.3% final concentration) and magnesium chloride (approximately 0.025M final concentration).
The present invention provides a method for producing clear serum, which is characterized by adding a liquid mixture containing the following: removing the resulting precipitate mainly consisting of lipoproteins, and then ultrafiltrating the supernatant. To carry out the method of the present invention, first, a mixed solution containing sodium phosphotungstate in an amount to give a final concentration of 0.2 to 0.3% and magnesium chloride in an amount to give a final concentration of about 0.025M is added to serum. For example, the mixed liquid contains 0.4 to 0.6% sodium phosphotungstate and approximately 0.05M magnesium chloride.
It is preferable to dissolve it in a buffer solution with a pH of 5 to 7 at a concentration such that The amount of the mixed liquid is preferably approximately equal to the amount of serum. After adding the mixed solution to the serum, stir gently at room temperature for about 1 hour, and leave in a cool place overnight to complete precipitation. The resulting precipitate is removed by centrifugation or the like. The supernatant thus obtained is subjected to ultrafiltration. Any type of ultrafiltration device can be used, but one that uses a molecular sieve membrane (for example, the one manufactured by Amicon)
8400 type), the pressure is 3 to 5 Kg/cm 2 . In the case of a type using hollow fibers (for example, DC4 manufactured by Amicon), it is preferable to carry out at 0.8 to 1.2 Kg/cm 2 . In this way, the serum supernatant is desalted and concentrated. This product can be diluted to an appropriate concentration by adding physiological saline and used as it is, but it can also be lyophilized and stored. [Effects of the Invention] The serum and lyophilized product prepared according to the present invention dissolved in purified water do not become turbid even when stored for a long period of time. Alternatively, it can be extremely advantageously used as a standard serum, control serum, or pooled serum for biochemistry. [Example] Next, an example will be given and explained. Example 1 (i) A 0.1M Tris-HCl buffer (PH6.7 to 6.8, room temperature) containing 0.6% sodium phosphotungstate 18 hydrate and 0.05M magnesium chloride 6H 2 O was prepared. Mix equal amounts of the above treatment solution and human serum,
This was slowly stirred at room temperature for 1 hour. Thereafter, the mixture was left in a cool place overnight and centrifuged at 3000 xg for 30 minutes to remove the precipitate and obtain a supernatant. This supernatant
Pass through a 0.45 μm filter and desalt at 1.0 Kg/cm 2 using an ultrafilter (manufactured by Amicon, DC4 type).
Concentrated. In this case, physiological saline was added to avoid reducing the amount below the amount of serum before treatment. next,
Add NaN 3 to 0.1% and again
The mixture was passed through a 0.2 μm filter, dispensed in 2 ml portions into 10 ml tea bottles, and freeze-dried. The lyophilized product was stored in a cool place and used by dissolving it in purified water when necessary. (ii) Turbidity (blank value) test Dissolve 200 mg of the freeze-dried product obtained in (i) in 2 ml of purified water, and measure the turbidity immediately after dissolution and when stored at room temperature for one week as absorbance A 340 , A 600 , A Measured at 660 . The results are shown in Table 1, and no turbidity occurred even after storage for one week after dissolution.

【表】 (iii) 安定性試験 (i)で得た凍結乾燥品200mgを精製水2mlに溶解
し、溶解直後及び室温で1週間保存した後の血清
成分をSRID法及び免疫比濁法(TIA法)で測定
した。その結果は第2表、第3表のとおりであ
り、溶解1週間後においても安定であつた。
[Table] (iii) Stability test 200 mg of the lyophilized product obtained in (i) was dissolved in 2 ml of purified water, and the serum components were analyzed using the SRID method and immunoturbidimetry (TIA) immediately after dissolution and after being stored at room temperature for one week. method). The results are shown in Tables 2 and 3, and it was stable even one week after dissolution.

【表】【table】

【表】 表中の略号は各々次の通りである。 C3:補体C3 C4:補体C4 Tf:トランスフエリン α1AG:α1酸性タンパク Cp:セルロプラスミン Hp:ハプトグロビン α1AT:α1アンチトリプシン Hx:ヘモペキシン AT:アンチトロンビン (iv) 検量線 (i)で得た凍結乾燥品200mgを精製水1mlに溶解
し、これを1/2,1/4に希釈した3種類の溶液を使
用して、IgG(第1図)、IgA(第2図)、IgM(第3
図)、C3(第4図)及びC4(第5図)の検量線を作
成した。 実施例 2 実施例1の(i)で限外過して得た濃縮血清を生
理食塩水で2倍に希釈した本発明品及び処理液を
加えて沈澱を除去した上清(限外過をしていな
いもの)(比較品)について、実施例1の(ii)と同
様にして濁度試験を行つた。その結果は第4表の
とおりであり、限外過をしていないものは1日
で濁りを生じた。 また、実施例1(i)において、血清に対してリン
タングステン酸ナトリウム及び塩化マグネシウム
の混液による処理を行わず、限外過のみを行つ
て得た血清は、経時的に濁りを生じた。
[Table] The abbreviations in the table are as follows. C 3 : Complement C 3 C 4 : Complement C 4 T f : Transferrin α 1 AG: α 1 acidic protein C p : Ceruloplasmin H p : Haptoglobin α 1 AT: α 1 antitrypsin H x : Hemopexin AT: Antithrombin (iv) 200 mg of the lyophilized product obtained in standard curve (i) was dissolved in 1 ml of purified water, and three types of solutions were diluted to 1/2 and 1/4. Figure), IgA (Figure 2), IgM (Figure 3)
), C 3 (Figure 4) and C 4 (Figure 5) were prepared. Example 2 The concentrated serum obtained by ultrafiltration in (i) of Example 1 was diluted 2 times with physiological saline, and the product of the present invention and the treatment solution were added to remove the precipitate. A turbidity test was conducted in the same manner as in (ii) of Example 1 for the sample (comparative product). The results are shown in Table 4, and those that did not pass the ultraviolet rays became cloudy within one day. Furthermore, in Example 1(i), the serum obtained by performing only ultrafiltration without treating the serum with the mixture of sodium phosphotungstate and magnesium chloride became cloudy over time.

【表】 実施例 3 実施例1の(i)で得た凍結乾燥品200mgを精製水
2mlに溶解し、溶解直後および室温で1週間保存
したときの澄明血清の生化学項目について安定性
を調べた。 その結果は第5表のとおりであり、溶解1週間
後においても安定であつた。
[Table] Example 3 200 mg of the lyophilized product obtained in (i) of Example 1 was dissolved in 2 ml of purified water, and the stability of the biochemical items of the clear serum was investigated immediately after dissolution and when stored at room temperature for one week. Ta. The results are shown in Table 5, and it was stable even one week after dissolution.

【表】 実施例 4 種々の濃度のリンタングステン酸ナトリウム・
18水塩及び塩化マグネシウム・6水塩44mMを含
有する0.1Mトリス−塩酸緩衝液(PH6.8、室温)
を調製した。 上記混液と予め総コレステロール量を測定して
おいたプール混合血清とを等量ずつ混合し、これ
を室温にて1時間ゆつくり攪拌した。その後、冷
所にて一夜放置し、3000×gで30分間遠心し、沈
澱を除去し、上清を得た。 得られた上清中の総コレステロール量を測定
し、上記混液処理による脂質沈降率を算出した。
その結果を第6表及び第6図に示す。 以上の結果より、脂質を充分に沈降させ、その
後の限外過操作により長期間澄明な血清を得る
ためには、リンタングステン酸ナトリウム濃度は
最終濃度として0.2%以上が必要であることがわ
かる。
[Table] Example 4 Sodium phosphotungstate at various concentrations.
0.1M Tris-HCl buffer containing 18 hydrate and 44 mM magnesium chloride hexahydrate (PH6.8, room temperature)
was prepared. Equal amounts of the above mixed liquid and pooled mixed serum whose total cholesterol amount had been measured in advance were mixed, and the mixture was slowly stirred at room temperature for 1 hour. Thereafter, the mixture was left in a cool place overnight and centrifuged at 3000 xg for 30 minutes to remove the precipitate and obtain a supernatant. The total amount of cholesterol in the obtained supernatant was measured, and the lipid sedimentation rate due to the above mixed solution treatment was calculated.
The results are shown in Table 6 and Figure 6. From the above results, it can be seen that the final concentration of sodium phosphotungstate is required to be 0.2% or more in order to sufficiently precipitate lipids and obtain clear serum for a long period of time through the subsequent ultrafiltration operation.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明標準血清のIgGの検量線、第2
図は同IgAの検量線、第3図は同IgMの検量線、
第4図は同C3の検量線、第5図は同C4の検量線、
第6図はリンタングステン酸ナトリウム濃度と脂
質沈降率との関係を示す図である。
Figure 1 shows the standard curve of IgG of the standard serum of the present invention, Figure 2 shows
The figure shows the calibration curve for the same IgA, and Figure 3 shows the calibration curve for the same IgM.
Figure 4 is the calibration curve for C 3 , Figure 5 is the calibration curve for C 4 ,
FIG. 6 is a diagram showing the relationship between sodium phosphotungstate concentration and lipid sedimentation rate.

Claims (1)

【特許請求の範囲】[Claims] 1 血清にリンタングステン酸ナトリウム(最終
濃度として0.2〜0.3%)及び塩化マグネシウム
(最終濃度として約0.025M)の混液を加えて、生
ずるリポ蛋白を主体とする沈澱物を除去し、次い
でその上清液を限外過することを特徴とする澄
明な血清の製造法。
1. Add a mixture of sodium phosphotungstate (0.2-0.3% final concentration) and magnesium chloride (approximately 0.025M final concentration) to serum, remove the resulting precipitate mainly consisting of lipoproteins, and then remove the resulting supernatant. A method for producing clear serum characterized by ultrafiltration of the liquid.
JP60036223A 1985-02-25 1985-02-25 Production of clear serum Granted JPS61195359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60036223A JPS61195359A (en) 1985-02-25 1985-02-25 Production of clear serum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60036223A JPS61195359A (en) 1985-02-25 1985-02-25 Production of clear serum

Publications (2)

Publication Number Publication Date
JPS61195359A JPS61195359A (en) 1986-08-29
JPH0513271B2 true JPH0513271B2 (en) 1993-02-22

Family

ID=12463775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60036223A Granted JPS61195359A (en) 1985-02-25 1985-02-25 Production of clear serum

Country Status (1)

Country Link
JP (1) JPS61195359A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517492A (en) * 1978-07-17 1980-02-06 Beckman Instruments Inc Production of biological composition used as serum standard composition for diagnostic analysis
JPS5578255A (en) * 1978-12-08 1980-06-12 Kyorin Pharmaceut Co Ltd Simultaneous simple and quick measurement method for low and high specific gravity lipo protein cholesterol and its measuring kit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517492A (en) * 1978-07-17 1980-02-06 Beckman Instruments Inc Production of biological composition used as serum standard composition for diagnostic analysis
JPS5578255A (en) * 1978-12-08 1980-06-12 Kyorin Pharmaceut Co Ltd Simultaneous simple and quick measurement method for low and high specific gravity lipo protein cholesterol and its measuring kit

Also Published As

Publication number Publication date
JPS61195359A (en) 1986-08-29

Similar Documents

Publication Publication Date Title
Fasman et al. Altered conformational effects of phosphorylated lysine-rich histone (f-1) in f-1-deoxyribonucleic acid complexes. Circular dichroism and immunological studies
Haber Recovery of antigenic specificity after denaturation and complete reduction of disulfides in a papain fragment of antibody
Jorpes The protein component of the erythrocyte membrane or stroma
OGAWA Calcium binding to troponin C and troponin: effects of Mg2+, ionic strength and pH
Shore et al. Some physical and chemical studies on the protein moiety of a high-density (1.126-1.195 g/ml) lipoprotein fraction of human serum
CN102939111A (en) Process for preparing an immunoglobulin composition
CA2621025A1 (en) An ultra-high yield intravenous immune globulin preparation
WO2007030244A2 (en) An ultra-high yield intravenous immune globulin preparation
Ogston et al. Studies on the heterogeneity of crystallized β-lactoglobulin
Burnstine et al. Solubility of bilirubin in aqueous solutions.
Naik et al. Fluorometric determination of drug-protein association constants. Binding of 8-anilino-1-naphthalenesulfonate by bovine serum albumin
Alvsaker Uric Acid in Human Plasma III. Investigations on the Interaction Between the Urate Ion and Human Albumin
Gralén The splitting of haemoglobin by acids
Landis et al. Interactions of bovine fibrinogen and thrombin: Early events in the development of clot structure
JPH0513271B2 (en)
Pritchard et al. Gold and penicillamine: a proposed mode of action in rheumatoid arthritis, based on synovial fluid analysis.
Lewis et al. An atypical immunoglobulin
Crews et al. In support of the trap hypothesis. Chymotrypsin is not rigidly held in its complex with human. alpha. 2-macroglobulin
Woolf et al. Determination of phenylalanine in blood and urine
Brand et al. Equilibrium dialysis and circular dichroic analysis of the novobiocin-human serum albumin complex
Vidor et al. Host serum protein levels in cysts of human hydatidosis
JPH0654659A (en) Production of sweetness inducing substance miraculin
Richmond et al. Treatment of dialysis membranes for simultaneous dialysis and concentration
JPS61245059A (en) Method of determining total quantity of digoxin
Kurath et al. DETERMINATION OF THE SITE OF 14C IN HYDROCORTISONE-14C DERIVED FROM CHOLESTEROL-21-14C INCUBATED WITH BOVINE ADRENAL GLAND TISSUE1