JPH05132436A - Catalytic dehydrochlorination process - Google Patents

Catalytic dehydrochlorination process

Info

Publication number
JPH05132436A
JPH05132436A JP3322490A JP32249091A JPH05132436A JP H05132436 A JPH05132436 A JP H05132436A JP 3322490 A JP3322490 A JP 3322490A JP 32249091 A JP32249091 A JP 32249091A JP H05132436 A JPH05132436 A JP H05132436A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
dehydrochlorination
chlorinated hydrocarbon
selectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3322490A
Other languages
Japanese (ja)
Inventor
Isao Mochida
勲 持田
Yasuhiro Kojima
康弘 児島
Hiroshi Tejima
寛 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3322490A priority Critical patent/JPH05132436A/en
Publication of JPH05132436A publication Critical patent/JPH05132436A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain vinylidene chloride by contacting a chlorinated hydrocarbon with a catalyst comprising cesium nitrate supported on silica gel, thereby dehydrochlorinating 1,1,2-trichloroethane in high selectivity and conversion using a catalyst resistant to the lowering of activity. CONSTITUTION:An aqueous solution of cesium nitrate among various cesium salts is impregnated in a silica gel, formed by a tablet machine, crushed and left standing in air at 400 deg.C for 2hr and the obtained catalyst is packed to form a packed layer 1. A chlorinated hydrocarbon such as 1,1,2-trichloroethane is introduced into the packed catalyst layer 1 through a specimen inlet port 6 and made to contact with the catalyst under heating with an electric heater 3 at 300 deg.C controlled by a temperature controller 4 to effect the dehydrochlorination of the chlorinated hydrocarbon. A dehydrochlorination product of a chlorinated hydrocarbon such as vinylidene chloride can be produced in high conversion and selectivity using a catalyst causing little lowering of the catalytic activity after the use over a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩素化炭化水素を脱塩
化水素反応を実施する際、該塩素化炭化水素と接触させ
る触媒に於て、その活性及び選択性を向上させ、更に、
連続使用による活性の低下を極めて少なくし、なお且
つ、長期間使用した触媒の再生能力を著しく改善した、
脱塩化水素反応触媒に関するものである。
FIELD OF THE INVENTION The present invention relates to a catalyst for bringing a chlorinated hydrocarbon into contact with the chlorinated hydrocarbon when carrying out a dehydrochlorination reaction, and further improving its activity and selectivity.
The decrease in activity due to continuous use is extremely reduced, and the regeneration ability of the catalyst used for a long period of time is remarkably improved.
The present invention relates to a dehydrochlorination reaction catalyst.

【0002】[0002]

【従来の技術】従来、塩素化炭化水素の脱塩素化水素反
応、特に塩素化飽和炭化水素の脱塩化水素反応は、工業
的に重要な反応であり、数種の工業化プロセスが採用さ
れている。
2. Description of the Related Art Conventionally, the dehydrochlorination reaction of chlorinated hydrocarbons, particularly the dehydrochlorination reaction of chlorinated saturated hydrocarbons, has been an industrially important reaction, and several industrialization processes have been adopted. ..

【0003】中でも代表的な例として、塩化ビニリデン
(以下、VDCと記す。)は、反応基質となる塩素化炭
化水素の1,1,2−トリクロロエタン(以下、TCE
と記す。)と、強塩基である石灰乳、水酸化ナトリウム
等とを化学量論反応により、広く製造されている。この
VDCの製造に於いては、TCEの脱塩酸反応により副
生する塩化水素と添加した強塩基物質とが、塩を生成す
ることゝなる為、塩化水素と強塩基は、何れも消費され
ることになる。
As a typical example, vinylidene chloride (hereinafter referred to as VDC) is 1,1,2-trichloroethane (hereinafter referred to as TCE) which is a chlorinated hydrocarbon serving as a reaction substrate.
Is written. ) And a strong base such as lime milk and sodium hydroxide, are widely produced by a stoichiometric reaction. In the production of this VDC, the hydrogen chloride by-produced by the dehydrochlorination reaction of TCE and the added strong base substance form a salt, so that both hydrogen chloride and the strong base are consumed. It will be.

【0004】一方、塩化ビニルモノマー(以下、VCM
と記す。)は、1,2−ジクロルエタン(以下、EDC
と記す。)の熱分解による脱塩化水素反応による製造が
一般に実施されている。この熱分解反応は、通常10〜
50Kg/cm2 、460〜540℃程度の高圧高温下
で実施され、又好ましからざる、ブタジエン,塩化メチ
ル等の副反応生成物の増大、熱分解反応を行う反応管内
部での炭素を主体とするコークスの付着量の増大等によ
り、EDCの転化率を50〜60%に制約する必要があ
る。この為、このEDCの熱分解方法では、反応工程、
更には未反応物の回収工程、生成物の分離工程が煩雑と
なるばかりか、多量のエネルギーを必要とする等の欠点
を有している。
On the other hand, vinyl chloride monomer (hereinafter referred to as VCM
Is written. ) Is 1,2-dichloroethane (hereinafter, EDC
Is written. The production by dehydrochlorination reaction by thermal decomposition of) is generally carried out. This thermal decomposition reaction is usually 10 to
It is carried out under a high pressure and high temperature of 50 Kg / cm 2 , about 460 to 540 ° C., and it is not preferable to increase the amount of side reaction products such as butadiene and methyl chloride, and mainly carbon in the reaction tube for carrying out the thermal decomposition reaction. It is necessary to limit the conversion rate of EDC to 50 to 60% due to an increase in the amount of adhered coke. Therefore, in the thermal decomposition method of this EDC, the reaction step,
Furthermore, there are drawbacks in that not only the steps of recovering unreacted materials and the steps of separating products become complicated, but also a large amount of energy is required.

【0005】これらの理由から、VDCの製造やVCM
の製造に於いては、この従来法に代わる方法として経済
的な触媒による脱塩化水素方法の開発が切望されてい
る。例えば、ZSM−5、シリカライト等を触媒として
用いる方法(特開昭58−167526号公報)、又Y
型ゼオライトをルイス酸で処理あるいは反応させた触媒
を用いる方法(特開昭54−79209号公報)、希土
類金属塩化物をゼオライトに堆積させた触媒を用いる方
法(特開昭61−30号公報)、又オフレタイトーエリ
オナイト系ゼオライト(以下、OE系ゼオライトと記載
する。)、L型ゼオライトを触媒として用いる方法(特
開昭60ー252433号公報)等がある。
For these reasons, VDC manufacturing and VCM
In the production of methane, there is a strong demand for the development of an economical dehydrochlorination method using a catalyst as an alternative method to this conventional method. For example, a method using ZSM-5, silicalite or the like as a catalyst (JP-A-58-167526), or Y
Method using a catalyst obtained by treating or reacting type zeolite with Lewis acid (JP-A-54-79209), method using a catalyst in which rare earth metal chloride is deposited on zeolite (JP-A-61-30) In addition, there is a method of using offretite-erionite type zeolite (hereinafter referred to as OE type zeolite), L-type zeolite as a catalyst (JP-A-60-252433) and the like.

【0006】これらの方法には、塩素化飽和炭化水素の
脱塩化水素反応、例えばEDCの脱塩化水素反応は、熱
分解による脱塩化水素反応に比べ、より低い反応温度で
実施できることが示されている。
These methods show that the dehydrochlorination reaction of chlorinated saturated hydrocarbons, for example, the dehydrochlorination reaction of EDC, can be carried out at a lower reaction temperature than the dehydrochlorination reaction by thermal decomposition. There is.

【0007】しかし、これら何れの方法に於いても、工
業化に於いて特に重要となる触媒の寿命に付いては、何
等記載されていない。この為、脱塩化水素反応の進行に
伴い、触媒上での炭素析出に起因すると考え、この炭素
析出量の低減する方法として、アルカリ金属にて交換し
たOE系ゼオライトとアルカリ金属塩との混合した触媒
を用いる方法(特開平2ー256630号公報)、アル
カリ金属での交換OE系ゼオライトとアルカリとを接触
させた触媒を用いる方法(特開平3ー81232号公
報)等が提示されている。
However, in any of these methods, no mention is made of the life of the catalyst, which is particularly important in industrialization. Therefore, as the dehydrochlorination reaction progresses, it is considered to be caused by carbon deposition on the catalyst, and as a method of reducing this carbon deposition amount, OE-based zeolite exchanged with an alkali metal and an alkali metal salt were mixed. A method using a catalyst (JP-A-2-256630), a method using a catalyst in which an alkali metal-exchanged OE zeolite and an alkali are contacted (JP-A-3-81232), and the like are proposed.

【0008】これらの方法では、数時間の脱塩化水素反
応後の、触媒上の炭素析出量は低減しているが、触媒活
性低下については、明記されてなく、工業化へは、十分
に対応し得るものではない。
[0008] In these methods, the amount of carbon deposited on the catalyst after the dehydrochlorination reaction for several hours is reduced, but the reduction in catalyst activity is not specified, and it is sufficiently compatible with industrialization. You don't get it.

【0009】更に、この触媒活性低下の抑制面からの対
応として、同種のアルカリ金属にて交換した触媒を用
い、反応生成物中のオレフィン濃度を25vol%以下
で反応させる方法(特開平3ー141232号公報)が
提示されている。
Further, as a measure from the viewpoint of suppressing the decrease in catalytic activity, a method is used in which a catalyst exchanged with the same kind of alkali metal is used and the reaction is carried out at an olefin concentration of 25 vol% or less (JP-A-3-141232). Issue).

【0010】しかしながら、目的の生成物であるオレフ
ィン濃度(この引用例ではVCM濃度であるが)を25
vol%以下の低濃度で制約することは、転化率を、従
来の熱分解法より下げる、もしくは大量の希釈の為の気
体(同引用例の実施例では窒素等不活性ガス)を必要と
する等、従来法に比べ更にプロセスの煩雑化、エネルギ
ー、資材面で不利となり、工業化は困難である。
However, the olefin concentration of the desired product (which is the VCM concentration in this reference) is 25
Limiting at a low concentration of not more than vol% requires a conversion rate lower than that in the conventional thermal decomposition method, or requires a large amount of gas for dilution (inert gas such as nitrogen in the example of the cited example). As compared with the conventional method, the process becomes more complicated, and it is disadvantageous in terms of energy and materials, and industrialization is difficult.

【0011】しかも、これら何れの方法(特開昭58ー
167536号公報、特開昭54ー79209号公報、
特開昭61ー30号公報、特開昭60ー252433号
公報、特開平2ー256630号公報、特開平3ー81
232号公報、特開平3ー141232号公報)に於い
ても、EDCの脱塩化水素反応での触媒の転化率、選択
率、寿命等触媒性能については記載されているが、TC
Eの脱塩化水素反応での触媒性能、更にはVDCの製造
に関する具体的記述は一切なされていない。
Moreover, any of these methods (Japanese Patent Application Laid-Open No. 167536/58, Japanese Patent Application Laid-Open No. 54-79209,
JP-A-61-130, JP-A-60-252433, JP-A-2-256630, JP-A-3-81
No. 232 and JP-A No. 3-141232) also describe catalyst performance such as catalyst conversion rate, selectivity and life in the dehydrochlorination reaction of EDC, but TC
No specific description is made on the catalytic performance of E in the dehydrochlorination reaction, and further on the production of VDC.

【0012】TCEの脱塩化水素反応による、VDCの
製造に関しては、カリウム、セシウム、又はルビジウム
の塩化物を触媒として用いる方法(特開昭48ー627
06号公報)、アルミナ、クロミアあるいは酸化チタン
を触媒とし水を添加しつゝ脱塩化水素反応によるVDC
の製造方法(特開昭51ー133207号公報)、更に
はセシウム、ルビジウム又は銅の塩化物、もしくはアル
ミナを触媒としVCM共存下で実施する方法(特公昭5
7ー51814号公報)等が提案されている。
Regarding the production of VDC by the dehydrochlorination reaction of TCE, a method using a chloride of potassium, cesium or rubidium as a catalyst (JP-A-48-627).
No. 06 gazette), VDC using alumina, chromia or titanium oxide as a catalyst and adding water, and by dehydrochlorination reaction
(JP-A-51-133207), and a method of carrying out in the presence of VCM using cesium, rubidium or a chloride of copper, or alumina as a catalyst (Japanese Patent Publication No. Sho 5).
7-51814) and the like have been proposed.

【0013】これら何れの方法に於いても、触媒活性及
び、VDCの選択率が低い、添加物の混入によるVDC
及び塩化水素の回収が困難等の為、工業化には至ってい
ない。
In any of these methods, the VDC due to the addition of additives, which has a low catalytic activity and a low VDC selectivity.
Also, it has not been industrialized due to difficulty in recovering hydrogen chloride.

【0014】更に、触媒活性、選択率の改善として、塩
化セシウムをシリカゲルに担持した触媒を用いる方法
(特開昭61ー197531号公報)、同じくシリカゲ
ルへの塩化セシウム塩担持触媒を用い、脱塩化水素反応
と塩化水素の触媒からの脱着再生操作を交互に実施する
方法(特公平1ー12730号公報)が公表されている
が、触媒活性は不十分であり、且つその減衰を抑制、プ
ロセスの煩雑化等の事由により、実用化は困難である。
Further, to improve the catalytic activity and selectivity, a method of using a catalyst in which cesium chloride is supported on silica gel (Japanese Patent Laid-Open No. 61-197531) is used. A method of alternately carrying out a hydrogen reaction and a desorption / regeneration operation of hydrogen chloride from a catalyst has been published (Japanese Patent Publication No. 12730/1990), but the catalytic activity is insufficient and its decay is suppressed. Practical application is difficult due to reasons such as complexity.

【0015】[0015]

【発明が解決しようとする課題】この為、塩素化炭化水
素の脱塩素化反応の工業化に於いて、触媒の活性、選択
性、寿命等の触媒性能の向上を図る必要があった。
Therefore, in the industrialization of the dechlorination reaction of chlorinated hydrocarbons, it was necessary to improve the catalyst performance such as activity, selectivity and life of the catalyst.

【0016】更に詳しくは、TCEの脱塩化水素反応に
於いては、高転化率、高選択性で、しかも長期間の使用
による触媒活性低下の極めて少ない触媒を見いだす必要
があった。又、EDCの脱塩化水素反応に於いては、特
に、触媒活性の低下の極めて少ない触媒が、必須であっ
た。
More specifically, in the dehydrochlorination reaction of TCE, it was necessary to find a catalyst having a high conversion and a high selectivity, and having a very small decrease in catalytic activity due to long-term use. In addition, in the dehydrochlorination reaction of EDC, a catalyst having a very small decrease in catalytic activity is essential.

【0017】[0017]

【課題を解決するための手段】本発明者等は、塩素化炭
化水素の触媒性能の改善による脱塩化水素反応の工業化
を達成すべく、鋭意検討した結果、本発明に到達した。
The present inventors have arrived at the present invention as a result of extensive studies to achieve industrialization of dehydrochlorination reaction by improving the catalytic performance of chlorinated hydrocarbons.

【0018】即ち本発明は、脱塩化水素反応の触媒とし
て、硝酸セシウムをシリカゲル担体に担持した触媒を用
い、該触媒と塩素化炭化水素とを接触させ反応させるも
のである。
That is, in the present invention, as a catalyst for dehydrochlorination reaction, a catalyst in which cesium nitrate is supported on a silica gel carrier is used, and the catalyst and chlorinated hydrocarbon are brought into contact with each other to react.

【0019】更に詳しくは、上記触媒とTCEとを接触
させ、脱塩化水素反応により、VDCと塩化水素を製造
するものであり、また上記触媒を用い、EDCを脱塩化
水素反応させ、VCMと塩化水素を製造するものであ
る。
More specifically, the catalyst and TCE are brought into contact with each other to produce VDC and hydrogen chloride by a dehydrochlorination reaction, and EDC is dehydrochlorinated by using the above catalyst to produce VCM and chlorine. It produces hydrogen.

【0020】これにより、TCEの脱塩化水素反応及び
EDCの脱塩化水素反応何れの場合に於いても、触媒の
高活性、高選択性が達成でき、しかも脱塩化水素反応の
継続に伴う、活性、選択性の減衰の極めて少ないものと
なった。更に良好なことに、長期間使用により、低下し
た該触媒の活性は、加熱した窒素、ヘリウム、水素等、
脱塩化水素反応に対し不活性なガス(以下、不活性ガス
と記す。)の流通により、初期の活性、選択性等に再生
が同時に達成でき、本発明の完成に至った。
As a result, in both cases of TCE dehydrochlorination reaction and EDC dehydrochlorination reaction, high activity and high selectivity of the catalyst can be achieved, and further, the activity associated with the continuation of the dehydrochlorination reaction can be achieved. , The attenuation of selectivity was extremely small. Even better, the activity of the catalyst, which has been reduced by long-term use, is such that heated nitrogen, helium, hydrogen, etc.
By circulation of a gas inert to the dehydrochlorination reaction (hereinafter referred to as an inert gas), regeneration such as initial activity and selectivity can be achieved at the same time, and the present invention has been completed.

【0021】[0021]

【作用】以下に、本発明を更に詳細に説明する。尚、本
発明をTCEの脱塩化水素反応によるVDCの生成、及
び、EDCの脱塩化水素反応によるVCMの生成に適応
した場合について、説明するが、他の同様な飽和塩素化
炭化水素を原料とする、プロピレンクロロヒドリン(以
下、PCHと記す。)の脱塩化水素反応によるプロピレ
ンオキシド(以下、POと記す。)の生成、3,4−ジ
クロロ−1−ブテンの脱塩化水素反応によるクロロプレ
ンに適応出来ることは当然である。
The present invention will be described in more detail below. The case where the present invention is applied to the production of VDC by the dehydrochlorination reaction of TCE and the production of VCM by the dehydrochlorination reaction of EDC will be described. However, other similar saturated chlorinated hydrocarbons are used as raw materials. To produce propylene oxide (hereinafter, referred to as PO) by dehydrochlorination reaction of propylene chlorohydrin (hereinafter, referred to as PCH), and to produce chloroprene by dehydrochlorination reaction of 3,4-dichloro-1-butene. It is natural that we can adapt.

【0022】本発明の方法に於いて、各種セシウム塩の
内、硝酸セシウムを蒸留水にて水溶液とし、該水溶液を
一般に市販されているシリカゲルと、循環させつゝ接触
含浸させる。
In the method of the present invention, among various cesium salts, cesium nitrate is made into an aqueous solution with distilled water, and the aqueous solution is circulated and contact-impregnated with silica gel which is generally commercially available.

【0023】この際、硝酸セシウムを担持させたシリカ
ゲルの全重量に対し、1wt%以上〜50wt%以下、
好ましくは、10wt%以上〜30wt%以下が硝酸セ
シウムとなる迄、シリカゲルに含浸させる。
At this time, 1 wt% or more and 50 wt% or less of the total weight of the silica gel supporting cesium nitrate,
Preferably, the silica gel is impregnated until 10 wt% or more and 30 wt% or less becomes cesium nitrate.

【0024】又、硝酸セシウムを含浸したシリカゲル
は、一旦錠剤成形器にて成形させた後に粉砕する。その
後、この粉砕された硝酸セシウムの含浸されたシリカゲ
ルの内、粒径が0.7〜1mmの範囲のものを空気中で
400℃に加熱し、これに含まれる水分を乾燥除去した
ものを、脱塩化水素反応の触媒として用いる。
Silica gel impregnated with cesium nitrate is once molded in a tablet molding machine and then crushed. After that, of the crushed cesium nitrate-impregnated silica gel, one having a particle size in the range of 0.7 to 1 mm was heated in air to 400 ° C., and water contained therein was removed by drying. Used as a catalyst for dehydrochlorination reaction.

【0025】このシリカゲルへの硝酸セシウムの担持方
法については、シリカゲルへの硝酸セシウム担持量が規
程量で且つ触媒の各位置に於いて均一に分散されるもの
であれば、公知の種々一般的な担持方法であっても何等
差し支えない。
Regarding the method for supporting cesium nitrate on silica gel, various known general methods can be used as long as the supported amount of cesium nitrate on silica gel is a regulated amount and is uniformly dispersed at each position of the catalyst. The supporting method does not matter.

【0026】本発明に於て、脱塩化水素される塩素化炭
化水素は、その炭素数が2〜4で、水素原子と塩素原子
を1個以上含むもので、例えばEDC、TCE、PCH
等が挙げられる。
In the present invention, the chlorinated hydrocarbon to be dehydrochlorinated has 2 to 4 carbon atoms and contains at least one hydrogen atom and one chlorine atom. For example, EDC, TCE, PCH.
Etc.

【0027】該塩素化炭化水素と触媒とを、接触させ、
脱塩化水素反応を実施する方法としては、電気ヒーター
により一定温度に保たれたガラス管内部に触媒を固定
し、これに塩素化炭化水素を一定量、断続的に供給す
る、いわゆるパルス反応方式と、同様に電気ヒーターに
より恒温が保たれ内部に触媒を充填したガラス管反応器
に塩素化炭化水素を連続的に一定流量にて供給する固定
床流通反応方式とした。
Contacting the chlorinated hydrocarbon with a catalyst,
As a method for carrying out the dehydrochlorination reaction, a catalyst is fixed inside a glass tube kept at a constant temperature by an electric heater, and a certain amount of chlorinated hydrocarbon is intermittently supplied to this, a so-called pulse reaction method. Similarly, a fixed bed flow reaction system was used in which a chlorinated hydrocarbon was continuously supplied at a constant flow rate to a glass tube reactor in which a constant temperature was maintained by an electric heater and a catalyst was filled inside.

【0028】この際、反応温度としては、通常150℃
以上〜450℃以下の範囲が良く、250℃以上〜40
0℃以下の範囲が特に好ましい。反応温度が150℃未
満では充分な反応速度が得られず、又、450℃を超過
する場合には、目的の生成物(例えば、TCEの脱塩化
水素反応の場合VDC、EDCの場合VCMがそれに該
当する。)の選択率が低下し、高エンタルピーの熱源が
必要で且つ、エネルギー消費量が増大する等、経済的に
不利となる。
At this time, the reaction temperature is usually 150 ° C.
The range of ≧ -450 ° C is better, and the range of ≧ 250 ° C-40
The range of 0 ° C. or lower is particularly preferable. If the reaction temperature is lower than 150 ° C, a sufficient reaction rate cannot be obtained, and if it exceeds 450 ° C, the desired product (for example, VDC in the case of TCE dehydrochlorination reaction, VCM in the case of EDC is It becomes economically disadvantageous that the selectivity of () falls, a heat source with high enthalpy is required, and energy consumption increases.

【0029】原料である塩素化炭化水素の該反応器への
供給方法としては、パルス反応方式の場合は、一定量の
不活性ガスを反応器に常時流通させ、反応器上流部の位
置にて、シリンジを用い、一定間隔で且つ一定量注入し
た。
As a method of supplying the chlorinated hydrocarbon as a raw material to the reactor, in the case of a pulse reaction system, a certain amount of an inert gas is constantly circulated in the reactor and is placed at a position upstream of the reactor. , A syringe was used to inject a fixed amount at a fixed interval.

【0030】又、固定床流通反応方式に於いては、予め
不活性ガスに、原料である塩素化炭化水素を、所定濃度
となる迄混合した後、これを一定流速にて反応器上流部
より導入した。
Further, in the fixed bed flow reaction system, chlorinated hydrocarbon as a raw material is mixed in advance with an inert gas until a predetermined concentration is reached, and this is then fed from the upstream portion of the reactor at a constant flow rate. Introduced.

【0031】不活性ガスによる原料供給法は、後述する
ガスクロマトグラフィーの容易さを図るもので、原料の
塩素化炭化水素を直接ガス化し、反応器、特に固定床流
通反応器に導入しても、何等差し支えない。
The raw material supply method using an inert gas is intended to facilitate the gas chromatography described later. Even if the raw material chlorinated hydrocarbon is directly gasified and introduced into a reactor, particularly a fixed bed flow reactor. It doesn't matter.

【0032】更に、反応圧力については、特に制限はな
く、常圧、加圧、減圧下で実施可能であるが、本発明の
実施例に於いては、原料ガス体の導入は加圧下である。
Further, the reaction pressure is not particularly limited, and it can be carried out under normal pressure, increased pressure or reduced pressure, but in the embodiment of the present invention, the introduction of the raw material gas body is under increased pressure. ..

【0033】何れの反応方式に於いても、該反応器の下
流側、いわゆる出口から直接、ガスクロマトグラフィー
に導入し、反応後の各生成物量及び原料塩素化炭化水素
の未反応での残量を測定し、転化率、選択率を算出し
た。
In any of the reaction systems, the amount of each product after the reaction and the unreacted residual amount of the raw material chlorinated hydrocarbons are introduced into the gas chromatography directly from the downstream side of the reactor, that is, the so-called outlet. Was measured, and the conversion rate and selectivity were calculated.

【0034】更に、長時間の脱塩化水素反応に使用した
触媒の再生方法としては、塩素化炭化水素のみの反応器
への導入を停止し、不活性ガスを流通しつゝ、電気ヒー
ターにより反応器温度を350℃以上、好ましくは40
0℃近傍に上昇させ、一定時間保持し実施した。この触
媒再生処理の後、再び所定の反応温度に降下させ、原料
塩素化炭化水素の供給を開始し、転化率、選択率により
評価を行った。
Further, as a method of regenerating the catalyst used for the long-time dehydrochlorination reaction, the introduction of only chlorinated hydrocarbons into the reactor is stopped and the inert gas is passed through the reaction by an electric heater. The temperature of the vessel is 350 ° C or higher, preferably 40
The temperature was raised to around 0 ° C., and the temperature was maintained for a certain period of time. After this catalyst regeneration treatment, the temperature was lowered to a predetermined reaction temperature again, the supply of the raw material chlorinated hydrocarbon was started, and the evaluation was performed by the conversion rate and the selectivity.

【0035】[0035]

【発明の効果】本発明の方法により、塩素化炭化水素の
脱塩素化反応に於ける、高活性、高選択性、及び長時間
の使用による活性、選択性の低下の極めて少ない等、触
媒性能が向上できた。更に良好なことに、長時間の使用
によって僅かに低下した、触媒活性は、容易な方法(高
温不活性ガス流通)にて再生可能であった。従って、本
発明の方法は、従来法に比べ工業的に極めて有意義であ
る。
EFFECTS OF THE INVENTION According to the method of the present invention, in the dechlorination reaction of chlorinated hydrocarbons, high activity, high selectivity, and very little reduction in activity and selectivity due to long-term use, etc. Was improved. Even better, the catalytic activity, which was slightly reduced by long-term use, was reproducible in a simple way (high temperature inert gas flow). Therefore, the method of the present invention is industrially extremely significant as compared with the conventional method.

【0036】[0036]

【実施例】以下に、本発明を実施例をもって、更に詳し
く説明するが、本発明はこれらの実施例のみに限定され
るものではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0037】尚、本明細書に於て、転化率、選択率とは
それぞれ下記の式により計算した。 転化率[%]=(FーR)/F×100 F;塩素化炭化水素の供給量[mol] R;塩素化炭化水素の残量[mol] 選択率[%]=P/C×100 P;目的生成物の生成量[mol] C;塩化水素を除いた反応生成物量[mol]
In this specification, the conversion rate and the selectivity are calculated by the following equations. Conversion rate [%] = (F−R) / F × 100 F; Supply amount of chlorinated hydrocarbon [mol] R; Remaining amount of chlorinated hydrocarbon [mol] Selectivity [%] = P / C × 100 P: amount of target product produced [mol] C: amount of reaction product excluding hydrogen chloride [mol]

【0038】(実施例1)図1に示すパルス反応方式に
より、TCEの脱塩化水素反応を実施した。
(Example 1) The dehydrochlorination reaction of TCE was carried out by the pulse reaction system shown in FIG.

【0039】硝酸セシウムを蒸留水にて水溶液とし、市
販のシリカゲルに含浸させるが、この際、硝酸セシウム
の水溶液濃度は、水分を除いた後のシリカゲルと硝酸セ
シウムの合わせた重量に対し硝酸セシウムの量が、20
wt%となる様調製しつつ行った。更に、この硝酸セシ
ウムの含浸したシリカゲルは、一旦錠剤成形器にて成形
した後、粉砕し、粒径が0.7〜1mmの範囲に揃え、
空気中にて温度400℃の状態で2時間放置し、水分を
乾燥除去しとものを、触媒とした。
Cesium nitrate was made into an aqueous solution with distilled water and impregnated on a commercially available silica gel. At this time, the aqueous solution concentration of cesium nitrate was cesium nitrate based on the combined weight of silica gel and cesium nitrate after removing water. The amount is 20
It was carried out while preparing so as to be wt%. Further, this cesium nitrate-impregnated silica gel was once molded with a tablet molding machine and then pulverized to have a particle size of 0.7 to 1 mm.
The catalyst was left to stand in the air at a temperature of 400 ° C. for 2 hours to dry and remove water.

【0040】反応器としては、内径4mm×長さ200
mmのガラス管を用い、この中に、該触媒を50mgを
充填固定した。この反応器を、更に、触媒充填層(1)
を熱電対(2)にて温度を計測しつゝ電気ヒーター
(3)により300℃の恒温が保たれる様、温度コント
ローラー(4)にて調節した。
The reactor has an inner diameter of 4 mm and a length of 200.
Using a glass tube of mm, 50 mg of the catalyst was filled and fixed therein. This reactor is further provided with a catalyst packed bed (1)
The temperature was measured with a thermocouple (2) and the temperature was adjusted with a temperature controller (4) so that a constant temperature of 300 ° C was maintained by the electric heater (3).

【0041】この状態で、脱塩化水素反応に対し、不活
性である水素ガスを、流量が60ml/分で一定となる
様、導入した。触媒の前処理として2時間、水素のみを
流通し、その後、試料注入口(6)より、シリンジを用
い、所定回数、TCEを2μlづつ15分間隔で断続的
に供給した。反応器出口にはガスクロマトグラフィー
(5)を直接接続し、脱塩化水素反応後のVDCをはじ
め各種反応生成物及び未反応で残余するTCEの量を測
定し、これより転化率及び選択率を求めた。
In this state, hydrogen gas, which is inactive to the dehydrochlorination reaction, was introduced so that the flow rate was constant at 60 ml / min. As a pretreatment of the catalyst, only hydrogen was circulated for 2 hours, and then 2 μl of TCE was intermittently supplied from the sample injection port (6) for a predetermined number of times at an interval of 15 minutes every 2 μl. A gas chromatography (5) was directly connected to the outlet of the reactor to measure the amount of various reaction products including VDC after the dehydrochlorination reaction and TCE remaining unreacted. I asked.

【0042】更に、触媒再生状況を観察する為に、原料
であるTCEのみ注入を止め、水素ガスを流通しつゝ、
触媒充填層を400℃迄昇温し、この状態で30分間保
持した後、再度、当初の方法にてTCEを2μl供給を
開始し、その際の転化率、及び選択率の変化を確認し
た。
Further, in order to observe the state of catalyst regeneration, injection of only TCE as a raw material was stopped and hydrogen gas was circulated.
After the temperature of the catalyst packed bed was raised to 400 ° C. and kept in this state for 30 minutes, 2 μl of TCE was started again by the initial method, and changes in conversion rate and selectivity at that time were confirmed.

【0043】図3に、本パルス反応の結果を示す。FIG. 3 shows the result of this pulse reaction.

【0044】(比較例1)上記実施例1との比較の為、
同じく図1に示したパルス反応装置にて、シリカゲルに
硝酸セシウム以外のセシウム塩を担持した場合について
説明する。
Comparative Example 1 For comparison with Example 1 above,
Similarly, a case where cesium salt other than cesium nitrate is supported on silica gel in the pulse reactor shown in FIG. 1 will be described.

【0045】触媒としては、塩化セシウム、炭酸セシウ
ム、硫酸セシウムを、本明細書の実施例1と同じ方法で
シリカゲルに20wt%担持とし、パルス反応器内に、
同じく50mgを充填固定した。又、反応条件も、上記
実施例1と全く同様に、水素ガス流通下にて同条件で、
触媒の前処理の2時間後、シリンジにて、TCEを2μ
lづつ15分間隔で断続的に供給した。更に、水素ガス
のみ、触媒充填層を400℃迄昇温した状態で30分間
再生処理した後、再び転化率、及び選択率を測定した。
As the catalyst, cesium chloride, cesium carbonate, and cesium sulfate were loaded on silica gel in an amount of 20 wt% in the same manner as in Example 1 of the present specification, and were placed in a pulse reactor.
Similarly, 50 mg was filled and fixed. Also, the reaction conditions are the same as in Example 1 under the same conditions under the flow of hydrogen gas.
2 hours after the catalyst pretreatment, add 2μ of TCE with a syringe.
It was supplied intermittently at intervals of 15 minutes. Further, only the hydrogen gas was subjected to a regeneration treatment for 30 minutes while the temperature of the catalyst packed bed was raised to 400 ° C., and then the conversion rate and the selectivity were measured again.

【0046】図3に、本比較例1のパルス反応の結果を
示す。
FIG. 3 shows the results of the pulse reaction of this Comparative Example 1.

【0047】(実施例2)図2に示す固定床流通反応方
式により、TCEの脱塩化水素反応を実施した。
Example 2 The dehydrochlorination reaction of TCE was carried out by the fixed bed flow reaction system shown in FIG.

【0048】触媒としては、上記実施例1と同じ、硝酸
セシウムを20wt%に担持したシリカゲルを用い、内
径10mm×長さ200mmのガラス管の反応器内に、
触媒1gを充填固定した。更に、この反応器の触媒充填
層(1)を熱電対(2)にて温度を計測しつゝ、電気ヒ
ーター(3)により所定の温度が保たれる様、温度コン
トローラー(4)にて調節した。
As the catalyst, the same silica gel supporting 20% by weight of cesium nitrate as in Example 1 was used, and a glass tube reactor having an inner diameter of 10 mm and a length of 200 mm was used.
1 g of the catalyst was filled and fixed. Furthermore, while the temperature of the catalyst packed bed (1) of this reactor is measured by the thermocouple (2), the temperature is controlled by the temperature controller (4) so that the predetermined temperature is maintained by the electric heater (3). did.

【0049】原料であるTCEは予め水素ガス中に所定
濃度(TCE分圧が一定)となる様、マイクロフィーダ
ー(7)により連続的に供給した。このTCEと水素と
の混合ガスを75ml/分の一定流量にて、触媒充填層
(1)に導入した。
TCE as a raw material was continuously supplied in advance in a hydrogen gas by a micro feeder (7) so that a predetermined concentration (TCE partial pressure was constant) was obtained. This mixed gas of TCE and hydrogen was introduced into the catalyst packed bed (1) at a constant flow rate of 75 ml / min.

【0050】この状態で、連続的に脱塩化水素反応を実
施し、所定時間毎、反応器出口に位置するサンプリング
口(8)から、反応器流出ガスを採取し、ガスクロマト
グラフィー(5)により、脱塩化水素反応後のVDCを
はじめ各種反応生成物及び未反応で残余するTCEの量
を測定し、これより転化率及び選択率を求めた。触媒充
填層(1)の温度を、300℃、350℃、400℃、
450℃として、TCEの脱塩化水素反応を実施した結
果を、図4に示す。
In this state, the dehydrochlorination reaction is continuously carried out, the reactor outflow gas is sampled from the sampling port (8) located at the outlet of the reactor every predetermined time, and the sample is analyzed by gas chromatography (5). The amounts of various reaction products including VDC after the dehydrochlorination reaction and TCE remaining unreacted were measured, and the conversion rate and the selectivity were calculated from the measured values. The temperature of the catalyst packed bed (1) is 300 ° C, 350 ° C, 400 ° C,
The results of carrying out the dehydrochlorination reaction of TCE at 450 ° C. are shown in FIG.

【0051】この際、TCEと水素との混合ガス中のT
CE濃度、即ちTCE分圧を0.02〜0.11atm
の範囲で変化させたところ、TCEの触媒との単位接触
時間当りの転化率及び選択率には何等影響が無かった。
この為、上記実施例2ではTCE分圧を0.05atm
とした。更に、この状態でTCEの脱塩化水素反応を2
4時間以上継続した後の転化率及び選択率は、何等変化
が無かった。
At this time, T in the mixed gas of TCE and hydrogen
CE concentration, that is, TCE partial pressure is 0.02-0.11 atm
However, there was no effect on the conversion rate and selectivity per unit contact time of TCE with the catalyst.
Therefore, in the second embodiment, the TCE partial pressure is set to 0.05 atm.
And Furthermore, in this state, the TCE dehydrochlorination reaction
There was no change in conversion rate and selectivity after continuing for 4 hours or more.

【0052】(比較例2)上記実施例2との比較の為、
同じく図2に示した固定床流通反応装置にて、シリカゲ
ル以外のシリカーアルミナ、チタニア、及び活性炭に硝
酸セシウムを上記実施例1と同じ方法で担持し、これら
の各々の触媒に付き、上記実施例2と同一の固定床反応
装置及び反応条件下にて、TCEの脱塩化水素反応を行
ったが、触媒活性いわゆるTCEの脱塩化水素は、殆ど
観測出来なかった。
(Comparative Example 2) For comparison with Example 2 described above,
Similarly, in the fixed bed flow reactor shown in FIG. 2, cesium nitrate was loaded on silica-alumina other than silica gel, titania, and activated carbon in the same manner as in Example 1 above. Dehydrochlorination of TCE was carried out under the same fixed bed reactor and reaction conditions as in Example 2, but catalytic activity, so-called TCE dehydrochlorination, was hardly observed.

【0053】(実施例3)上記実施例2と、同じく図2
に示した固定床流通反応装置にて、硝酸セシウムのシリ
カゲル担持量を5wt%〜50wt%に変化させた場合
について説明する。
(Embodiment 3) The same as FIG.
The case where the amount of cesium nitrate supported on silica gel is changed from 5 wt% to 50 wt% in the fixed bed flow reactor shown in FIG.

【0054】触媒としては、硝酸セシウムを、上記実施
例1と同じ方法にて、シリカゲルに硝酸セシウム量が、
各々5wt%、10wt%、20wt%、50wt%と
なるよう担持、調製した。これらの触媒各々に付き、反
応温度いわゆる触媒充填層(1)の温度を300℃と
し、その他、固定床反応装置及び反応条件を、上記実施
例2と同一として、TCEの脱塩化水素反応を行い、そ
れぞれについて、転化率、選択率を測定し、その結果を
表1に示した。
As the catalyst, cesium nitrate was used in the same manner as in Example 1 above, and the amount of cesium nitrate was changed to silica gel.
They were supported and prepared so as to be 5% by weight, 10% by weight, 20% by weight and 50% by weight, respectively. With respect to each of these catalysts, the reaction temperature, that is, the temperature of the catalyst packed bed (1) was set to 300 ° C., the fixed bed reactor and the reaction conditions were the same as in Example 2 above, and the dehydrochlorination reaction of TCE was performed. The conversion rate and the selectivity were measured for each of these, and the results are shown in Table 1.

【0055】[0055]

【表1】 [Table 1]

【0056】(実施例4)図1に示すパルス反応方式に
より、EDCの脱塩化水素反応を実施した。
Example 4 The dehydrochlorination reaction of EDC was carried out by the pulse reaction system shown in FIG.

【0057】触媒としては、上記実施例1と同じ、硝酸
セシウムを20wt%に担持したシリカゲルを用い、パル
ス反応器内に、75mgを充填固定した。又、触媒充填
層(1)の温度は350℃の恒温に保ちつゝ、その他の
反応条件は、上記実施例1と全く同様に、水素ガス流通
下にて同条件で、触媒の前処理の2時間後、シリンジに
て、EDCを2μlづつ15分間隔で断続的に供給し
た。
As the catalyst, the same silica gel supporting 20% by weight of cesium nitrate as in Example 1 was used, and 75 mg was fixed in the pulse reactor. The temperature of the catalyst packed bed (1) was kept constant at 350 ° C., and the other reaction conditions were exactly the same as in Example 1 above, under the same conditions under the flow of hydrogen gas, and the catalyst pretreatment was carried out. After 2 hours, 2 μl of EDC was intermittently supplied at intervals of 15 minutes by a syringe.

【0058】反応器出口にてガスクロマトグラフィー
(5)により、脱塩化水素反応後のVCMをはじめ各種
反応生成物及び未反応で残余するEDCの量を測定し、
これより転化率及び選択率を求めた。更に、水素ガスの
みを流通しつゝ、触媒充填層を400℃迄昇温した状態
で30分間の触媒再生処理を実施した後の転化率、及び
選択率の変化を確認した。
At the outlet of the reactor, the amounts of various reaction products including VCM after dehydrochlorination reaction and EDC remaining unreacted were measured by gas chromatography (5),
From this, the conversion rate and selectivity were determined. Furthermore, changes in the conversion rate and the selectivity were confirmed after carrying out a catalyst regeneration treatment for 30 minutes in a state where the catalyst packed bed was heated to 400 ° C. while flowing only hydrogen gas.

【0059】図5に、本パルス反応の結果を示す。FIG. 5 shows the result of this pulse reaction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1,4及び比較例1で用いたパ
ルス反応装置の説明図である。
FIG. 1 is an explanatory diagram of a pulse reaction device used in Examples 1 and 4 of the present invention and Comparative Example 1.

【図2】本発明の実施例2,3及び比較例2で用いた固
定床流通反応装置の説明図である。
FIG. 2 is an explanatory diagram of a fixed bed flow reactor used in Examples 2 and 3 of the present invention and Comparative Example 2.

【図3】実施例1及び比較例1の結果を示す実測図であ
る。
FIG. 3 is an actual measurement diagram showing the results of Example 1 and Comparative Example 1.

【図4】実施例2の結果を示す実測図である。FIG. 4 is an actual measurement diagram showing the results of Example 2.

【図5】実施例4の結果を示す実測図である。FIG. 5 is an actual measurement diagram showing the results of Example 4.

【符号の説明】 1‥‥触媒充填層 2‥‥熱電対 3‥‥電気ヒーター 4‥‥温度コントローラー 5‥‥ガスクロマトグラフィー 6‥‥試料注入口 7‥‥マイクロフィーダー 8‥‥サンプリング口[Explanation of symbols] 1 ... Catalyst packed bed 2 ... Thermocouple 3 ... Electric heater 4 ... Temperature controller 5 ... Gas chromatography 6 ... Sample injection port 7 ... Micro feeder 8 ... Sampling port

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // C07B 61/00 300

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 各種セシウム塩の内、硝酸セシウムをシ
リカゲル担体に担持した触媒と塩素化炭化水素とを接触
させることを特徴とする脱塩化水素方法。
1. A dehydrochlorination method comprising contacting a chlorinated hydrocarbon with a catalyst in which cesium nitrate is supported on a silica gel carrier among various cesium salts.
【請求項2】 塩素化炭化水素の炭素数が2〜4である
請求項1に記載の脱塩化水素方法。
2. The dehydrochlorination method according to claim 1, wherein the chlorinated hydrocarbon has 2 to 4 carbon atoms.
【請求項3】 塩素化炭化水素が1,1,2−トリクロ
ロエタンで脱塩化水素反応後の生成物が塩化ビニリデン
である請求項1または2記載の脱塩化水素方法。
3. The dehydrochlorination method according to claim 1, wherein the product after the dehydrochlorination reaction with 1,1,2-trichloroethane as the chlorinated hydrocarbon is vinylidene chloride.
【請求項4】 塩素化炭化水素が1,2−ジクロルエタ
ンで脱塩化水素反応後の生成物が塩化ビニルモノマーで
ある請求項1または2記載の脱塩化水素方法。
4. The dehydrochlorination method according to claim 1, wherein the product obtained after the dehydrochlorination reaction of chlorinated hydrocarbon with 1,2-dichloroethane is a vinyl chloride monomer.
JP3322490A 1991-11-11 1991-11-11 Catalytic dehydrochlorination process Pending JPH05132436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3322490A JPH05132436A (en) 1991-11-11 1991-11-11 Catalytic dehydrochlorination process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3322490A JPH05132436A (en) 1991-11-11 1991-11-11 Catalytic dehydrochlorination process

Publications (1)

Publication Number Publication Date
JPH05132436A true JPH05132436A (en) 1993-05-28

Family

ID=18144228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3322490A Pending JPH05132436A (en) 1991-11-11 1991-11-11 Catalytic dehydrochlorination process

Country Status (1)

Country Link
JP (1) JPH05132436A (en)

Similar Documents

Publication Publication Date Title
EP0352849B1 (en) Process for starting-up an ethylene oxide reactor
US5618954A (en) Preparation of 3,4-epoxy-1-butene
JP5788961B2 (en) Pretreatment and regeneration method of catalyst used in production process of fluoroiodoalkanes
EP0349115B1 (en) Hydrodehalogenation of 1,1,1,2-tetrafluorochloroethane in the presence of supported pd
UA77384C2 (en) Catalyst and process for producing vinyl acetate
US5874607A (en) Coproduction of 6-aminocapronitrile and hexamethylenediamine
JP2019196312A (en) Manufacturing method of 1,2-difluoroethylene and/or 1,1,2-trifluoroethane
EP0120655A1 (en) Improved catalysts and their use in ammonia production
US5105032A (en) Vapor phase hydrogenation of carbon tetrachloride
CN103946198A (en) Method for producing trans-1-chloro-3,3,3-trifluoropropene
EP0234002B1 (en) Process for converting a 1,1,1-trifluoroalkane into a 1,1-difluoroalkene
US6291729B1 (en) Halofluorocarbon hydrogenolysis
CA2251539C (en) Coproduction of 6-aminocapronitrile and hexamethylenediamine
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
JP3049645B2 (en) Method of catalytic dehydrochlorination
JPH05132436A (en) Catalytic dehydrochlorination process
US5202102A (en) Gas phase dehydrohalogenation using a pretreated catalyst
JPH0542298B2 (en)
US4055579A (en) Process for the production of ethylene oxide
EP0040414B1 (en) Process for producing acetaldehyde
US6624109B2 (en) Process for the synthesis of highly active modified carbon supported palladium catalyst
EP0083292B1 (en) Method for the production of ethylbenzene
JPS5867636A (en) Production of plyhydric phenol
JP2940917B2 (en) Method for producing allyl acetate
JPH09249590A (en) Production of lower unsaturated hydrocarbon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

EXPY Cancellation because of completion of term