JPH05132394A - Synthesis of diamond film by vapor-phase process - Google Patents

Synthesis of diamond film by vapor-phase process

Info

Publication number
JPH05132394A
JPH05132394A JP28544091A JP28544091A JPH05132394A JP H05132394 A JPH05132394 A JP H05132394A JP 28544091 A JP28544091 A JP 28544091A JP 28544091 A JP28544091 A JP 28544091A JP H05132394 A JPH05132394 A JP H05132394A
Authority
JP
Japan
Prior art keywords
diamond
substrate
synthesis
film
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28544091A
Other languages
Japanese (ja)
Other versions
JP2981937B2 (en
Inventor
Yoichi Hirose
洋一 広瀬
Kunio Komaki
邦雄 小巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP3285440A priority Critical patent/JP2981937B2/en
Publication of JPH05132394A publication Critical patent/JPH05132394A/en
Application granted granted Critical
Publication of JP2981937B2 publication Critical patent/JP2981937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To effect the uniform growth of a diamond thin film on a substrate in high density and high deposition strength at a high speed by coating the surface of a substrate with an ester solution containing fine particles of a carbonaceous material, heating the coated substrate and supplying a raw material for the synthesis of diamond. CONSTITUTION:In a process for depositing a diamond film on a substrate by a vapor-process, the surface of the substrate is coated with an ester solution containing carbon black or soot, the substrate is heated at 100-600 deg.C and a gaseous raw material is supplied to the substrate. When a vapor-phase synthetic reaction of diamond is carried out by using the above gas, the deposition probability of the diamond precursor radical to the carbon compound particle is increased to facilitate the formation of diamond nucleus. Further, the nucleus formation density is also increased to increase the deposition strength of the formed diamond to the substrate and the film thickness becomes extremely uniform. The amount of the fine particles of the carbonaceous material in the ester solution is preferably 1mg to 0.3g based on 100cc of the ester.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相法による膜状ダイヤ
モンド合成方法に関し、特に基体上におけるダイヤモン
ド核発生密度を高め、そのため均一な厚さの膜状ダイヤ
モンドを容易に生成させるための基体の処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing a film-like diamond by a vapor phase method, and more particularly to a method for increasing the density of diamond nucleation on a substrate, thereby easily forming a film-like diamond of uniform thickness. Regarding processing method.

【0002】[0002]

【従来の技術】気相法ダイヤモンドの合成に於いてダイ
ヤモンドの形状、均質性を制御するにはより多くの核発
生を行う事が必要である。気相法に於けるダイヤモンド
の成長は、まず基板上の特異点に微細なダイヤモンド核
が発生し、その後、核は3次元的に成長していき、やが
て隣接する結晶粒が合体して膜状になる。よって核発生
密度が低すぎると膜状成長とならない。ダイヤモンド核
発生密度を高める方法として、ダイヤモンドパウダー等
による傷つけ処理(第48回応用物理学会学術講演会、
18a−T−5)が提唱されている。又、核発生密度、
ダイヤモンド膜と基板界面の付着強度を高めるための方
法として、酸、アルカリ等の化学薬品によるエッチング
(第48回応用物理学会学術講演会、18a−T−
4)、またアルコール等を含む特定のガス中でエッチン
グ(特開平1−145396号)等が知られている。し
かしいずれの方法によっても最大核発生密度は107
cm2 程度のオーダーである。
2. Description of the Related Art In the synthesis of vapor phase diamond, it is necessary to generate more nuclei in order to control the shape and homogeneity of diamond. In the growth of diamond in the vapor phase method, first, fine diamond nuclei are generated at singular points on the substrate, and then the nuclei grow three-dimensionally, and then adjacent crystal grains coalesce into a film shape. become. Therefore, if the nucleation density is too low, film growth does not occur. As a method of increasing the density of diamond nuclei generation, scratch treatment with diamond powder etc. (The 48th Annual Meeting of the Applied Physics Society of Japan,
18a-T-5) has been proposed. Also, the nucleation density,
As a method for increasing the adhesion strength between the diamond film and the substrate interface, etching with chemicals such as acids and alkalis (The 48th Applied Physics Society Academic Meeting, 18a-T-
4), etching in a specific gas containing alcohol or the like (JP-A-1-145396) is known. However, the maximum nucleation density is 10 7 /
It is on the order of cm 2 .

【0003】本発明者らは、核発生密度を高める方法を
開発する目的で研究を行ない、先にカーボンブラック又
はグラファイト粒子が核形成剤として優れていることを
確認して、特願平1−3388号(特開平2−1845
97)を出願した。然しこの方法はダイヤモンド粒生成
には適しているが、ダイヤモンド膜の生成を目的とする
場合、膜の均一性が不充分でダイヤモンド膜の生成には
不適であった。
The present inventors have conducted research for the purpose of developing a method for increasing the nucleation density, and have confirmed that carbon black or graphite particles are excellent as nucleating agents, and found that Japanese Patent Application No. 3388 (Japanese Patent Laid-Open No. 2-1845
97) was filed. However, this method is suitable for producing diamond grains, but when the purpose is to produce a diamond film, the uniformity of the film is insufficient and it is not suitable for producing a diamond film.

【0004】[0004]

【発明が解決しようとする課題】従って実用上有用な均
質ダイヤモンドを合成するための条件、即ち基板上に高
密度に、又付着強度が高く、しかも均一にダイヤモンド
薄膜が高速に成長する方法の開発が強く求められてい
る。
Accordingly, the conditions for synthesizing a practically useful homogeneous diamond, that is, the development of a method in which a diamond thin film is uniformly grown at a high density and a high adhesion strength on a substrate. Is strongly demanded.

【0005】[0005]

【課題を解決するための手段】本発明者らは前記の要望
に応ずるため研究を続けた結果、炭素質微粒とエステル
溶剤とよりなる処理剤を基板に塗布し、これを熱処理し
た基板を用いることにより目的を達成することを知り、
本発明を完成した。即ち、本発明は基板表面に炭素質微
粒を含むエステル溶液を塗布し、次いで基板を100℃
から600℃で加熱した後に、ダイヤモンド合成原料気
体を供給することを特徴とする気相法による膜状ダイヤ
モンドの合成法に関する。
Means for Solving the Problems The inventors of the present invention have conducted research to meet the above-mentioned demands, and as a result, a treatment agent comprising carbonaceous fine particles and an ester solvent was applied to the substrate, and the heat-treated substrate was used. Knowing that by doing so,
The present invention has been completed. That is, according to the present invention, the ester solution containing carbonaceous fine particles is applied to the surface of the substrate, and then the substrate is heated to 100 ° C.
The present invention relates to a method for synthesizing a film-shaped diamond by a vapor phase method, characterized in that a raw material gas for synthesizing diamond is supplied after being heated to 600 ° C.

【0006】本発明のカーボンブラックやすすの粒径は
最大0.1μm、好ましくは0.005〜0.07μm
である。又、加熱時間は特に限定されないが、実用的に
は1〜数時間である。具体的には加熱によりエステル溶
剤と炭素質微粒が結合して、基板上に炭素化合物粒とし
て分散、点在する。
The carbon black or soot of the present invention has a maximum particle size of 0.1 μm, preferably 0.005 to 0.07 μm.
Is. Although the heating time is not particularly limited, it is practically 1 to several hours. Specifically, the ester solvent and the carbonaceous fine particles are bonded by heating, and dispersed and scattered as carbon compound particles on the substrate.

【0007】このような気体を用いて気相法ダイヤモン
ド合成反応を行わせると、この炭素化合物粒に対するダ
イヤモンド前駆体ラジカルの付着確率が高くなりダイヤ
モンド核の形成が容易となり、核発生密度が従来方法に
比し、向上し、生成ダイヤモンドの基体に対する付着強
度は大となり、又膜厚も極めて均一となる。
When the gas phase diamond synthesis reaction is carried out using such a gas, the probability of the diamond precursor radicals adhering to the carbon compound grains is increased, the formation of diamond nuclei is facilitated, and the nucleation density is increased by the conventional method. In comparison with the above, the adhesion strength of the produced diamond to the substrate becomes large, and the film thickness becomes extremely uniform.

【0008】又エステル溶液として具体的には酢酸エス
テルが用いられ、市販のマーカーが特に実用的に好まし
い。又、エステル溶液中の炭素質微粒の量はエステル1
00cc中1mg〜0.3gの範囲が好ましい。
Acetate is specifically used as the ester solution, and a commercially available marker is particularly practically preferable. The amount of carbonaceous particles in the ester solution is 1
The range of 1 mg to 0.3 g in 00 cc is preferable.

【0009】[0009]

【発明の効果】気相法に均質なダイヤモンド膜の生成が
可能となった。
EFFECTS OF THE INVENTION It is possible to form a uniform diamond film by the vapor phase method.

【0010】[0010]

【実施例】【Example】

[実施例、比較例]次に実施例、比較例により本発明を
説明する。 実施例 カーボンブラック粒径0.01〜0.05μmを100
cc中に10mg含むエステル溶液(実際には市販の白
板マーカー)を25mm平方のシリコンウエハー表面に
一様塗布した。このシリコンウエハーを250℃2時
間、通常の熱フィラメント法ダイヤ合成装置(直径25
cmφ×高さ20cm)内に入れ、90torr,H2
100cc/分、エタノール3cc/分の雰囲気で、処
理した。このシリコンウエハー基板と熱フィラメントと
の距離を5mmとし、原料としてガス化したエタノール
を3cc/分、水素を100cc/分で供給口より反応
炉内に導入し、圧力90torrで2時間、ダイヤモン
ドの析出反応を続けた。基板上に平均0.5μmのダイ
ヤモンド粒が高密度に析出し膜状となっている。ダイヤ
モンドは光学顕微鏡とラマン分光により確認した。ダイ
ヤ核発生密度は合成開始後5分のSEM写真より計算し
た値より求めた。結果は5×109 /cm2 であった。
又、図1は合成開始2時間後のSEM写真(倍率200
倍)である。
Examples and Comparative Examples Next, the present invention will be described with reference to Examples and Comparative Examples. Example A carbon black particle size of 0.01 to 0.05 μm is 100
An ester solution containing 10 mg in cc (actually a commercially available white plate marker) was uniformly applied to the surface of a 25 mm square silicon wafer. This silicon wafer was heated at 250 ° C. for 2 hours using a normal hot filament method diamond synthesizer (diameter: 25).
cmφ × height 20 cm), 90 torr, H 2
The treatment was performed in an atmosphere of 100 cc / min and ethanol 3 cc / min. The distance between the silicon wafer substrate and the hot filament was set to 5 mm, gasified ethanol was introduced at 3 cc / min and hydrogen was introduced at 100 cc / min into the reaction furnace at a pressure of 90 torr for 2 hours to deposit diamond. The reaction continued. Diamond particles of 0.5 μm on average are deposited in high density on the substrate to form a film. The diamond was confirmed by an optical microscope and Raman spectroscopy. The diamond nucleus generation density was determined from the value calculated from the SEM photograph 5 minutes after the start of synthesis. The result was 5 × 10 9 / cm 2 .
Further, FIG. 1 is a SEM photograph (magnification: 200
Times).

【0011】比較例 1 シリコンウエハーにはエステル溶液を塗布せず、且つ熱
処理を行わない以外、全ての同一条件でダイヤ合成を行
った。合成後基板上には5〜8μm粒が点在していた。
尚、図2は合成開始2時間後のSEM(倍率200倍)
である。核発生密度は約103 /cm2 〜104 /cm
2 であった。 比較例 2 黒鉛質電極をサンドペーパーで削り、得られたサブミク
ロン〜数μm径の粉末をエタノールに分散させ、実施例
と同様のシリコンウエハー表面に塗布、以下実施例と全
く同様にウエハーを熱処理、実施例と同様の条件でダイ
ヤモンド合成反応を行わせた。反応完了後シリコンウエ
ハー上を観察した結果、丸味を帯びたダイヤモンドライ
クカーボンの塊状集合の中にダイヤモンド自形が僅かに
混在したものが、不均一に分散した状態であることを確
認した。尚、核発生密度は101 /cm2 〜103 /c
2 であった。
Comparative Example 1 Diamond synthesis was performed under the same conditions except that the ester solution was not applied to the silicon wafer and the heat treatment was not performed. After the synthesis, 5 to 8 μm particles were scattered on the substrate.
Incidentally, FIG. 2 shows SEM 2 hours after the start of synthesis (magnification: 200 times).
Is. Nucleation density is about 10 3 / cm 2 to 10 4 / cm
Was 2 . Comparative Example 2 A graphite electrode was ground with sandpaper, the obtained powder having a diameter of submicron to several μm was dispersed in ethanol, and the same was applied on the surface of a silicon wafer as in the examples. The diamond synthesis reaction was performed under the same conditions as in the examples. As a result of observing on the silicon wafer after completion of the reaction, it was confirmed that a small amount of diamond automorphism was mixed in the roundish aggregate of diamond-like carbon in a non-uniformly dispersed state. The nucleus generation density is 10 1 / cm 2 to 10 3 / c.
It was m 2 .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における合成開始後2時間の200倍S
EM顕微鏡写真である。
FIG. 1 is 200 times S 2 hours after the start of synthesis in Examples.
It is an EM micrograph.

【図2】比較例1における合成開始後2時間の200倍
SEM顕微鏡写真である。
FIG. 2 is a 200 × SEM micrograph taken 2 hours after the start of synthesis in Comparative Example 1.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月26日[Submission date] October 26, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における合成開始後2時間の析出ダイヤ
モンドの薄膜の200倍SEM顕微鏡写真である。
FIG. 1 is a 200 × SEM micrograph of a deposited diamond thin film 2 hours after the start of synthesis in an example.

【図2】比較例1における合成開始後2時間の析出ダイ
ヤモンドの粒子構造を示す200倍SEM顕微鏡写真で
ある。 ─────────────────────────────────────────────────────
FIG. 2 is a 200 × SEM micrograph showing the grain structure of precipitated diamond 2 hours after the start of synthesis in Comparative Example 1. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月13日[Submission date] November 13, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】[0010]

【実施例】 [実施例、比較例]次に実施例、比較例により本発明を
説明する。 実施例 カーボンブラック粒径0.01〜0.05μmを100
cc中に10mg含むエステル溶液(実際には市販の白
板マーカー)を25mm平方のシリコンウエハー表面に
一様塗布した。このシリコンウエハーを250℃2時
間、通常の熱フィラメント法ダイヤ合成装置(直径25
cmφ×高さ20cm)内に入れ、90torr,H
100cc/分、エタノール3cc/分の雰囲気で、処
理した。このシリコンウエハー基板と熱フィラメントと
の距離を5mmとし、原料としてガス化したエタノール
を3cc/分、水素を100cc/分で供給口より反応
炉内に導入し、圧力90torrで2時間、ダイヤモン
ドの析出反応を続けた。基板上に平均0.5μmのダイ
ヤモンド粒が高密度に析出し膜状となっている。ダイヤ
モンドは光学顕微鏡とラマン分光により確認した。ダイ
ヤ核発生密度は合成開始後5分の折出ダイヤモンドのS
EM写真より計算した値より求めた。結果は5×10
/cmであった。又、図1は合成開始2時間後の膜状
になった析出ダイヤモンドのSEM写真(倍率200
倍)である。
EXAMPLES [Examples and Comparative Examples] Next, the present invention will be described with reference to Examples and Comparative Examples. Example A carbon black particle size of 0.01 to 0.05 μm is 100
An ester solution containing 10 mg in cc (actually a commercially available white plate marker) was uniformly applied to the surface of a 25 mm square silicon wafer. This silicon wafer was heated at 250 ° C. for 2 hours using a normal hot filament method diamond synthesizer (diameter: 25).
cmφ × height 20 cm), 90 torr, H 2
The treatment was performed in an atmosphere of 100 cc / min and ethanol 3 cc / min. The distance between the silicon wafer substrate and the hot filament was set to 5 mm, gasified ethanol was introduced at 3 cc / min and hydrogen was introduced at 100 cc / min into the reaction furnace at a pressure of 90 torr for 2 hours to deposit diamond. The reaction continued. Diamond particles of 0.5 μm on average are deposited in high density on the substrate to form a film. The diamond was confirmed by an optical microscope and Raman spectroscopy. The diamond nucleus generation density is S of the diamond which is 5 minutes after the start of synthesis.
It was determined from the value calculated from the EM photograph. The result is 5 × 10 3.
Was / cm 2 . In addition, FIG. 1 is an SEM photograph (magnification: 200) of the deposited diamond formed into a film 2 hours after the start of synthesis.
Times).

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】比較例 1 シリコンウエハーにはエステル溶液を塗布せず、且つ熱
処理を行わない以外、全ての同一条件でダイヤ合成を行
った。合成後基板上には5〜8μm粒が点在していた。
尚、図2は合成開始2時間後の粒子状の析出ダイヤモン
ドのSEM(倍率200倍)である。核発生密度は約1
/cm〜10/cmであった。 比較例 2 黒鉛質電極をサンドペーパーで削り、得られたサブミク
ロン〜数μm径の粉末をエタノールに分散させ、実施例
と同様のシリコンウエハー表面に塗布、以下実施例と全
く同様にウエハーを熱処理、実施例と同様の条件でダイ
ヤモンド合成反応を行わせた。反応完了後シリコンウエ
ハー上を観察した結果、丸昧を帯びたダイヤモンドライ
クカーボンの塊状集合の中にダイヤモンド自形が僅かに
混在したものが、不均一に分散した状態であることを確
認した。尚、核発生密度は10/cm〜10/c
であった。
Comparative Example 1 Diamond synthesis was performed under the same conditions except that the ester solution was not applied to the silicon wafer and the heat treatment was not performed. After the synthesis, 5 to 8 μm particles were scattered on the substrate.
Note that FIG. 2 is an SEM (magnification: 200 times) of particulate precipitated diamond 2 hours after the start of synthesis. Nucleation density is about 1
It was 0 3 / cm 2 to 10 4 / cm 2 . Comparative Example 2 A graphite electrode was ground with sandpaper, the obtained powder with a diameter of submicron to several μm was dispersed in ethanol, and the same was applied on the surface of a silicon wafer as in the example. The diamond synthesis reaction was performed under the same conditions as in the examples. As a result of observing on the silicon wafer after the completion of the reaction, it was confirmed that a small amount of diamond automorphism was mixed in the lump-shaped aggregate of diamond-like carbon, which was inhomogeneously dispersed. The nucleus generation density is 10 1 / cm 2 to 10 3 / c.
It was m 2 .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 気相法により膜状ダイヤモンドを基板に
析出させる方法において、基板表面にカーボンブラック
またはすすを含むエステル溶液を塗布し、次いで基板を
100℃から600℃で加熱した後に、原料気体を供給
することを特徴とする気相法による膜状ダイヤモンドの
合成法。
1. A method of depositing film diamond on a substrate by a vapor phase method, wherein an ester solution containing carbon black or soot is applied to the surface of the substrate, and then the substrate is heated at 100 ° C. to 600 ° C. A method for synthesizing membranous diamond by a vapor phase method, which comprises supplying hydrogen.
JP3285440A 1991-10-07 1991-10-07 Synthetic method of film diamond by vapor phase method. Expired - Fee Related JP2981937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285440A JP2981937B2 (en) 1991-10-07 1991-10-07 Synthetic method of film diamond by vapor phase method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285440A JP2981937B2 (en) 1991-10-07 1991-10-07 Synthetic method of film diamond by vapor phase method.

Publications (2)

Publication Number Publication Date
JPH05132394A true JPH05132394A (en) 1993-05-28
JP2981937B2 JP2981937B2 (en) 1999-11-22

Family

ID=17691551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285440A Expired - Fee Related JP2981937B2 (en) 1991-10-07 1991-10-07 Synthetic method of film diamond by vapor phase method.

Country Status (1)

Country Link
JP (1) JP2981937B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013086273A1 (en) * 2011-12-09 2013-06-13 Baker Hughes Incorporated Method of forming carbonaceous particles and articles therefrom
US9205531B2 (en) 2011-09-16 2015-12-08 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
US9309582B2 (en) 2011-09-16 2016-04-12 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499883B2 (en) 2010-04-14 2016-11-22 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
US10005672B2 (en) 2010-04-14 2018-06-26 Baker Hughes, A Ge Company, Llc Method of forming particles comprising carbon and articles therefrom
US10066441B2 (en) 2010-04-14 2018-09-04 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
US9205531B2 (en) 2011-09-16 2015-12-08 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
US9309582B2 (en) 2011-09-16 2016-04-12 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
US9481073B2 (en) 2011-09-16 2016-11-01 Baker Hughes Incorporated Methods of forming polycrystalline diamond with liquid hydrocarbons and hydrates thereof
US9962669B2 (en) 2011-09-16 2018-05-08 Baker Hughes Incorporated Cutting elements and earth-boring tools including a polycrystalline diamond material
WO2013086273A1 (en) * 2011-12-09 2013-06-13 Baker Hughes Incorporated Method of forming carbonaceous particles and articles therefrom

Also Published As

Publication number Publication date
JP2981937B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
JP2536927B2 (en) Method for producing polycrystalline diamond film
JPH0477711B2 (en)
JPH11199323A (en) Dummy wafer
US6068883A (en) Process for forming diamond films by nucleation
JPS62138395A (en) Preparation of diamond film
JPH05132394A (en) Synthesis of diamond film by vapor-phase process
JP2691219B2 (en) Diamond synthesis
US5268201A (en) Composite diamond grain and method for production thereof
JP3176086B2 (en) Diamond crystal and substrate for diamond formation
JPH05339730A (en) Forming method of diamond coating film
EP1344841A1 (en) Base material for forming diamond film
JPH1081589A (en) Diamond film and its production
JP3185289B2 (en) Diamond deposition method
JPH0448757B2 (en)
Vul’ et al. Diamond films: initial CVD growth stage using nanodiamonds as nucleation centers
JP3874984B2 (en) Low-temperature deposition method and apparatus for microcrystalline diamond thin film
JPH0723279B2 (en) Diamond film manufacturing method
JP2003034867A (en) TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR
JPH06262525A (en) Grinding wheel and its manufacture
JP3160399B2 (en) Diamond film manufacturing method
JP3388599B2 (en) Diamond-like particle formation method
JPH11106298A (en) Silicon carbide dummy wafer
JP2799849B2 (en) Diamond synthesis by chemical vapor deposition
JP2625840B2 (en) Method for producing coarse artificial diamond crystals
JP3185422B2 (en) Vapor phase diamond synthesis method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees