JPH0513160B2 - - Google Patents

Info

Publication number
JPH0513160B2
JPH0513160B2 JP59153986A JP15398684A JPH0513160B2 JP H0513160 B2 JPH0513160 B2 JP H0513160B2 JP 59153986 A JP59153986 A JP 59153986A JP 15398684 A JP15398684 A JP 15398684A JP H0513160 B2 JPH0513160 B2 JP H0513160B2
Authority
JP
Japan
Prior art keywords
group
general formula
halogen atom
hydrogen atom
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59153986A
Other languages
Japanese (ja)
Other versions
JPS6136280A (en
Inventor
Shozo Kato
Tetsuo Takematsu
Masahiko Ishizaki
Masaru Ogasawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP15398684A priority Critical patent/JPS6136280A/en
Publication of JPS6136280A publication Critical patent/JPS6136280A/en
Publication of JPH0513160B2 publication Critical patent/JPH0513160B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏な特定の䞀般匏で瀺される−眮
換−クロロアセトアニリド及びその補法に関す
る。たた本発明は䞊蚘化合物を有効成分ずする陀
草剀をも提䟛する。 埓来、−眮換−クロロアセトアニリドに類す
る化合物ずしお数倚くのものが合成されおおり、
ある皮のものに぀いおは陀草剀ずしお有甚である
こずが既に知られおいる。䟋えば米囜特蚱第
3901917号には䞀般匏、 ただし、R9及びR10はそれぞれ氎玠原子、たた
はアルキル基、R7はアルキル基、R8は氎玠原子、
アルキル基、たたはアルコキシ基、はハロゲン
原子、は氎玠原子、䜎玚アルキル基たたはハロ
ゲン原子を瀺す。で瀺される−−チ゚ニル
メチル−眮換−ハロアセトアニリドが畑䜜甚陀
草剀ずしお有甚であるこずが蚘述されおいる。し
かしながら、該米囜特蚱に蚘茉されおいる䞊蚘䞀
般匏で瀺される化合物の畑䜜甚陀草剀ずしおの有
効濃床は雑草の皮類によ぀お若干の差はあるもの
の、いずれの堎合にもポンド゚ヌカヌ、すな
わち玄900g10aずな぀おおり、䞊蚘化合物を極
めお倧量に投䞎しなければ陀草剀ずしお有効ずな
らないこずが明らかである。 たた、䞊蚘䞀般匏で瀺される化合物を氎田甚陀
草剀ずしお䜿甚した堎合、125g10aなどの比范
的䜎濃床で陀草掻性を有するものも存圚するが、
これらは氎皲に察しお薬害を及がすずいう欠点を
有しおいる。 他方、ブラクロヌルやアラクロヌル等、埓来垂
販されおいる−眮換−クロロアセトアニリド系
陀草剀は、埌述する比范䟋からも明らかなよう
に、氎田甚陀草に察しお比范的䜎濃床で陀草掻性
を有しおいるが、これらも陀草掻性を有する濃床
においおは氎皲に察しお望たしくない薬害を及が
すず蚀う倧きな欠点を有しおいる。 陀草剀を高濃床で䜿甚する堎合には、陀草掻性
物質等が河川に流出するこずによ぀お皮々の氎生
動物に察しお奜たしくない薬害を匕き起こし、さ
らに進んで人畜にも悪圱響を及がすこずになる。
たた、比范的䜎濃床で匷い陀草掻性を瀺すものの
氎皲にも薬害を䞎えるような陀草剀は、本来の目
的である米の反圓り収量を増す䞊で倧きな匊害ず
なるこずは明らかである。このような芳点から、
䜎濃床で䜿甚しおも陀草効果を有し、しかも雑草
のみを枯死させる、いわゆる遞択陀草掻性を有す
る新芏な陀草剀の開発が匷く望たれお来た。 本発明者らは、䞊述の芁求を満たす陀草剀ずし
お優れた性質を有する新芏な化合物を芋出すべく
鋭意研究を重ねお来た。その結果、䞊蚘の皮々の
欠点を補う優れた新芏化合物を合成するこずに成
功し、本発明を完成するに至぀た。 すなわち、本発明は䞀般匏、 で瀺される−眮換−クロロアセトアニリド匏
䞭、R1、及びR2は同皮たたは異皮の氎玠原子、
ハロゲン原子、アルキル基、アルコキシ基、アル
キルチオ基、アルコキシアルキル基、アルキルチ
オアルキル基を瀺し、はハロゲン原子、アルキ
ル基、アルコキシ基、アルキルチオ基、アルコキ
シアルキル基、アルキルチオアルキル基を瀺し
R3R4及びR5はそれぞれ同皮たたは異皮の氎玠
原子、ハロゲン原子、アルキル基、アルケニル
基、アルキニル基、アルコキシ基、アルキルチオ
基を瀺し、R6は氎玠原子たたはアルキル基を瀺
す。ただし、R1たたはR2が氎玠原子であり、
ずR2たたはずR1が共に同皮のハロゲン原子で
ある堎合には、ずR2たたはずR1の眮換䜍は
チオプン環の䜍ず䜍、たたは䜍ず䜍で
ある。 たた、本発明は䞀般匏、 で瀺される−眮換−アニリンず、䞀般匏、
ClCH2COXで瀺されるクロロアセチルハロゲニ
ドずを反応させるこずを特城ずする䞀般匏、 で瀺される−眮換−クロロアセトアニリドの補
法ただし、䞊蚘匏䞭、R1、及びR2は同皮たた
は異皮の氎玠原子、ハロゲン原子、アルキル基、
アルコキシ基、アルキルチオ基、アルコキシアル
キル基、アルキルチオアルキル基を瀺し、はハ
ロゲン原子、アルキル基、アルコキシ基、アルキ
ルチオ基、アルコキシアルキル基、アルキルチオ
アルキル基を瀺し、R3R4及びR5はそれぞれ同
皮たたは異皮の氎玠原子、ハロゲン原子、アルキ
ル基、アルケニル基、アルキニル基、アルコキシ
基、アルキルチオ基を瀺し、R6は氎玠原子たた
はアルキル基を瀺す。ただし、R1たたはR2が氎
玠原子であり、ずR2たたはずR1が共に同皮
のハロゲン原子である堎合には、ずR2たたは
ずR1の眮換䜍はチオプン環の䜍ず䜍、
たたは䜍ず䜍である。たた、はハロゲン原
子である。 ならびに䞀般匏、 で瀺される眮換チオプンず䞀般匏、 で瀺されるクロロアセトアニリドずを反応させる
こずを特城ずする䞀般匏、 で瀺される−眮換−クロロアセトアニリドの補
法ただし、䞊蚘匏䞭、R1、及びR2は同皮たた
は異皮の氎玠原子、ハロゲン原子、アルキル基、
アルコキシ基、アルキルチオ基、アルコキシアル
キル基、アルキルチオアルキル基を瀺し、はハ
ロゲン原子、アルキル基、アルコキシ基、アルキ
ルチオ基、アルコキシアルキル基、アルキルチオ
アルキル基を瀺し、R3R4及びR5はそれぞれ同
皮たたは異皮の氎玠原子、ハロゲン原子、アルキ
ル基、アルケニル基、アルキニル基、アルコキシ
基、アルキルチオ基を瀺しR6は氎玠原子たたは
アルキル基を瀺す。ただし、R1たたR2が氎玠原
子であり、ずR2たたはずR1が共に同皮のハ
ロゲン原子である堎合には、ずR2たたはず
R1の眮換䜍はチオプン環の䜍ず䜍、たた
は䜍ず䜍である。たた、はハロゲン原子で
ある。をも提䟛する。 曎にたた、本発明は、䞀般匏、 匏䞭、R1及びR2は同皮たたは異皮の氎玠
原子、ハロゲン原子、アルキル基、アルコキシ
基、アルキルチオ基、アルコキシアルキル基、ア
ルキルチオアルキル基を瀺し、はハロゲン原
子、アルキル基、アルコキシ基、アルキルチオ
基、アルコキシアルキル基、アルキルチオアルキ
ル基を瀺しR3R4及びR5はそれぞれ同皮たたは
異皮の氎玠原子、ハロゲン原子、アルキル基、ア
ルケニル基、アルキニル基、アルコキシ基、アル
キルチオ基を瀺し、R6は氎玠原子たたはアルキ
ル基を瀺す。ただし、R1たたはR2が氎玠原子で
あり、ずR2たたはずR1が共に同皮のハロゲ
ン原子である堎合には、ずR2たたはずR1の
眮換䜍はチオプン環の䜍ず䜍、たたは䜍
ず䜍である。で衚わされる−眮換−クロロ
アセトアニリドを有効成分ずする陀草剀をも提䟛
するものである。 本発明の−眮換−クロロアセトアニリドは䞀
般匏、 匏䞭、R1、及びR2は同皮たたは異皮の氎玠
原子、ハロゲン原子、アルキル基、アルコキシ
基、アルキルチオ基、アルコキシアルキル基、ア
ルキルチオアルキル基を瀺し、はハロゲン原
子、アルキル基、アルコキシ基、アルキルチオ
基、アルコキシアルキル基、アルキルチオアルキ
ル基を瀺しR3R4及びR5はそれぞれ同皮たたは
異皮の氎玠原子、ハロゲン原子、アルキル基、ア
ルケニル基、アルキニル基、アルコキシ基、アル
キルチオ基を瀺し、R6は氎玠原子たたはアルキ
ル基を瀺す。ただし、R1たたはR2が氎玠原子で
あり、ずR2たたはずR1が共に同皮のハロゲ
ン原子である堎合には、ずR2たたはずR1の
眮換䜍はチオプン環の䜍ず䜍、たたは䜍
ず䜍である。で瀺される新芏化合物である。 前蚘䞀般匏䞭、R1R2R3R4及びR5で
瀺されるハロゲン原子の具䜓䟋ずしおは、塩玠、
臭玠、フツ玠、ペり玠の各原子が挙げられる。た
た、前蚘䞀般匏䞭、R1R2R3R4R5及
びR6で瀺されるアルキル基は、盎鎖状、分枝状
のいずれであ぀おも良く、炭玠数も特に制限され
ない。しかし、原料入手の容易さから炭玠数は
〜個であるこずが奜適である。該アルキル基の
具䜓䟋を䟋瀺するず、メチル基、゚チル基、−
プロピル基、iso−プロピル基、−ブチル基、
iso−ブチル基、−ブチル基、−ペンチル基、
−ヘキシル基等が挙げられる。たた、前蚘䞀般
匏䞭、R3R4及びR5で瀺されるアルケニル基は、
盎鎖状、分枝状を問わず、炭玠数も特に制限され
ない。しかし、原料入手の容易さから炭玠数は
〜個であるこずが奜適である。該アルケニル基
の具䜓䟋を䟋瀺するず、ビニル基、アリル基、
iso−プロペニル基、−ブテニル基、−ブテ
ニル基等が挙げられる。たた、前蚘䞀般匏䞭、
R3R4及びR5で瀺されるアルキニル基は、盎鎖
状、分枝状を問わず、炭玠数も特に制限されない
が、前蚘ず同様に炭玠数が〜個であるこずが
奜適である。該アルキニル基の具䜓䟋を䟋瀺する
ず、゚チニル基、−プロピニル基等が挙げられ
る。たた前蚘䞀般匏䞭、R1R2R3R4及
びR5で瀺されるアルコキシ基は炭玠原子数〜
個の盎鎖状たたは分枝状の飜和あるいは䞍飜和
基が奜適であり、該アルコキシ基の具䜓䟋を䟋瀺
するず、メトキシ基、゚トキシ基、−プロポキ
シ基、−ブトキシ基、−ペントキシ基、−
ヘキ゜キシ基、アリルオキシ基等が挙げられる。
たた、前蚘䞀般匏䞭、R1R2R3R4及び
R5で瀺されるアルキルチオ基は炭玠数〜個
の盎鎖状たたは分枝状の飜和あるいは䞍飜和基が
奜適であり、該アルキルチオ基の具䜓䟋を䟋瀺す
るず、メチルチオ基、゚チルチオ基、−プロピ
ルチオ基、−ブチルチオ基、−ペンチルチオ
基、−ヘキシルチオ基、アリルチオ基等が挙げ
られる。たた、前蚘䞀般匏䞭、R1及びR2で
瀺されるアルコキシアルキル基は炭玠数〜個
の盎鎖状たたは分枝状の飜和あるいは䞍飜和基が
奜適であり、該アルコキシアルキル基の具䜓䟋を
䟋瀺するず、メトキシメチル基、メトキシ゚チル
基、゚トキシメチル基、−プロポキシメチル
基、−ブトキシ゚チル基、アリルオキシ゚チル
基等が挙げられる。曎にたた、前蚘䞀般匏䞭、
R1及びR2で瀺されるアルキルチオアルキル
基は炭玠数〜個の盎鎖状たたは分枝状の飜和
あるいは䞍飜和基が奜適であり、該アルキルチオ
アルキル基の具䜓䟋を䟋瀺するず、メチルチオメ
チル基、メチルチオ゚チル基、゚チルチオメチル
基、−プロピルチオメチル基、−ブチルチオ
゚チル基、アリルチオ゚チル基等が挙げられる。 前蚘䞀般匏(1)で瀺される−眮換−クロロアセ
トアニリドのうち、はアルコキシ基、アルコキ
シアルキル基、ハロゲン原子でありR1R2は氎
玠原子、アルコキシ基、アルコキシアルキル基、
ハロゲン原子であるこずが、䜎薬量でも倧きい陀
草掻性を瀺すために奜たしい。たた、チオプン
環のR1及びR2で瀺される眮換基氎玠原子
を陀くが䜍に眮換しおいるこずが、䜎薬量に
おいおも陀草掻性が高くなるために奜適である。
さらにR6は氎玠原子である方が陀草掻性が高く
なるずいう傟向が芋られる。 本発明の前蚘䞀般匏(1)で衚わされる化合物は埌
述する実斜䟋からも明らかなように、高濃床䟋え
ば500g10aで䜿甚した堎合においおも皲に察し
おは党く無害で安党であるばかりでなく、
125g10aあるいはそれ以䞋の䜎濃床で䜿甚しお
もノビ゚、タマガダツリ、ホタルむ、コナギなど
諞々の氎田雑草を完党に枯死させる皋の極めお匷
い殺草掻性を有しおいる。さらにたた、埌述する
実斜䟋からも明らかなように、1.5葉期たでにも
成長したノビ゚に察し、125g10aの䜎濃床で完
党な遞択陀草掻性を発珟する。このような著しい
遞択陀草掻性は、埌述する比范䟋ずの察比によ぀
お明らかな劂く、アニリン環に導入された眮換基
の皮類によ぀おはほずんど圱響を受けおおらず、
分子内に存圚する−チ゚ニル基によ぀おもたら
される特異的な効果である。 本発明の前蚘䞀般匏(1)で瀺される化合物は新芏
な化合物であり、その構造は次の手段によ぀お確
認するこずが出来る。 (ã‚€) 赀倖吞収スペクトルIRを枬定するこずによ
り、3150〜2820cm-1付近にCH結合に基づく吞
収、1680〜1670cm-1付近にアミド基のカルボニ
ル結合に基づく特性吞収を芳察するこずが出来
る。 (ロ) 質量スペクトルMSを枬定し、芳察される各
ピヌク䞀般にはむオン分子量をむオンの荷
電数で陀したで衚わされる質量数に
盞圓する組成匏を算出するこずにより、枬定に
䟛した化合物の分子量ならびに該分子内におけ
る各原子団の結合様匏を知るこずが出来る。す
なわち、枬定に䟛した詊料を䞀般匏、 で衚わした堎合、䞀般に分子むオンピヌク以
䞋ず略蚘するが分子䞭に含有されるハロ
ゲン原子の個数に応じお同䜍䜓存圚比に埓぀た
匷床比で芳察されるため、枬定に䟛した化合物
の分子量を決定するこずが出来る。さらに前蚘
䞀般匏で瀺される本発明の化合物に぀いおは
−−COCH2Xはハロゲン原子を
瀺す。及び に盞圓する特城的な匷いピヌクが芳察され該分
子の結合様匏を知るこずが出来る。 (ハ) 1H−栞磁気共鳎スペクトル1H−NMR
を枬定するこずにより、前蚘䞀般匏で衚わされ
る本発明の化合物䞭に存圚する氎玠原子の結合
様匏を知るこずが出来る。前蚘䞀般匏(1)で瀺さ
れる化合物の1H−NMRΎppmテトラメ
チルシラン基準、重クロロホルム溶媒䞭の代
衚䟋ずしお−2′−ペヌド−3′−チ゚ニルメ
チル−−クロロアセト−−ゞメチル
アニリドの′−NMRを第図に瀺す。その
解析結果を瀺すず次のずおりである。 すなわち、1.90ppmに個分のプロトンに盞
圓する単䞀線が認められ、プニル基の及び
䜍に眮換したメチル基(a)によるものず垰属で
きる。3.63ppmに個分のプロトンに盞圓する
単䞀線が認められ、クロロアセチル基䞭のメチ
レン基(b)によるものず垰属できる。4.73ppmに
個分のプロトンに盞圓する単䞀線が認めら
れ、メチレン基(c)によるものず垰属できる。た
た、6.90〜7.40ppmに個分のプロトンに盞圓
する倚重線が認められ、プニル基及びチ゚ニ
ル基に眮換したプロトン(d)によるものず垰属で
きる。 前述の䞀般匏(1)で瀺される化合物の1H−
NMRの特城を総括するず、クロロアセチル基
のメチレンプロトンは通垞単䞀線で3.6〜
3.8ppm付近に、アミノメチレン基のメチレン
プロトンは単䞀線で4.8ppm付近にただし、
アニリン偎の䜍ず䜍が異皮の官胜基で眮換
された堎合には二重線ずな぀お珟われる堎合も
ある。、チオプン環偎のプロトンは6.4〜
7.4ppmに、ベンれン偎のプロトンは6.5〜
7.7ppmに特城的なピヌクを瀺す傟向がある。 (ニ) 元玠分析によ぀お炭玠、氎玠、窒玠、むオり
及びハロゲンの各重量を求め、さらに認知さ
れた各元玠の重量の和を100から枛じるこず
により、酞玠の重量を算出するこずが出来、
埓぀お、該化合物の組成匏を決定するこずが出
来る。 本発明の−3′−チ゚ニルメチル−−クロ
ロアセトアニリドは、前蚘䞀般匏䞭のR1
R2R3R4R5及びR6の皮類によ぀おその性状
が倚少異なるが、䞀般に垞枩垞圧においおは淡黄
色たたは黄色の粘皠液䜓たたは固䜓であり、極め
お高沞点を有するものが倚い。具䜓的には埌述す
る実斜䟋に瀺すが、䞊蚘化合物は䞀般の有機化合
物ず同じように分子量が倧きくなる皋沞点が高く
なる傟向がある。本発明の化合物はベンれン、゚
ヌテル、アルコヌル、クロロホルム、四塩化炭
玠、ヘキサン、アセトニトリル、−ゞメチ
ルホルムアミド、ゞメチルスルホキシドなどの䞀
般有機溶媒に可溶であるが氎にはほずんど溶けな
い。 本発明の䞊蚘䞀般匏(1)で瀺される化合物の補造
方法は特に限定されるものではない。代衚的な補
造方法を以䞋に蚘述する。䞀般匏、 匏䞭、R1R2は氎玠原子、ハロゲン原子、
アルキル基、アルキルチオ基、アルコキシアルキ
ル基、アルキルチオアルキル基を瀺し、はハロ
ゲン原子、アルキル基、アルコキシ基、アルキル
チオ基、アルコキシアルキル基、アルキルチオア
ルキル基を瀺し、R3R4及びR5はそれぞれ同皮
たたは異皮の氎玠原子、ハロゲン原子、アルキル
基、アルケニル基、アルキニル基、アルコキシ
基、アルキルチオ基を瀺し、R6は氎玠原子たた
はアルキル基を瀺す。ただし、R1たたはR2が氎
玠原子であり、ずR2たたはずR1が共に同皮
のハロゲン原子である堎合には、ずR2たたは
ずR1の眮換䜍はチオプン環の䜍ず䜍、
たたは䜍ず䜍である。で瀺される−眮換
アニリンず、䞀般匏、 ClCH2COX ただし、はハロゲン原子を瀺す。で衚わ
されるクロロアセチルハロゲニドずを反応させる
こずによ぀お前蚘䞀般匏(1)で衚わされる化合物が
埗られる。 原料ずなる䞊蚘䞀般匏(2)で衚わされるアニリン
誘導䜓は劂䜕なる方法で埗られたものでも䜿甚出
来る。該アニリンの代衚的な補造方法は䟋えば埌
述する参考䟋に蚘茉した方法で採甚するずよい。 前蚘䞀般匏(2)で衚わされる化合物ずクロロアセ
チルハロゲニドずの反応においお、䞡化合物の仕
蟌みモル比は必芁に応じお適宜決定すればよい
が、通垞等モルもしくはクロロアセチルハロゲニ
ドをやや過剰モルを䜿甚するのが䞀般的である。 たた前蚘反応においおはハロゲン化氎玠が副生
する。このハロゲン化氎玠は反応系内で䞀般匏(2)
で衚わされる化合物ず反応し、生成物の収率を䜎
䞋させる原因になるので、通垞は反応系内にハロ
ゲン化氎玠捕捉剀を共存させるこずが奜たしい。
該ハロゲ化氎玠の捕捉剀は特に限定されず公知の
ものを䜿甚するこずが出来る。䞀般に奜適に䜿甚
される該捕捉剀ずしおトリメチルアミン、トリ゚
チルアミン、トリプロピルアミン等のトリアルキ
ルアミンピリゞンナトリりムアルコラヌト
炭酞ナトリりム、炭酞カリりム、炭酞氎玠ナトリ
りム、炭酞マグネシりム等が挙げられる。 本発明における前蚘反応に際しおは䞀般に有機
溶媒を甚いるのが奜たしい。該溶媒ずしお奜適に
䜿甚されるものを䟋瀺すれば、ベンれン、トル゚
ン、キシレン、ヘキサン、ヘプタン、石油゚ヌテ
ル、クロロホルム、塩化メチレン、塩化゚チレン
等の脂肪族たたは芳銙族の炭化氎玠類あるいはハ
ロゲン化炭化氎玠類ゞ゚チル゚ヌテル、ゞオキ
サン、テトラヒドロフラン等の゚ヌテル類アセ
トン、メチル゚チルケトン等のケトン類アセト
ニトリルなどのニトリル類−ゞメチルホ
ルムアミド、−ゞ゚チルホルムアミド等の
−ゞアルキルアミド類ゞメチルスルホキ
シド等が挙げられる。 前蚘反応における原料の添加順序は特に限定さ
れないが、䞀般には溶媒に前蚘䞀般匏(2)で瀺され
る化合物を溶解しお反応噚に仕蟌み溶媒に溶解し
たクロロアセトハロゲニドを撹拌䞋に添加するの
がよい。勿論連続的に反応系に原料を添加し生成
した反応物を連続的に該反応系から取出すこずも
出来る。 前蚘反応における枩床は広い範囲から遞択出
来、䞀般には−20℃〜150℃奜たしくは℃〜120
℃の範囲から遞べば十分である。反応時間は原料
の皮類によ぀おもちがうが通垞分〜10日間、奜
たしくは〜40時間の範囲から遞べば十分であ
る。たた反応䞭においおは撹拌を行うのが奜たし
い。 反応系から目的生成物すなわち前蚘䞀般匏(1)で
瀺される化合物を単離粟補する方法は特に限定さ
れず公知の方法を採甚出来る。䟋えば反応液を冷
华たたは自然攟冷で、宀枩たたはその近くにもど
し、反応溶媒、残存するハロゲン化氎玠捕捉剀を
留去した埌、残枣をベンれンや゚ヌテル、クロロ
ホルム等の有機溶媒で抜出する。䞊蚘操䜜で、副
生するハロゲン化氎玠ずハロゲン化氎玠捕捉剀ず
から生成する塩及び高分子量化合物を分離する。
該有機溶媒局に぀いおは、芒硝、塩化カルシりム
等の也燥剀で也燥した埌、該有機溶媒を留去し、
残枣を真空蒞留するこずによ぀お目的物を取埗す
る。真空蒞留により単離粟補する他クロマトグラ
フむヌによる粟補、あるいは生成物が固䜓である
堎合にはヘキサン等の溶媒から結晶化させるこず
により粟補するこずも出来る。 たた、本発明の前蚘䞀般匏(1)で瀺される化合物
は䞀般匏、 匏䞭、R1R2は氎玠原子、ハロゲン原子、
アルキル基、アルコキシ基、アルキルチオ基、ア
ルコキシアルキル基、アルキルチオアルキル基を
瀺し、はハロゲン原子、アルキル基、アルコキ
シ基、アルキルチオ基、アルコキシアルキル基、
アルキルチオアルキル基を瀺しR6は氎玠原子た
たはアルキル基を瀺す。ただし、R1たたはR2が
氎玠原子であり、ずR2たたはずR1が共に同
皮のハロゲン原子である堎合には、ずR2たた
はずR1の眮換䜍はチオプン環の䜍ず䜍、
たたは䜍ず䜍である。たたはハロゲン原子
を衚わす。で瀺される眮換チオプンず䞀般匏、 匏䞭、R3R4及びR5それぞれ同皮たたは異
皮の氎玠原子、ハロゲン原子、アルキル基、アル
ケニル基、アルキニル基、アルコキシ基、アルキ
ルチオ基を瀺す。で瀺されるクロロアセトアニ
リドずを反応させるこずによ぀おも埗るこずが出
来る。 原料ずなる眮換チオプンならびに該クロロア
セトアニリドは劂䜕なる方法で埗られたものでも
䜿甚出来る。たた、該反応を実斜する際の諞条件
ならびに単離粟補方法は、既に述べた䞀般匏(2)で
瀺される−眮換アニリンずクロロアセチルハロ
ゲニドずの反応においお甚いた諞条件ならびに単
離粟補方法ずほが同様な条件が採甚出来る。 本発明の前蚘䞀般匏(1)で瀺される化合物は陀草
剀ずしお著しくすぐれた効果を発揮する。䟋えば
むネ科雑草、広葉雑草、倚幎生雑草の発芜前及び
発芜埌の土壌凊理にすぐれた陀草効果を発揮す
る。特に、むネ科雑草に぀いおは著しい陀草効果
を瀺し、䟋えば匷害雑草であるノビ゚に察しおそ
の発芜時だけでなく、1.5葉期に生育したものに
もすぐれた陀草効果を瀺す。しかも氎皲に察しお
は1.5葉期の皮苗だけでなく発芜時においおも高
い安党性を有する。このように陀草効果に高床の
遞択性を有しおいるため、埓来の陀草剀に比べる
ず凊理適期幅が著しく長いず蚀うすぐれた陀草剀
ずなる。 たた畑地の陀草剀ずするずきも遞択的陀草効果
を発揮するので、倧豆、ワタ、コりリダン等の広
葉䜜物だけでなく小麊、倧麊、ずうもろこし、陞
皲等のむネ科䜜物にも損害なしに適甚するこずが
出来る。 前蚘䞀般匏(1)で瀺される化合物を陀草剀ずしお
甚いる堎合の具䜓的態様の代衚的なものに぀いお
以䞋説明する。 䞊蚘䞀般匏(1)で瀺される化合物を、氎田土壌に
同時に播皮されたノビ゚ず氎皲に察しお䜿甚する
ずき、10アヌル圓り30gの濃床で凊理するずノビ
゚の発芜は完党に阻止されるが氎皲は1000g凊理
した堎合でも党く圱響がない。埓぀お、䞀般に10
アヌル圓り6.25g〜2000g奜たしくは30g〜500gの
有効成分量ずしお氎田に䜿甚すればよい。 䞊蚘したようにノビ゚ず氎皲ずの間に遞択的陀
草掻性を有するので、氎皲の発芜期から生育期の
長期間の生育段階で適甚出来、特に湛氎盎播氎皲
に察しおきわめお安党に適甚出来る利点は本発明
の倧きな特城である。 本発明の前蚘䞀般匏(1)で瀺される化合物はその
官胜基の差異によ぀お陀草効果に若干の違いがあ
るが、むネ科䜜物に察しお薬害が少なく、特に氎
皲に察しお極めお薬害の少ない点は共通した特性
である。本発明の化合物が陀草効果を発揮する雑
草を䟋瀺するず次のずおりである。 前蚘したようにむネ科雑草特にノビ゚に察しお
の陀草効果が高く、カダツリグサ科特にクマガダ
ツリ、ホタルむ等にも陀草効果が著しく奜たし
い。これらに次いで広葉雑草に察しお陀草効果を
有するが有効成分の䜿甚量を増加するずか公知の
陀草剀䟋えばプノキシ系化合物、アミド系化合
物等を混合しお䜿甚するずよい。特に効果的に陀
草出来る雑草は䟋えば、むヌビ゚、タむヌビ゚、
ケむヌビ゚、カズノコグサ、タマガダツリ、ミズ
ハナビ、ヒナガダツリ、カワラスガナ、ホタル
む、ハリむ、テンツキ、ヒメテンツキ、ヒデリ
コ、ミズガダツリ、ヒメクグ、クログワむ、マツ
バむ、コりキダガラ、オモダカ、アギナシ、ヘラ
オモダカ、りリカワ、ヒルムシロ、デンゞ゜り、
セリ、ダナギタデ、コナギ、むボクサ、ホシク
サ、キゟハコベ、ヒメミ゜ハギ、キカシグサ、ミ
ズマツバ、ヒメゞ゜、チペりゞタデ、アれムシ
ロ、タカサブロり、タりコギ、アメリカセンダン
グサ、アカヌマ゜り、サワトりガラシ、アブノ
メ、アれナ、アれトりガラシ等の氎田雑草であ
る。たた畑地雑草は䟋えば、メヒシバ、゚ノコロ
グサ、アカザ、むヌタデ、カダツリグサ、コゎメ
ガダツリ、むヌビナ、スベリヒナ、アカツメク
サ、カタバミ、スズメノテツポり、スズメノカタ
ビラ、ダ゚ムグラ、ノアサガオ、カワラケツメ
む、カラスノ゚ンドり、ナズナ等に適甚出来る。 たた本発明の前蚘䞀般匏(1)で瀺される化合物は
怍物の生育に圱響を及がすので、萜葉剀、発芜抑
制剀、生育調節剀ずしおも䜿甚するこずが出来
る。 本発明の䞊蚘䞀般匏(1)の䜿甚態様は特に限定さ
れず公知の陀草剀の䜿甚態様をそのたた利甚出来
る。䟋えば、䞍掻性固䜓担䜓、液䜓担䜓、乳化分
散剀等を甚いお粒剀、粉剀、乳剀、氎和剀、錠
剀、油剀、゚アゟヌル、くん煙剀等任意の剀圢に
しお䜿甚するこずが出来る。勿論、補剀䞊の補助
剀䟋えば、展着剀、垌釈剀、界面掻性剀、溶剀な
どを適宜配合するこずも出来る。 本発明の前蚘䞀般匏(1)で瀺される化合物はたた
殺虫剀、殺菌剀、他の蟲薬、肥料物質、土壌改良
剀等ず混合しお甚いるこずが出来る。 本発明を曎に具䜓的に説明するため以䞋実斜䟋
及び比范䟋を挙げお説明するが、本発明はこれら
の実斜䟋に限定されるものではない。 実斜䟋  −2′−メトキシ−3′−チ゚ニルメチル−
−ゞメチルアニリン1.49g6.03mmoleを
ベンれン20mlに溶解し、トリ゚チルアミン0.79g
7.84mmoleを加え氷氎䞭に蚭眮した。次いで
クロロアセチルクロリド0.82g7.28mmoleのベ
ンれン溶液10mlを埐々に添加した。時間撹拌し
た埌、50℃で30分間加熱した。反応液を宀枩に戻
した埌、氎50ml、2N−塩酞50ml、続いお氎50ml
の順で掗浄し、ベンれン局を無氎硫酞ナトリりム
で也燥した。ベンれンを留去した埌真空蒞留し、
沞点167℃0.5mmHgの淡黄色固䜓1.06gを埗た。
このものの赀倖吞収スペクトルを枬定した結果は
第図に瀺すずおりであり、3100〜2840cm-1に
−結合に基づく吞収、1670cm-1にアミド基のカ
ルボニル結合に基づく匷い吞収を瀺した。 その元玠分析倀はC59.34、H5.59、N4.34
であ぀お、組成匏C16H18NSO2Cl323.84に察
する蚈算倀であるC59.34、H5.60、N4.32
に良く䞀臎した。 たた、質量スペクトルを枬定したずころ、
e323に分子量に察応する分子むオンピヌク、
e288に−Clに察応するピヌク、
e246に−COCH2Clに察応するピヌク、
e127に
The present invention relates to a novel N-substituted-chloroacetanilide having a specific general formula and a process for producing the same. The present invention also provides a herbicide containing the above compound as an active ingredient. Conventionally, many compounds similar to N-substituted chloroacetanilide have been synthesized.
Certain species are already known to be useful as herbicides. For example, US Patent No.
No. 3901917 has a general formula, (However, R 9 and R 10 are each a hydrogen atom or an alkyl group, R 7 is an alkyl group, R 8 is a hydrogen atom,
an alkyl group or an alkoxy group; X represents a halogen atom; Y represents a hydrogen atom, a lower alkyl group or a halogen atom; It has been described that N-(2-thienylmethyl)-substituted-haloacetanilides represented by ) are useful as field herbicides. However, the effective concentration of the compound represented by the above general formula described in the U.S. patent as a field herbicide varies slightly depending on the type of weed, but in all cases, it is 8 pounds/acre. That is, it is approximately 900 g/10a, and it is clear that the above compound must be administered in extremely large amounts to be effective as a herbicide. In addition, when the compound represented by the above general formula is used as a herbicide for rice fields, there are some that have herbicidal activity at relatively low concentrations such as 125g/10a.
These have the disadvantage of causing phytotoxicity to paddy rice. On the other hand, conventionally commercially available N-substituted chloroacetanilide herbicides such as brachlor and alachlor have herbicidal activity against paddy field weeds at relatively low concentrations, as is clear from the comparative examples described below. However, these also have the major drawback of causing undesirable phytotoxicity to paddy rice at concentrations that have herbicidal activity. When herbicides are used in high concentrations, the herbicidal active substances flow into rivers, causing undesirable chemical damage to various aquatic animals, and furthermore having a negative impact on humans and livestock. .
Furthermore, it is clear that herbicides that exhibit strong herbicidal activity at relatively low concentrations but also cause phytotoxicity to paddy rice will have a major detrimental effect on increasing the per-cell yield of rice, which is the original objective. From this perspective,
There has been a strong desire to develop a new herbicide having a so-called selective herbicidal activity, which has a herbicidal effect even when used at low concentrations and kills only weeds. The present inventors have conducted extensive research in order to find a new compound that has excellent properties as a herbicide that satisfies the above-mentioned requirements. As a result, we succeeded in synthesizing an excellent new compound that compensates for the various drawbacks mentioned above, and completed the present invention. That is, the present invention is based on the general formula, N-substituted-chloroacetanilide represented by (wherein R 1 and R 2 are the same or different hydrogen atoms,
Represents a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, and R represents a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group.
R 3 , R 4 and R 5 each represent the same or different hydrogen atom, halogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, or alkylthio group, and R 6 represents a hydrogen atom or an alkyl group. However, R 1 or R 2 is a hydrogen atom, and R
and R 2 or R and R 1 are both the same kind of halogen atoms, the substitution positions of R and R 2 or R and R 1 are the 2- and 4-positions, or the 4- and 5-positions of the thiophene ring. . ) Furthermore, the present invention also relates to the general formula, N-substituted-aniline represented by the general formula,
A general formula characterized by reacting with chloroacetyl halide represented by ClCH 2 COX, A method for producing an N-substituted chloroacetanilide represented by (wherein R 1 and R 2 are the same or different hydrogen atoms, halogen atoms, alkyl groups,
An alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, R represents a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, R 3 , R 4 and R 5 each represent It represents the same or different hydrogen atom, halogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, or alkylthio group, and R 6 represents a hydrogen atom or an alkyl group. However, if R 1 or R 2 is a hydrogen atom and R and R 2 or R and R 1 are both the same type of halogen atom, the substitution position of R and R 2 or R and R 1 is on the thiophene ring. 2nd and 4th place,
Or 4th and 5th place. Moreover, Y is a halogen atom. ) as well as the general formula, Substituted thiophene and general formula represented by, A general formula characterized by reacting with chloroacetanilide represented by A method for producing an N-substituted chloroacetanilide represented by (wherein R 1 and R 2 are the same or different hydrogen atoms, halogen atoms, alkyl groups,
An alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, R represents a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, and R 3 , R 4 and R 5 each represent They represent the same or different hydrogen atoms, halogen atoms, alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, and alkylthio groups, and R 6 represents a hydrogen atom or an alkyl group. However, if R 1 or R 2 is a hydrogen atom and R and R 2 or R and R 1 are the same type of halogen atom, R and R 2 or R
The substitution positions of R 1 are the 2nd and 4th positions, or the 4th and 5th positions of the thiophene ring. Moreover, Y is a halogen atom. ) is also provided. Furthermore, the present invention provides the general formula, (In the formula, R 1 and R 2 represent the same or different hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups, alkylthio groups, alkoxyalkyl groups, and alkylthioalkyl groups, and R is a halogen atom, an alkyl group, or an alkoxy group. , an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, and R 3 , R 4 and R 5 each represent the same or different hydrogen atom, halogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, or alkylthio group, R 6 represents a hydrogen atom or an alkyl group.However, when R 1 or R 2 is a hydrogen atom and R and R 2 or R and R 1 are both the same type of halogen atom, R and R 2 or The substituent positions of R and R 1 are the 2nd and 4th positions, or the 4th and 5th positions of the thiophene ring. . The N-substituted-chloroacetanilide of the present invention has the general formula: (In the formula, R 1 and R 2 represent the same or different hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups, alkylthio groups, alkoxyalkyl groups, and alkylthioalkyl groups, and R is a halogen atom, an alkyl group, or an alkoxy group. , an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, and R 3 , R 4 and R 5 each represent the same or different hydrogen atom, halogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, or alkylthio group, R 6 represents a hydrogen atom or an alkyl group.However, when R 1 or R 2 is a hydrogen atom and R and R 2 or R and R 1 are both the same type of halogen atom, R and R 2 or The substitution positions of R and R 1 are the 2nd and 4th positions, or the 4th and 5th positions of the thiophene ring. In the above general formula, specific examples of halogen atoms represented by R, R 1 , R 2 , R 3 , R 4 and R 5 include chlorine,
Examples include bromine, fluorine, and iodine atoms. Furthermore, in the general formula, the alkyl groups represented by R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be linear or branched, and have a carbon number of is not particularly limited. However, due to the ease of obtaining raw materials, the number of carbon atoms is 1.
It is preferable that the number is 6 to 6. Specific examples of the alkyl group include methyl group, ethyl group, n-
propyl group, iso-propyl group, n-butyl group,
iso-butyl group, t-butyl group, n-pentyl group,
Examples include n-hexyl group. Furthermore, in the general formula, the alkenyl groups represented by R 3 , R 4 and R 5 are:
The number of carbon atoms is not particularly limited, regardless of whether it is linear or branched. However, due to the ease of obtaining raw materials, the number of carbon atoms is 1.
It is suitable that it is 4 pieces. Specific examples of the alkenyl group include vinyl group, allyl group,
Examples include iso-propenyl group, 2-butenyl group, and 3-butenyl group. Furthermore, in the general formula,
The alkynyl group represented by R 3 , R 4 and R 5 may be linear or branched, and the number of carbon atoms is not particularly limited, but it is preferable that the number of carbon atoms is 1 to 4 as described above. It is. Specific examples of the alkynyl group include ethynyl group, 2-propynyl group, and the like. In the above general formula, the alkoxy group represented by R, R 1 , R 2 , R 3 , R 4 and R 5 has 1 to 1 carbon atoms.
Six linear or branched saturated or unsaturated groups are preferred, and specific examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, t-butoxy group, n-pentoxy group. group, n-
Examples include hexoxy group and allyloxy group.
Furthermore, in the general formula, R, R 1 , R 2 , R 3 , R 4 and
The alkylthio group represented by R 5 is preferably a linear or branched saturated or unsaturated group having 1 to 6 carbon atoms, and specific examples of the alkylthio group include methylthio group, ethylthio group, n -propylthio group, t-butylthio group, n-pentylthio group, n-hexylthio group, allylthio group and the like. Furthermore, in the above general formula, the alkoxyalkyl group represented by R, R 1 and R 2 is preferably a linear or branched saturated or unsaturated group having 2 to 6 carbon atoms; Specific examples include a methoxymethyl group, a methoxyethyl group, an ethoxymethyl group, an n-propoxymethyl group, a t-butoxyethyl group, an allyloxyethyl group, and the like. Furthermore, in the general formula,
The alkylthioalkyl group represented by R, R 1 and R 2 is preferably a linear or branched saturated or unsaturated group having 2 to 6 carbon atoms, and specific examples of the alkylthioalkyl group include: Examples include methylthiomethyl group, methylthioethyl group, ethylthiomethyl group, n-propylthiomethyl group, t-butylthioethyl group, and allylthioethyl group. In the N-substituted-chloroacetanilide represented by the general formula (1), R is an alkoxy group, an alkoxyalkyl group, or a halogen atom, and R 1 and R 2 are a hydrogen atom, an alkoxy group, an alkoxyalkyl group,
A halogen atom is preferred because it exhibits high herbicidal activity even at a low dose. Further, it is preferable that the substituents (excluding hydrogen atoms) represented by R, R 1 and R 2 of the thiophene ring are substituted at the 2-position because the herbicidal activity is high even at a low dosage.
Furthermore, there is a tendency that herbicidal activity is higher when R 6 is a hydrogen atom. As is clear from the examples described below, the compound represented by the general formula (1) of the present invention is completely harmless and safe to rice even when used at a high concentration, for example, 500g/10a. Without,
Even when used at a low concentration of 125g/10a or lower, it has an extremely strong herbicidal activity that can completely kill various paddy field weeds such as field weeds, cypresses, bulrushes, and grasshoppers. Furthermore, as is clear from the Examples described below, it exhibits complete selective herbicidal activity against wild grasses that have grown up to the 1.5 leaf stage at a low concentration of 125 g/10a. Such remarkable selective herbicidal activity is hardly affected by the type of substituent introduced into the aniline ring, as is clear from comparison with the comparative example described below.
This is a specific effect brought about by the 3-thienyl group present in the molecule. The compound represented by the general formula (1) of the present invention is a novel compound, and its structure can be confirmed by the following means. (a) By measuring the infrared absorption spectrum IR, it is possible to observe an absorption based on a CH bond in the vicinity of 3150 to 2820 cm -1 and a characteristic absorption based on the carbonyl bond of the amide group in the vicinity of 1680 to 1670 cm -1 . (b) By measuring the mass spectrum MS and calculating the composition formula corresponding to each observed peak (generally the mass number expressed as m/e, which is the ion molecular weight m divided by the ion charge number e), It is possible to know the molecular weight of the compound subjected to measurement and the bonding mode of each atomic group within the molecule. In other words, the sample subjected to measurement is expressed by the general formula, When expressed as The molecular weight of can be determined. Furthermore, regarding the compound of the present invention represented by the above general formula, M
-X, M-COCH 2 X (X represents a halogen atom) and A characteristic strong peak corresponding to the molecule is observed, and the bonding mode of the molecule can be known. (c) 1 H-Nuclear Magnetic Resonance Spectrum ( 1 H-NMR)
By measuring , it is possible to know the bonding mode of hydrogen atoms present in the compound of the present invention represented by the above general formula. A representative example of 1 H-NMR (ή, ppm: based on tetramethylsilane, in deuterated chloroform solvent) of the compound represented by the general formula (1) is N-(2'-iodo-3'-thienylmethyl)-N Figure 1 shows the 'H-NMR of -chloroaceto-2,6-dimethylanilide. The analysis results are as follows. That is, a single line corresponding to 6 protons was observed at 1.90 ppm, and can be attributed to the methyl group (a) substituted at the 2 and 6 positions of the phenyl group. A single line corresponding to two protons was observed at 3.63 ppm, and can be attributed to the methylene group (b) in the chloroacetyl group. A single line corresponding to two protons was observed at 4.73 ppm, and can be attributed to the methylene group (c). Furthermore, a multiplet corresponding to five protons was observed at 6.90 to 7.40 ppm, and can be attributed to protons (d) substituted with phenyl and thienyl groups. 1 H− of the compound represented by the above general formula (1)
To summarize the characteristics of NMR, the methylene proton of the chloroacetyl group is usually a single line with 3.6 ~
around 3.8 ppm, and the methylene proton of aminomethylene group is around 4.8 ppm as a single line (however,
When the 2- and 6-positions on the aniline side are substituted with different functional groups, a double line may appear. ), the proton on the thiophene ring side is 6.4 ~
7.4ppm, protons on the benzene side are 6.5~
It tends to show a characteristic peak at 7.7ppm. (d) Calculate the weight percent of oxygen by determining the weight percent of each of carbon, hydrogen, nitrogen, sulfur, and halogen by elemental analysis, and then subtracting the sum of the weight percent of each recognized element from 100. is possible,
Therefore, the compositional formula of the compound can be determined. The N-(3'-thienylmethyl)-N-chloroacetanilide of the present invention has R, R 1 ,
The properties of R 2 , R 3 , R 4 , R 5 and R 6 vary depending on the type, but they are generally pale yellow or yellow viscous liquids or solids at room temperature and normal pressure, and have an extremely high boiling point. There are many things. As will be specifically shown in the examples below, the boiling point of the above compound tends to increase as the molecular weight increases, like general organic compounds. The compounds of the present invention are soluble in common organic solvents such as benzene, ether, alcohol, chloroform, carbon tetrachloride, hexane, acetonitrile, N,N-dimethylformamide, and dimethyl sulfoxide, but are almost insoluble in water. The method for producing the compound represented by the above general formula (1) of the present invention is not particularly limited. A typical manufacturing method is described below. general formula, (In the formula, R 1 and R 2 are hydrogen atoms, halogen atoms,
An alkyl group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, R represents a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, and R 3 , R 4 and R 5 each represent It represents the same or different hydrogen atom, halogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, or alkylthio group, and R 6 represents a hydrogen atom or an alkyl group. However, if R 1 or R 2 is a hydrogen atom and R and R 2 or R and R 1 are both the same type of halogen atom, the substitution position of R and R 2 or R and R 1 is on the thiophene ring. 2nd and 4th place,
Or 4th and 5th place. ) is reacted with chloroacetyl halide represented by the general formula ClCH 2 COX (where X represents a halogen atom) to produce a compound represented by the general formula (1) A compound is obtained. The aniline derivative represented by the above general formula (2) serving as a raw material may be obtained by any method. A typical method for producing the aniline may be, for example, the method described in Reference Examples below. In the reaction between the compound represented by the general formula (2) and chloroacetyl halide, the molar ratio of both compounds may be appropriately determined as necessary, but it is usually the same molar ratio or a slightly excess molar amount of chloroacetyl halide. It is common to use Further, in the above reaction, hydrogen halide is produced as a by-product. This hydrogen halide is expressed by the general formula (2) in the reaction system.
It is usually preferable to coexist a hydrogen halide scavenger in the reaction system since it reacts with the compound represented by the formula and causes a decrease in the yield of the product.
The hydrogen halide scavenger is not particularly limited, and any known one can be used. Trialkylamines such as trimethylamine, triethylamine, and tripropylamine; pyridine; sodium alcoholate;
Examples include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, magnesium carbonate, and the like. It is generally preferable to use an organic solvent in the reaction in the present invention. Examples of solvents preferably used include aliphatic or aromatic hydrocarbons such as benzene, toluene, xylene, hexane, heptane, petroleum ether, chloroform, methylene chloride, and ethylene chloride, or halogenated hydrocarbons. Ethers such as diethyl ether, dioxane, and tetrahydrofuran; Ketones such as acetone and methyl ethyl ketone; Nitriles such as acetonitrile; N,N-dialkyl amides such as N,N-dimethylformamide and N,N-diethylformamide; Examples include dimethyl sulfoxide. The order of addition of the raw materials in the reaction is not particularly limited, but generally, the compound represented by the general formula (2) is dissolved in a solvent, charged into a reactor, and the chloroacetohalogenide dissolved in the solvent is added under stirring. Good. Of course, it is also possible to continuously add raw materials to the reaction system and take out the produced reactants continuously from the reaction system. The temperature in the reaction can be selected from a wide range, generally -20°C to 150°C, preferably 0°C to 120°C.
It is sufficient to choose from the range of °C. Although the reaction time varies depending on the type of raw materials, it is usually sufficient to select from a range of 5 minutes to 10 days, preferably 1 to 40 hours. Further, it is preferable to stir the reaction mixture during the reaction. The method for isolating and purifying the target product, ie, the compound represented by the general formula (1) above, from the reaction system is not particularly limited, and any known method can be employed. For example, the reaction solution is cooled or allowed to cool naturally to return to room temperature or near room temperature, the reaction solvent and the remaining hydrogen halide scavenger are distilled off, and the residue is extracted with an organic solvent such as benzene, ether, or chloroform. In the above operation, the salt and high molecular weight compound produced from the by-produced hydrogen halide and the hydrogen halide scavenger are separated.
The organic solvent layer is dried with a drying agent such as mirabilite or calcium chloride, and then the organic solvent is distilled off.
The target product is obtained by vacuum distilling the residue. In addition to isolation and purification by vacuum distillation, it can also be purified by chromatography or, if the product is a solid, by crystallization from a solvent such as hexane. Furthermore, the compound represented by the general formula (1) of the present invention is represented by the general formula: (In the formula, R 1 and R 2 are hydrogen atoms, halogen atoms,
An alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, R is a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group,
It represents an alkylthioalkyl group, and R 6 represents a hydrogen atom or an alkyl group. However, if R 1 or R 2 is a hydrogen atom and R and R 2 or R and R 1 are both the same type of halogen atom, the substitution position of R and R 2 or R and R 1 is on the thiophene ring. 2nd and 4th place,
Or 4th and 5th place. Moreover, X represents a halogen atom. ) substituted thiophene and the general formula, (In the formula, R 3 , R 4 and R 5 each represent the same or different hydrogen atom, halogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, or alkylthio group). It can also be obtained by The substituted thiophene and the chloroacetanilide used as raw materials can be obtained by any method. In addition, the conditions and isolation and purification method for carrying out the reaction are the same as those used in the reaction of the N-substituted aniline represented by the general formula (2) and chloroacetyl halide described above. Almost the same conditions as in the method can be adopted. The compound represented by the general formula (1) of the present invention exhibits remarkable effects as a herbicide. For example, it exhibits excellent herbicidal effects in soil treatment before and after germination of grass weeds, broad-leaved weeds, and perennial weeds. In particular, it shows a remarkable herbicidal effect on grass weeds, and for example, it shows an excellent herbicidal effect on grasses, which are harmful weeds, not only when they germinate, but also when they grow at the 1.5 leaf stage. Furthermore, it is highly safe for paddy rice not only for seedlings at the 1.5-leaf stage but also during germination. As it has a highly selective herbicidal effect, it is an excellent herbicide with a significantly longer suitable treatment period than conventional herbicides. It also exhibits a selective herbicidal effect when used as a herbicide in upland fields, so it can be applied not only to broad-leaved crops such as soybeans, cotton, and cornflowers, but also to gramineous crops such as wheat, barley, corn, and upland rice without causing damage. I can do it. Representative examples of specific embodiments in which the compound represented by the general formula (1) is used as a herbicide will be described below. When the compound represented by the above general formula (1) is used for wildflowers and paddy rice that are sown simultaneously in paddy field soil, when treated at a concentration of 30g per 10 ares, the germination of wildflowers is completely inhibited, but the germination of rice plants is Even when processing 1000g, there is no effect at all. Therefore, generally 10
It may be used in paddy fields in an amount of 6.25g to 2000g, preferably 30g to 500g, of the active ingredient per area. As mentioned above, it has selective herbicidal activity between wildflowers and paddy rice, so it can be applied during the long-term growth stage of paddy rice from the germination period to the growing period, and has the advantage that it can be applied extremely safely, especially to flooded and directly sown paddy rice. This is a major feature of the present invention. Although the compounds represented by the general formula (1) of the present invention have slightly different herbicidal effects depending on their functional groups, they have little phytotoxicity against gramineous crops, and are particularly phytotoxic to paddy rice. Few points are common characteristics. Examples of weeds on which the compound of the present invention exhibits herbicidal effects are as follows. As mentioned above, it has a high herbicidal effect on grass family weeds, especially grasshoppers, and has a particularly favorable herbicidal effect on Cyperaceae, especially Cyperaceae, bulrush, and the like. Next to these, it is preferable to mix and use known herbicides such as phenoxy compounds, amide compounds, etc., which have a herbicidal effect on broad-leaved weeds, but increase the amount of active ingredients used. Weeds that can be particularly effectively weeded include,
Japanese cabbage, Japanese cypress, Japanese cypress, Japanese cypress, Japanese cypress, Japanese cypress, Japanese firefly, Japanese cypress, Japanese cypress, Japanese cypress, Hyderico, Japanese cyperus, Japanese cypress, Japanese black bream, Japanese pine fly, Japanese yellow tit, Japanese cypress, Aginia, Japanese yellowtail, Japanese cypress, Japanese cypress, Japanese cypress,
These are paddy field weeds such as Japanese parsley, willow knotweed, Japanese wattle, Japanese iris, Japanese iris, Japanese chickweed, Japanese sagebrush, Japanese commonweed, Japanese chickweed, Japanese thornweed, Japanese knotweed, Japanese reddish weed, Japanese knotweed, Japanese azalea, Japanese japonica, Japanese japonica, Japanese japonica, red cottonweed, sour chili pepper, Japanese apricot, azalea, and red capsicum. In addition, the field weeds can be applied to, for example, blackberry, hackberry, pigweed, Japanese knotweed, cyperus japonica, cyperus japonica, japonica, purslane, red clover, oxalis, sycamore, sycamore, japonica, japonica, japonica, cyperus japonica, shepherd's purse, etc. Furthermore, since the compound represented by the general formula (1) of the present invention affects the growth of plants, it can also be used as a defoliant, a germination inhibitor, and a growth regulator. The mode of use of the above general formula (1) of the present invention is not particularly limited, and the mode of use of known herbicides can be used as is. For example, it can be used in any dosage form such as granules, powders, emulsions, wettable powders, tablets, oils, aerosols, and smokes using inert solid carriers, liquid carriers, emulsifying dispersants, etc. Of course, auxiliary agents for formulation, such as spreading agents, diluents, surfactants, solvents, etc., can also be added as appropriate. The compound represented by the general formula (1) of the present invention can also be used in combination with insecticides, fungicides, other agricultural chemicals, fertilizer substances, soil conditioners, and the like. EXAMPLES In order to explain the present invention more specifically, Examples and Comparative Examples will be described below, but the present invention is not limited to these Examples. Example 1 N-(2'-methoxy-3'-thienylmethyl)-
Dissolve 1.49g (6.03mmole) of 2,6-dimethylaniline in 20ml of benzene and add 0.79g of triethylamine.
(7.84 mmole) and placed in ice water. Then, 10 ml of a solution of 0.82 g (7.28 mmole) of chloroacetyl chloride in benzene was slowly added. After stirring for 3 hours, the mixture was heated at 50°C for 30 minutes. After returning the reaction solution to room temperature, add 50 ml of water, 50 ml of 2N hydrochloric acid, and then 50 ml of water.
The benzene layer was dried over anhydrous sodium sulfate. After removing benzene, vacuum distillation is carried out,
1.06 g of a pale yellow solid with a boiling point of 167° C./0.5 mmHg was obtained.
The results of measuring the infrared absorption spectrum of this material are shown in Figure 2, and the C
Absorption based on the -H bond and strong absorption based on the carbonyl bond of the amide group at 1670 cm -1 were observed. Its elemental analysis values are C59.34%, H5.59%, N4.34
%, calculated values for the composition formula C 16 H 18 NSO 2 Cl (323.84): C59.34%, H5.60%, N4.32%
There was good agreement. In addition, when mass spectra were measured, m/
Molecular ion peak corresponding to molecular weight at e323, M
, m/e288 has a peak corresponding to M-Cl, m/
Peak corresponding to M-COCH 2 Cl at e246, m/
to e127

【匏】に察応する各ピヌクを瀺 した。 さらに、1H−栞磁気共鳎スペクトルΎ
ppmテトラメチルシラン基準、重クロロホルム
溶媒を枬定した結果を第図に瀺した。その解
析結果は次のずおりであ぀た。 2.01ppmにプロトン個分の単䞀線を瀺し、フ
゚ニル基の䜍に眮換したメチル基の個の
(a)のメチルプロトンに盞圓する。3.49ppmにプロ
トン個分の単䞀線を瀺しメトキシ基の個の(b)
のメチルプロトンに盞圓する。3.65ppmにプロト
ン個分の単䞀線を瀺し、(c)のメチレンプロトン
に盞圓する。4.68ppmにプロトン個分の単䞀線
を瀺し、チオプン環に隣接した(d)のメチレンプ
ロトンに盞圓する。6.63ppmにプロトン個分の
四重線を瀺し、(e)のチオプン環のプロトンに盞
圓する。さらに、7.03〜7.17ppmにプロトン個
分の倚重線を瀺し、(f)のベンれン環のプロトンに
盞圓する。 䞊蚘の結果から、単離生成物は−〔3′−2′−
メトキシチ゚ニルメチル〕−−クロロアセト
−−ゞメチルアニリド化合物番号で
あるこずが明らかずな぀た。収率は甚いた−
〔2′−メトキシ−3′−チ゚ニルメチル〕−
−ゞメチルアニリンに察し、54.3
3.28mmoleであ぀た。 実斜䟋  −ゞメチル−−−クロロアセトアニリ
ド2.04g10.3mmole、−ペヌド−−クロロ
メチルチオプン2.67g10.3mmoleず炭酞カリ
りム0.71g5.15mmoleを−ゞメチルホル
ムアミド以䞋、DMFず略す。50ml䞭に加え、
撹拌した。該反応混合物を100℃で時間加熱し
た埌、宀枩で時間撹拌した。生成沈柱した塩化
カリりムを濟別した埌、濟液䞭のDMFを枛圧䞋
で留去し、残枣に氎100mlを加え、゚ヌテル抜出
した。゚ヌテル局を無氎硫酞ナトリりムで也燥し
た埌、枛圧䞋で゚ヌテルを留去した。残枣にヘキ
サン−゚ヌテル10100mlを加え、加熱埌、
冷华し、再結晶したずころ、癜色固䜓0.56gを埗
た。このものの赀倖スペクトルを枬定したずこ
ろ、3100〜2800cm-1に−結合に基づく吞収、
1670cm-1にアミド基のカルボニル結合に基づく匷
い吞収を瀺した。その元玠分析倀はC42.93、
H3.60、N3.33であ぀お、組成匏
C15H15SONICl419.70に察する蚈算倀である
C42.92、H3.61、N3.34に良く䞀臎した。 たた、質量スペクトルを枬定したずころ、
e419に分子量に察応する分子むオンピヌク、
e384に−Clに察応するピヌク、
e343に−COCH2Clに察応するピヌク、
e223100に
Each peak corresponding to [Formula] is shown. Furthermore, 1 H-nuclear magnetic resonance spectrum (ÎŽ:
The results of measuring ppm (based on tetramethylsilane, deuterated chloroform solvent) are shown in FIG. The analysis results were as follows. A single line corresponding to 6 protons is shown at 2.01 ppm, and the two methyl groups substituted at the 2 and 6 positions of the phenyl group are shown.
Corresponds to the methyl proton in (a). A single line for three protons is shown at 3.49ppm, and three (b) of methoxy groups are shown.
corresponds to the methyl proton of A single line for two protons is shown at 3.65 ppm, which corresponds to the methylene proton in (c). A single line for two protons is shown at 4.68 ppm, which corresponds to the methylene proton in (d) adjacent to the thiophene ring. A quartet of two protons is shown at 6.63 ppm, which corresponds to the proton of the thiophene ring in (e). Furthermore, a multiplet of three protons is shown at 7.03 to 7.17 ppm, which corresponds to the proton of the benzene ring in (f). From the above results, the isolated product is N-[3′-(2′-
It became clear that it was methoxy)thienylmethyl]-N-chloroaceto-2,6-dimethylanilide (Compound No. 1). The yield is based on the N-
[2'-methoxy-(3'-thienylmethyl]-2,6
-54.3% for dimethylaniline
(3.28 mmole). Example 2 2.04 g (10.3 mmole) of 2,9-dimethyl-N-chloroacetanilide, 2.67 g (10.3 mmole) of 2-iodo-3-chloromethylthiophene, and 0.71 g (5.15 mmole) of potassium carbonate were mixed with N,N- Add to 50ml of dimethylformamide (hereinafter abbreviated as DMF),
Stirred. The reaction mixture was heated at 100° C. for 3 hours and then stirred at room temperature for 1 hour. After filtering off the precipitated potassium chloride, DMF in the filtrate was distilled off under reduced pressure, 100 ml of water was added to the residue, and the mixture was extracted with ether. After drying the ether layer over anhydrous sodium sulfate, the ether was distilled off under reduced pressure. Add 100 ml of hexane-ether (10:1) to the residue, and after heating,
After cooling and recrystallization, 0.56 g of a white solid was obtained. When we measured the infrared spectrum of this material, we found that there was an absorption based on C-H bond at 3100 to 2800 cm -1 .
A strong absorption was observed at 1670 cm -1 due to the carbonyl bond of the amide group. Its elemental analysis value is C42.93%,
H3.60%, N3.33%, composition formula
This is the calculated value for C 15 H 15 SONICl (419.70)
It matched well with C42.92%, H3.61%, and N3.34%. In addition, when mass spectra were measured, m/
Molecular ion peak corresponding to molecular weight at e419, M
, m/e384 has a peak corresponding to M-Cl, m/
peak corresponding to M-COCH 2 Cl at e343, m/
to e223 (100%)

【匏】に察応する各ピ ヌクを瀺した。 さらに、1H−栞磁気共鳎スペクトルに぀いお
は、明现曞䞭の具䜓䟋ずしお第図に瀺したずお
りである。 䞊蚘の結果から、単離生成物が−〔3′−2′−
ペヌド−チ゚ニルメチル〕−−クロロアセト〜
−ゞメチルアニリド化合物番号であ
るこずが明らかずな぀た。収率は−ゞメチ
ル−−クロロアセトアニリドに察し、13
1.34mmoleであ぀た。 実斜䟋  実斜䟋における−〔3′−2′−メトキシ−
チ゚ニルメチル〕−−ゞメチルアニリンの
代わりに−〔3′−2′−メトキシメチル−チ゚
ニルメチル〕−−ゞメチルアニリン2.85g
11mmoleを甚いた以倖は、実斜䟋ず同様に
反応させた埌、凊理を行い、沞点160℃0.15mm
Hgの淡黄色固䜓2.65gを埗た。このものの赀倖ス
ペクトルを枬定した結果、3120〜2850cm-1に−
結合に基づく吞収、1670cm-1にアミド基のカル
ボニル結合に基づく匷い吞収を瀺した。その元玠
分析倀はC60.43、H5.98、N4.17であ぀お、
組成匏C17H20NSO2Cl337.86に察する蚈算倀で
あるC60.42、H5.98、N4.15に良く䞀臎し
た。 たた、質量スペクトルを枬定したずころ、
e337に分子量に察応する分子むオンピヌク、
e302に−Clに察応するピヌク、
e261に−COCH2Clに察応するピヌク、
e141100に
Each peak corresponding to [Formula] is shown. Furthermore, the 1 H-nuclear magnetic resonance spectrum is as shown in FIG. 1 as a specific example in the specification. From the above results, it is clear that the isolated product is N-[3'-(2'-
iodo)-thienylmethyl]-N-chloroaceto~
It became clear that it was 2,6-dimethylanilide (compound number 2). The yield is 13% based on 2,6-dimethyl-N-chloroacetanilide.
(1.34 mmole). Example 3 N-[3'-(2'-methoxy)- in Example 1
2.85 g of N-[3'-(2'-methoxymethyl)-thienylmethyl]-2,6-dimethylaniline instead of thienylmethyl]-2,6-dimethylaniline
(11 mmole) was reacted and treated in the same manner as in Example 1, and the boiling point was 160°C/0.15 mmole.
2.65 g of pale yellow solid Hg was obtained. As a result of measuring the infrared spectrum of this material, C-
Absorption due to H bond and strong absorption due to carbonyl bond of amide group at 1670 cm -1 were observed. Its elemental analysis values are C60.43%, H5.98%, N4.17%,
It matched well with the calculated values of C60.42%, H5.98%, and N4.15% for the composition formula C 17 H 20 NSO 2 Cl (337.86). In addition, when mass spectra were measured, m/
Molecular ion peak corresponding to molecular weight at e337, M
, the peak corresponding to M-Cl at m/e302, m/
Peak corresponding to M-COCH 2 Cl at e261, m/
to e141 (100%)

【匏】に察応する 各ピヌクを瀺した。 さらに、1H−栞磁気共鳎スペクトルΎ
ppmテトラメチルシラン基準、重クロホルム溶
媒を枬定した結果を第図に瀺した。その解析
結果は次のずおりである。 1.94ppmにプロトン個分の単䞀線を瀺し、フ
゚ニル基の䜍に眮換した(a)のメチルプロト
ンに盞圓する。3.18ppmにピロトン個分の単䞀
線を瀺し、メトキシメチル基の(b)のメチルプロト
ンに盞圓する。3.67ppmにプロトン個分の単䞀
線を瀺し(d)のメチレンプロトンに盞圓する。
4.14ppmにプロトン個分の単䞀線を瀺し、メト
キシメチル基の(c)のメチレンプロトンに盞圓す
る。4.83ppmにプロトン個分の単䞀線を瀺し、
チオプン環に隣接した(e)のメチレンプロトンに
盞圓する。6.87〜7.31ppmにプロトン個分の倚
重線を瀺し、チオプン環及びベンれン環のそれ
ぞれのプロトン(f)(g)に盞圓する。 䞊蚘の結果から、単離生成物は−〔3′2′−メ
トキシメチル−チ゚ニルメチル〕−−クロロア
セト−−ゞメチルアニリド化合物番号
であるこずが明らかずな぀た。収率は甚いた
−〔3′−2′−メトキシメチル−チ゚ニルメチ
ル〕−−ゞメチルアニリンに察し、72.0
7.85mmoleであ぀た。 実斜䟋  実斜䟋における−〔3′−2′−メトキシ−
チ゚ニルメチル〕−−ゞメチルアニリンの
代わりに−〔3′−2′−メチルチオ−5′−メチル

−チ゚ニルメチル〕−−ゞメチルアニリン
2.85g10.3mmoleを甚いた以倖は、実斜䟋ず
同様に反応させた埌、凊理を行い、沞点183℃
0.5mmHgの淡黄色固䜓2.03gを埗た。このものの
赀倖スペクトルを枬定した結果、3120〜2900cm-1
に−結合に基づく吞収、1670cm-1にアミド基
のカルボニル結合に基づく匷い吞収を瀺した。そ
の元玠分析倀はC58.04、H6.01、N4.02で
あ぀お、組成匏C17H20NS2OCl353.92に察する
蚈算倀であるC57.52、H5.98、N3.95に良
く䞀臎した。 たた、質量スペクトルを枬定したずころ、
e353に分子量に察応する分子むオンピヌク、
e318に−Clに察応するピヌク、
e277に−COCH2Clに察応するピヌク、
e157100に
Each peak corresponding to [Formula] is shown. Furthermore, 1 H-nuclear magnetic resonance spectrum (ÎŽ:
The results of measuring ppm (based on tetramethylsilane, deuterium chloroform solvent) are shown in FIG. The analysis results are as follows. A single line corresponding to 6 protons is shown at 1.94 ppm, which corresponds to the methyl proton in (a) substituted at the 2 and 6 positions of the phenyl group. A single line corresponding to three pyrotons is shown at 3.18 ppm, which corresponds to the methyl proton in (b) of the methoxymethyl group. A single line for two protons is shown at 3.67 ppm, which corresponds to the methylene proton in (d).
A single line corresponding to two protons is shown at 4.14 ppm, which corresponds to the methylene proton in (c) of the methoxymethyl group. A single line for two protons is shown at 4.83ppm,
It corresponds to the methylene proton in (e) adjacent to the thiophene ring. A multiplet of five protons is shown at 6.87 to 7.31 ppm, corresponding to protons (f) and (g) of the thiophene ring and benzene ring, respectively. From the above results, it was revealed that the isolated product was N-[3'(2'-methoxymethyl)-thienylmethyl]-N-chloroaceto-2,6-dimethylanilide (Compound No. 3). . The yield was 72.0% based on the N-[3'-(2'-methoxymethyl)-thienylmethyl]-2,6-dimethylaniline used.
(7.85 mmole). Example 4 N-[3'-(2'-methoxy)- in Example 1
N-[3'-(2'-methylthio-5'-methyl) instead of thienylmethyl]-2,6-dimethylaniline
-thienylmethyl]-2,6-dimethylaniline
The reaction was carried out in the same manner as in Example 1 except that 2.85g (10.3mmole) was used, and then the treatment was carried out to achieve a boiling point of 183℃/
2.03 g of pale yellow solid with 0.5 mmHg was obtained. As a result of measuring the infrared spectrum of this substance, it is 3120 to 2900 cm -1
It showed an absorption based on the C-H bond at 1670 cm -1 and a strong absorption based on the carbonyl bond of the amide group at 1670 cm -1 . Its elemental analysis values are C58.04%, H6.01%, N4.02%, and the calculated values for the composition formula C 17 H 20 NS 2 OCl (353.92) are C57.52%, H 5.98%, It matched well with N3.95%. In addition, when mass spectra were measured, m/
Molecular ion peak corresponding to molecular weight at e353, M
, m/e318 has a peak corresponding to M−Cl, m/
Peak corresponding to M-COCH 2 Cl at e277, m/
to e157 (100%)

【匏】に察応す る各ピヌクを瀺した。 さらに、1H−栞磁気共鳎スペクトルΎ
ppmテトラメチルシラン基準、重クロロホルム
溶媒を枬定した結果を第図に瀺した。その解
析結果は次のずおりである。 1.90ppmにプロトン個分の単䞀線を瀺し、チ
オプン環の䜍に眮換した(a)のメチルプロトン
に盞圓する。1.99ppmにプロトン個分の単䞀線
を瀺し、プニル基の䜍に眮換した(b)のメ
チルプロトンに盞圓する。2.40ppmにプロトン
個分の単䞀線を瀺し、チオプン環の䜍に眮換
したメチルチオ基の(c)のメチルプロトンに盞圓す
る。3.65ppmにプロトン個分の単䞀線を瀺し(d)
のメチレンプロトンに盞圓する。4.79ppmにプロ
トン個分の単䞀線を瀺し、チオプン環に隣接
した(e)のメチレンプロトンに盞圓する。6.90ppm
にプロトン個分の単䞀線を瀺し、チオプン環
の(f)のプロトンに盞圓する。6.98〜7.20ppmにプ
ロトン個分の倚重線を瀺し、ベンれン環の(g)の
プロトンに盞圓する。 䞊蚘の結果から、単離生成物は−〔3′−2′−
メチルチオ−5′−メチル〕−−クロロアセト−
−ゞメチルアニリド化合物番号であ
るこずが明らかずな぀た。収率は甚いた−
〔3′−2′−メチルチオ−5′−メチル〕−
−
ゞメチルアニリンに察し、55.85.74mmole
であ぀た。 実斜䟋  実斜䟋においお詳现に蚘述したのず同様な方
法により、第衚に蚘茉した−眮換−クロロア
セトアニリドを合成した。なお、第衚には合成
した−眮換−クロロアセトアニリド化合物の態
様、物性沞点、赀倖吞収スペクトルにおける
特性吞収倀及び元玠分析結果をも䜵せお略蚘し
た。
Each peak corresponding to [Formula] is shown. Furthermore, 1 H-nuclear magnetic resonance spectrum (ÎŽ;
The results of measuring ppm (based on tetramethylsilane, deuterated chloroform solvent) are shown in FIG. The analysis results are as follows. A single line corresponding to three protons is shown at 1.90 ppm, which corresponds to the methyl proton in (a) substituted at the 5-position of the thiophene ring. A single line corresponding to 6 protons is shown at 1.99 ppm, which corresponds to the methyl proton in (b) substituted at the 2 and 6 positions of the phenyl group. 3 protons at 2.40ppm
A single line is shown, which corresponds to the methyl proton in (c) of the methylthio group substituted at the 2-position of the thiophene ring. A single line for two protons is shown at 3.65ppm (d)
corresponds to methylene proton. A single line for two protons is shown at 4.79 ppm, which corresponds to the methylene proton in (e) adjacent to the thiophene ring. 6.90ppm
shows a single line for one proton, which corresponds to proton (f) of the thiophene ring. A multiplet of three protons is shown at 6.98 to 7.20 ppm, which corresponds to the proton (g) of the benzene ring. From the above results, the isolated product is N-[3′-(2′-
Methylthio-5'-methyl)]-N-chloroaceto-
It became clear that it was 2,6-dimethylanilide (compound number 4). The yield is based on the N-
[3'-(2'-methylthio-5'-methyl)]-2,6
−
55.8% (5.74 mmole) for dimethylaniline
It was hot. Example 5 By a method similar to that described in detail in Example 1, the N-substituted-chloroacetanilides listed in Table 1 were synthesized. Table 1 also abbreviates the aspects, physical properties (boiling point), characteristic absorption values in the infrared absorption spectrum, and elemental analysis results of the synthesized N-substituted-chloroacetanilide compounds.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 補剀䟋 氎和剀 実斜䟋に斌お埗られた−〔3′−2′−メトキ
シ−チ゚ニルメチル〕−−クロロアセト−
−ゞメチルアニリド10郚、ゞヌクラむトずクニ
ラむト商品名クニミネ瀟補、ずもに粘床鉱
物の混合物85郚、界面掻性剀ずしお゜ル
ポヌル800A商品名東邊化孊工業補郚を均
䞀に混合粉砕しお10氎和剀を埗た。 補剀䟋 乳剀 実斜䟋においお埗られた−〔3′−2′−ペヌ
ド−チ゚ニルメチル〕−−クロロアセト−
−ゞメチルアニリド20郚、キシレン70郚、界面
掻性剀ずしお゜ルポヌル800A10郚を混合溶解し、
20乳剀を埗た。 補剀䟋 粒剀 実斜䟋で埗られた−〔3′−2′−メトキシメ
チル−チ゚ニルメチル〕−−クロロアセト−
−ゞメチルアニリド郚、ベントナむト50
郚、クニラむト40郚、界面掻性剀ずしお゜ルポヌ
ル800A5郚を均䞀に混合粉砕した埌、氎を加えお
均䞀に撹拌しペヌスト状ずした埌、盎埄0.7mmの
節穎から抌し出し也燥埌〜mmの長さに切断し
お粒剀を埗た。 実斜䟋  1/8850アヌルの磁補ポツトに氎を加えお撹拌し
た氎田土壌沖積壌土を充填し、氎田雑草を播
皮した埌葉期のむネ苗品皮アキニシキを
深さcmに移怍し、氎を加えおcmの湛氎状態に
した。次いで補剀䟋に準じお調敎した各化合物
の氎和剀の氎垌釈液を雑草発芜時に所定量滎䞋凊
理した。凊理埌平均気枩25℃の枩宀内で生育さ
せ、週間埌に各䟛詊化合物の陀草効果を調査し
た結果を第衚に瀺した。䜆し、衚䞭に瀺した広
葉ずはアれナ、キカシグサ、アれトりガラシなど
を蚀う。なお、評䟡は段階ずし衚䞭の数字にお
いおは正垞、〜は正垞ず完党枯死の䞭間
を、は完党枯死を衚瀺するものである。
[Table] Formulation example 1 (hydrating powder) N-[3'-(2'-methoxy)-thienylmethyl]-N-chloroacet-2 obtained in Example 1,
10 parts of 6-dimethylanilide, 85 parts of a 2:1 mixture of ziecrite and kunilite (product name: Kunimine Co., Ltd., both clay minerals), and 5 parts of Solpol 800A (product name: Toho Chemical Industry Co., Ltd.) as a surfactant were uniformly mixed. The mixture was mixed and ground to obtain a 10% wettable powder. Formulation Example 2 (Emulsion) N-[3'-(2'-iodo)-thienylmethyl]-N-chloroacet-2 obtained in Example 2,
Mix and dissolve 20 parts of 6-dimethylanilide, 70 parts of xylene, and 10 parts of Solpol 800A as a surfactant.
A 20% emulsion was obtained. Formulation example 3 (granules) N-[3'-(2'-methoxymethyl)-thienylmethyl]-N-chloroaceto- obtained in Example 3
5 parts of 2,6-dimethylanilide, 50 parts of bentonite
After homogeneously mixing and pulverizing 40 parts of Kunilite and 5 parts of Solpol 800A as a surfactant, add water and stir evenly to make a paste, extrude it through a knot hole with a diameter of 0.7 mm and dry it to a length of 1 to 2 mm. The mixture was cut into 5% granules. Example 6 A 1/8850 are porcelain pot was filled with water and stirred paddy soil (alluvial loam), and after sowing paddy weeds, rice seedlings at the 3-leaf stage (variety: Akinishiki) were placed at a depth of 1 cm. They were transplanted and water was added to make them submerged to a depth of 3 cm. Next, a predetermined amount of a water diluted solution of a hydrating powder of each compound prepared according to Formulation Example 1 was dropped upon germination of weeds. After treatment, the plants were grown in a greenhouse at an average temperature of 25°C, and three weeks later, the herbicidal effects of each test compound were investigated. The results are shown in Table 2. However, the broad-leaved plants shown in the table refer to azalea, azalea, and aze pepper. In addition, the evaluation is made in 6 stages, and in the numbers in the table, 0 indicates normal, 1 to 4 indicates intermediate between normal and complete withering, and 5 indicates complete withering.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 実斜䟋  1/8850アヌルの磁補ポツトに氎を加えお撹拌し
た氎田土壌沖積壌土を充填し、ノビ゚の皮子
を播いた埌1.5葉期のむネ苗品皮アキニシキ
を深さcmに移怍し氎を加えおcmの湛氎状態に
した。ノビ゚が葉期発芜時、1.5葉期、葉
期に生長した埌補剀䟋に準じお補造した各化合
物の氎和剀の氎溶液を所定量凊理した。凊理埌平
均気枩25℃の枩宀内で生育させ週間埌に各䟛詊
化合物の陀草効果を調査した。調査結果は第衚
に瀺した。なお衚䞭の陀草効果の基準は実斜䟋
ず同䞀である。
[Table] Example 7 Rice seedlings at 1.5 leaf stage after filling a 1/8850 are porcelain pot with paddy soil (alluvial loam) mixed with water and sowing Novie seeds (variety: Akinishiki)
The plants were transplanted to a depth of 1 cm and water was added to make them flooded to a depth of 3 cm. After the wildflowers had grown to the 0-leaf stage (at the time of germination), the 1.5-leaf stage, and the 3-leaf stage, they were treated with a predetermined amount of an aqueous solution of a hydrating powder of each compound prepared according to Formulation Example 1. After treatment, the plants were grown in a greenhouse at an average temperature of 25°C, and three weeks later, the herbicidal effects of each test compound were investigated. The survey results are shown in Table 3. The criteria for herbicidal effect in the table is based on Example 6.
is the same as

【衚】【table】

【衚】 実斜䟋  1/8850アヌルの磁補ポツトに畑土壌城壌土
を充填し、各皮怍物皮子を0.5〜cmの深さに播
き、次いで補剀䟋に準じお補造した各化合物の
氎和剀の氎垌釈液を所定量土壌衚面に噎霧凊理し
た。凊理埌平均気枩25℃の枩宀内で生育させ週
間埌に各䟛詊化合物の陀草効果を調査した。調査
結果は第衚に瀺した。なお第衚䞭の陀草効果
の基準は実斜䟋ず同䞀である。
[Table] Example 8 Field soil (clay loam) in a 1/8850 are porcelain pot
Various plant seeds were sown to a depth of 0.5 to 1 cm, and then a predetermined amount of a water diluted solution of a hydrating powder of each compound prepared according to Formulation Example 1 was sprayed onto the soil surface. After treatment, the plants were grown in a greenhouse at an average temperature of 25°C, and two weeks later, the herbicidal effects of each test compound were investigated. The survey results are shown in Table 4. Note that the criteria for the herbicidal effect in Table 4 are the same as in Example 6.

【衚】【table】

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第図は実斜䟋で埗られた化合物の1H−
NMRのチダヌトで、第図、第図及び第図
はそれぞれ実斜䟋、実斜䟋及び実斜䟋で埗
られた化合物の1H−NMRのチダヌトで、第図
は実斜䟋で埗られた化合物のIRチダヌトを瀺
す。
Figure 1 shows 1 H- of the compound obtained in Example 2.
Figures 3, 4, and 5 are 1 H-NMR charts of the compounds obtained in Example 1, Example 3, and Example 4, respectively, and Figure 2 is the chart of Example 1. The IR chart of the compound obtained in is shown.

Claims (1)

【特蚱請求の範囲】  䞀般匏、 匏䞭、R1及びR2は同皮たたは異皮の氎玠原
子、ハロゲン原子、アルキル基、アルコキシ基、
アルキルチオ基、アルコキシアルキル基、アルキ
ルチオアルキル基を瀺し、はハロゲン原子、ア
ルキル基、アルコキシ基、アルキルチオ基、アル
コキシアルキル基、アルキルチオアルキル基を瀺
し、R3R4及びR5はそれぞれ同皮たたは異皮の
氎玠原子、ハロゲン原子、アルキル基、アルケニ
ル基、アルキニル基、アルコキシ基、アルキルチ
オ基を瀺し、R6は氎玠原子たたはアルキル基を
瀺す。ただし、R1たたはR2が氎玠原子であり、
ずR2たたはR1が共に同皮のハロゲン原子であ
る堎合には、ずR2たたはR1の眮換䜍はチオフ
゚ン環の䜍ず䜍、たたは䜍ず䜍である。
で瀺される−眮換−クロロアセトアニリド。  䞀般匏、 で瀺される−眮換アニリンず、䞀般匏、
ClCH2COXで瀺されるクロロアセチルハロゲニ
ドずを反応させるこずを特城ずする䞀般匏、 で瀺される−眮換−クロロアセトアニリドの補
法。匏䞭、R1及びR2同皮たたは異皮の氎玠原
子、ハロゲン原子、アルキル基、アルコキシ基、
アルキルチオ基、アルコキシアルキル基、アルキ
ルチオアルキル基を瀺し、はハロゲン原子、ア
ルキル基、アルコキシ基、アルキルチオ基、アル
コキシアルキル基、アルキルチオアルキル基を瀺
し、R3R4及びR5はそれぞれ同皮たたは異皮の
氎玠原子、ハロゲン原子、アルキル基、アルケニ
ル基、アルキニル基、アルコキシ基、アルキルチ
オ基を瀺し、R6は氎玠原子たたはアルキル基を
瀺す。ただし、R1たたはR2が氎玠原子であり、
ずR2たたはR1が共に同皮のハロゲン原子であ
る堎合には、ずR2たたはR1の眮換䜍はチオフ
゚ン環の䜍ず䜍、たたは䜍ず䜍である。  䞀般匏、 で瀺される眮換チオプンず䞀般匏、 で瀺されるクロロアセトアニリドずを反応させる
こずを特城ずする䞀般匏、 で瀺される−眮換−クロロアセトアニリドの補
法。匏䞭、R1及びR2は同皮たたは異皮の氎玠原
子、ハロゲン原子、アルキル基、アルコキシ基、
アルキルチオ基、アルコキシアルキル基、アルキ
ルチオアルキル基を瀺し、はハロゲン原子、ア
ルキル基、アルコキシ基、アルキルチオ基、アル
コキシアルキル基、アルキルチオアルキル基を瀺
し、R3R4及びR5はそれぞれ同皮たたは異皮の
氎玠原子、ハロゲン原子、アルキル基、アルケニ
ル基、アルキニル基、アルコキシ基、アルキルチ
オ基を瀺し、R6は氎玠原子たたはアルキル基を
瀺す。ただし、R1たたはR2が氎玠原子であり、
ずR2たたはR1が共に同皮のハロゲン原子であ
る堎合には、ずR2たたはR1の眮換䜍はチオフ
゚ン環の䜍ず䜍、たたは䜍ず䜍である。  䞀般匏、 匏䞭、R1及びR2は同皮たたは異皮の氎玠原
子、ハロゲン原子、アルキル基、アルコキシ基、
アルキルチオ基、アルコキシアルキル基、アルキ
ルチオアルキル基を瀺し、はハロゲン原子、ア
ルキル基、アルコキシ基、アルキルチオ基、アル
コキシアルキル基、アルキルチオアルキル基を瀺
し、R3R4及びR5はそれぞれ同皮たたは異皮の
氎玠原子、ハロゲン原子、アルキル基、アルケニ
ル基、アルキニル基、アルコキシ基、アルキルチ
オ基を瀺し、R6は氎玠原子たたはアルキル基を
瀺す。ただし、R1たたはR2が氎玠原子であり、
ずR2たたはR1が共に同皮のハロゲン原子であ
る堎合には、ずR2たたはR1の眮換䜍はチオフ
゚ン環の䜍ず䜍、たたは䜍ず䜍である。
で瀺される−眮換−クロロアセトアニリドを有
効成分ずする陀草剀。
[Claims] 1 General formula, (In the formula, R 1 and R 2 are the same or different hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups,
An alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, R represents a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, and R 3 , R 4 and R 5 are the same or different, respectively. represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, or an alkylthio group, and R 6 represents a hydrogen atom or an alkyl group. However, R 1 or R 2 is a hydrogen atom,
When R and R 2 or R 1 are both the same type of halogen atom, the substitution positions of R and R 2 or R 1 are the 2nd and 4th positions, or the 4th and 5th positions of the thiophene ring. )
N-substituted-chloroacetanilide represented by 2 general formula, N-substituted aniline represented by the general formula,
A general formula characterized by reacting with chloroacetyl halide represented by ClCH 2 COX, A method for producing N-substituted chloroacetanilide. (In the formula, R 1 and R 2 are the same or different hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups,
An alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, R represents a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, and R 3 , R 4 and R 5 are the same or different, respectively. represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, or an alkylthio group, and R 6 represents a hydrogen atom or an alkyl group. However, R 1 or R 2 is a hydrogen atom,
When R and R 2 or R 1 are both the same type of halogen atom, the substitution positions of R and R 2 or R 1 are the 2nd and 4th positions, or the 4th and 5th positions of the thiophene ring. ) 3 general formula, Substituted thiophene and general formula represented by, A general formula characterized by reacting with chloroacetanilide represented by A method for producing N-substituted chloroacetanilide. (In the formula, R 1 and R 2 are the same or different hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups,
An alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, R represents a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, and R 3 , R 4 and R 5 are the same or different, respectively. represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, or an alkylthio group, and R 6 represents a hydrogen atom or an alkyl group. However, R 1 or R 2 is a hydrogen atom,
When R and R 2 or R 1 are both the same type of halogen atom, the substitution positions of R and R 2 or R 1 are the 2nd and 4th positions, or the 4th and 5th positions of the thiophene ring. ) 4 General formula, (In the formula, R 1 and R 2 are the same or different hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups,
An alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, R represents a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an alkylthioalkyl group, and R 3 , R 4 and R 5 are the same or different, respectively. represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, or an alkylthio group, and R 6 represents a hydrogen atom or an alkyl group. However, R 1 or R 2 is a hydrogen atom,
When R and R 2 or R 1 are both the same type of halogen atom, the substitution positions of R and R 2 or R 1 are the 2nd and 4th positions, or the 4th and 5th positions of the thiophene ring. )
A herbicide containing an N-substituted chloroacetanilide as an active ingredient.
JP15398684A 1984-07-26 1984-07-26 N-substituted-chloroacetanilide and preparation thereof Granted JPS6136280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15398684A JPS6136280A (en) 1984-07-26 1984-07-26 N-substituted-chloroacetanilide and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15398684A JPS6136280A (en) 1984-07-26 1984-07-26 N-substituted-chloroacetanilide and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6136280A JPS6136280A (en) 1986-02-20
JPH0513160B2 true JPH0513160B2 (en) 1993-02-19

Family

ID=15574408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15398684A Granted JPS6136280A (en) 1984-07-26 1984-07-26 N-substituted-chloroacetanilide and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6136280A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157083A (en) * 1983-02-25 1984-09-06 Tokuyama Soda Co Ltd N-substituted-chloroacetanilide and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157083A (en) * 1983-02-25 1984-09-06 Tokuyama Soda Co Ltd N-substituted-chloroacetanilide and its preparation

Also Published As

Publication number Publication date
JPS6136280A (en) 1986-02-20

Similar Documents

Publication Publication Date Title
JPS61293956A (en) Chloroacetamide compound and production thereof
JPS63313779A (en) 1,5-diphenyl-1h-1,2,4-triazole-3-carboxamide derivative and herbicide containing said derivative
JPS6116395B2 (en)
JPH0513160B2 (en)
JPH0479338B2 (en)
JPS599521B2 (en) herbicide
JPH053447B2 (en)
JPH0517881B2 (en)
JPH0559882B2 (en)
JPS6165881A (en) N-substituted-chloroacetanilide
JPS59157083A (en) N-substituted-chloroacetanilide and its preparation
JPS5976045A (en) Alpha,alpha-dimethylphenylacetic acid anilide derivative, its preparation and herbicide containing the same
JPS61126081A (en) N-substituted-chloroacetanilide and herbicide comprising same as active ingredient
JPH053446B2 (en)
JPH053445B2 (en)
JPS63239276A (en) 4,5-dihydro-1h-1,2,4-triazole-3-carboxamide derivative and herbicide containing said derivative
JPS6168486A (en) N-substituted-chloroacetanilide
JPH053443B2 (en)
JPS6150948A (en) N-substituted-chloroacetamide
JPS61148105A (en) Herbicidal composition
JPH0227983B2 (en) NNCHIKANNKUROROASETOAMIDOOYOBISONOSEIHO
JPH0764830B2 (en) 1,5-Diphenyl-1H-1,2,4-triazol-3-carboxylic acid amide derivative, herbicide containing the derivative and process for producing related compound
JPH01139581A (en) Tetrahydrophthalimide derivative, production thereof and herbicide
JPH064579B2 (en) N-benzyl-2-alkyl-2-cyanoacetamide compound
JPH0531546B2 (en)