JPH05131458A - Vulcanizing mold - Google Patents

Vulcanizing mold

Info

Publication number
JPH05131458A
JPH05131458A JP6901991A JP6901991A JPH05131458A JP H05131458 A JPH05131458 A JP H05131458A JP 6901991 A JP6901991 A JP 6901991A JP 6901991 A JP6901991 A JP 6901991A JP H05131458 A JPH05131458 A JP H05131458A
Authority
JP
Japan
Prior art keywords
tire
tread
contour line
molding
recessed part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6901991A
Other languages
Japanese (ja)
Other versions
JPH085065B2 (en
Inventor
Yukio Nakao
幸夫 中尾
Yasuo Wada
靖男 和田
Atsushi Yamakage
篤 山蔭
Shigeaki Takigawa
成明 滝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP6901991A priority Critical patent/JPH085065B2/en
Publication of JPH05131458A publication Critical patent/JPH05131458A/en
Publication of JPH085065B2 publication Critical patent/JPH085065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To improve stability of operation, by a method wherein a contour line on a meridional section of a tread molding surface is established by a specific general formula not having an inflection point. CONSTITUTION:A vulcanizing mold 1 is provided with a mold main body 3, which is provided with a recessed part 2 holding a green tire Ta, and at the time of vulcanization, the green tire to be held into the recessed part 2 is expanded by filling inner pressure, through which a tire T possessing an outside form fitting to an inner wall surface s of the recessed part 2 is formed. Then a contour line 5 in a meridional surface of a tread molding surface Sa molding a tread surface 21 of the tire T is established by a formula (aj is a coefficient) in coordinates where x and y axes are decided respectively in a tire axis direction outward and radial direction inward from a tire equatorial point. Since a curve y not having an inflection point indicated by the sum total of a 2i degree function (i=1,...n) is used like this, formation of a change point of a curvature in a state of a difference in level is removable. Therefore, in the tire formed by making use of the vulcanizing mold having the contour line like this, stable function of operation is improvable drastically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、適正なトレッドプロフ
ァイルをタイヤに付与することにより操縦安定性を向上
でき、特に自動車レース等に用いる高速走行用のラジア
ルタイヤの生産に好適に採用しうる加硫金型に関する。
INDUSTRIAL APPLICABILITY The present invention can improve steering stability by imparting a proper tread profile to a tire, and can be suitably applied to the production of a radial tire for high speed running, which is particularly used for automobile racing. Regarding sulfur mold.

【0002】[0002]

【従来の技術】近年、車両の高速化、高性能化に伴い、
カーカスの外側を強靭なベルト層でタガ締めし、偏平率
を大巾に減じることにより高速走行性能を向上させた偏
平ラジアルタイヤが多用されている。
2. Description of the Related Art In recent years, with the increase in speed and performance of vehicles,
Flat radial tires are used that have improved high-speed running performance by tightening the outside of the carcass with a tough belt layer to greatly reduce the flatness.

【0003】このものは、タイヤ剛性、特にトレッド剛
性が高いため接地の際のトレッド変形量が小さく、しか
も接地巾が広いため、トレッド外面の輪郭形状(以下ト
レッドプロファイルという)が接地面形状におよぼす影
響度は、極めて大である。
Since this tire has a high tire rigidity, especially a tread rigidity, the tread deformation amount at the time of ground contact is small, and the ground contact width is wide, so that the contour shape of the outer surface of the tread (hereinafter referred to as tread profile) extends to the ground surface shape. The degree of influence is extremely large.

【0004】従って、広い接地巾と均一な接地圧とを有
する適正な接地面形状をタイヤに付与し、その本来の優
れた走行性能を十分発揮させるために、従来、タイヤサ
イズ、タイヤ剛性等に応じて定まる理想のトレッドプロ
ファイルを試作段階において予め決定する一方、タイヤ
加硫成形用の加硫金型におけるトレッド成形面を、この
理想のトレッドプロファイルに近似させて形成してい
る。そしてこのトレッド成形面の近似は、従来、図5、
6に示すように、理想のトレッドプロファイルAに部分
的に近似する複数の円弧B…を、夫々接点Cによって接
続させることによって行われている。
Therefore, in order to impart a proper ground contact surface shape having a wide ground contact width and a uniform ground contact pressure to the tire and sufficiently exert its original excellent running performance, the tire size, tire rigidity, etc. have been conventionally changed. The ideal tread profile determined in accordance with the above is determined in advance in the trial production stage, while the tread molding surface of the vulcanization mold for tire vulcanization molding is formed so as to approximate this ideal tread profile. And, the approximation of this tread molding surface is as shown in FIG.
As shown in FIG. 6, a plurality of arcs B ... Partially approximating the ideal tread profile A are connected by the contact points C, respectively.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこのよう
な円弧からなる従来のトレッド成形面を用いて形成され
たタイヤのトレッド面は、各円弧B…が接点Cで内接す
るため極めて滑らかに連続しうる反面、各接点Cの両側
において曲率半径が段差的に変化する。
However, the tread surface of the tire formed by using the conventional tread molding surface composed of such arcs can be extremely smoothly continuous because the arcs B ... Are inscribed at the contact points C. On the other hand, the radii of curvature change stepwise on both sides of each contact C.

【0006】その結果、接地領域がタイヤ軸方向に横移
動する例えば旋回時等においては、接地面形状が前記接
点Cを境として走行中に急激に変化し、操縦安定性、特
に過渡特性を大巾に低下する。
As a result, when the ground contact area moves laterally in the tire axial direction, for example, at the time of turning, the shape of the ground contact surface changes abruptly during traveling with the contact point C as a boundary, and steering stability, especially transient characteristics, is increased. Falls to the width.

【0007】又このようなトレッド面は、内圧充填によ
るタイヤ膨長の際、時に各曲率半径が不均一に変化し、
トレッド面上の接点c付近に屈曲を招くなど使用内圧充
填時、トレッドプロファイルを理想のトレッドプロファ
イルから逸脱させるという問題もある。
[0007] In such a tread surface, when the tire expands due to filling with internal pressure, each radius of curvature sometimes changes unevenly,
There is also a problem that the tread profile deviates from the ideal tread profile when the internal pressure is filled by using, for example, bending around the contact point c on the tread surface.

【0008】すなわち本発明は、トレッド成形面の輪郭
線を、式1に示すxの2i次関数fxを用いて理想のト
レッドプロファイルに近似させることを基本として、加
硫成形されるタイヤのトレッド面の曲率をトレッド端に
向かって除々に変化させることができ、前記問題点を解
決しうる加硫金型の提供を目的としている。
That is, the present invention is based on that the contour line of the tread molding surface is approximated to an ideal tread profile by using the 2i-order function fx of x shown in Formula 1, and the tread surface of the tire to be vulcanized and molded. It is an object of the present invention to provide a vulcanizing mold capable of gradually changing the curvature of the slab toward the tread end and solving the above problems.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明の加硫金型は、タイヤの加硫成形用の加硫金
型であって、タイヤのトレッド面を成形するトレッド成
形面の子午断面における輪郭線は、タイヤ赤道点からタ
イヤ軸方向外方にx軸を、タイヤ赤道点から半径方向内
方にy軸を定めた座標において、変曲点をもたない次の
式1により設定している。
In order to achieve the above object, the vulcanization mold of the present invention is a vulcanization mold for vulcanization molding of a tire, and a tread molding for molding the tread surface of the tire. The contour line in the meridional section of the plane is the following formula that does not have an inflection point at the coordinates where the x-axis is defined outward from the tire equator and the y-axis is defined radially inward from the tire equator. It is set by 1.

【0010】[0010]

【作用】このように加硫金型のトレッド成形面の輪郭線
を、式1に示すxの2i次関数(i=1,2……n)の
総和によって表示される変曲点をもたない曲線yを用い
て理想のトレッドプロファイルに近似している。この曲
線yはその曲率がxの値とともに連続的に変化するた
め、極めて滑らかでありしかも従来の接点に相当する曲
率の段差的な変化点の形成を排除しうる。
In this way, the contour line of the tread forming surface of the vulcanizing die has an inflection point represented by the sum of the 2i quadratic functions of x (i = 1, 2 ... n) shown in Equation 1. It is approximated to the ideal tread profile by using the non-existent curve y. Since the curvature of this curve y changes continuously with the value of x, it is extremely smooth, and it is possible to eliminate the formation of stepwise change points of curvature corresponding to the conventional contact point.

【0011】従ってこのような曲線yの輪郭線を有する
加硫金型を用いて形成したタイヤは、内圧充填の際のト
レッド面の屈曲変形を抑制でき、理想のトレッドプロフ
ァイルに近い状態に膨張できる。しかも旋回時等に生ず
る接地領域の横移動に際しても接地面形状の変化が滑ら
かであるため、過渡状態におけるグリップ性等を安定化
でき、操縦安定性能を大巾に向上しうる。
Therefore, the tire formed by using the vulcanizing mold having the contour line of such a curve y can suppress the bending deformation of the tread surface at the time of internal pressure filling and can be expanded to a state close to an ideal tread profile. .. Moreover, since the change in the shape of the ground contact surface is smooth even during lateral movement of the ground contact area that occurs during turning, grip performance and the like in a transient state can be stabilized, and steering stability performance can be greatly improved.

【0012】[0012]

【実施例】以下本発明の一実施例を図面に基づき説明す
る。図において、加硫金型1は、生タイヤTaを収容す
る凹所2を設けた金型本体3を具え、加硫に際して、該
凹所2に収容する生タイヤTaを充填内圧により膨張さ
せることによって、前記凹所2の内壁面sに合う外面形
状を有するタイヤTを成形する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In the figure, a vulcanization mold 1 comprises a mold body 3 provided with a recess 2 for accommodating a raw tire Ta, and during vulcanization, the raw tire Ta accommodated in the recess 2 is expanded by a filling internal pressure. Thus, a tire T having an outer surface shape that matches the inner wall surface s of the recess 2 is formed.

【0013】そして本発明では、前記内壁面sのうち、
タイヤTのトレッド面21を成形するトレッド成形面S
aの子午断面における輪郭線5を、式1で示す関数y=
fxによって設定している。
In the present invention, among the inner wall surfaces s,
Tread molding surface S for molding the tread surface 21 of the tire T
The contour line 5 in the meridional section of a is expressed by the function y =
It is set by fx.

【0014】[0014]

【式1】[Formula 1]

【0015】なおこの加硫金型1は、例えば自動車レー
ス等で用いる高速走行用の高性能タイヤの形成のために
好適に使用でき、以下に加硫金型1を、それによって加
硫成形されるタイヤTとともに説明する。
The vulcanization mold 1 can be suitably used for forming a high-performance tire for high-speed running used in, for example, automobile races. The vulcanization mold 1 is vulcanized and molded by using the vulcanization mold 1 as follows. The tire T will be described.

【0016】タイヤTは、図2に示すように、ビードコ
ア22が通るビード部23と、該ビード部23からタイ
ヤ半径方向外側にのびるサイドウォール部24と、その
外端間を継ぐトレッド部25とを具える偏平ラジアルタ
イヤであって、特にタイヤ巾SWに対するタイヤ断面高
さHの比である偏平率H/SWを0.25〜0.70に
設定し、トレッド巾の拡大を計っている。
As shown in FIG. 2, the tire T includes a bead portion 23 through which the bead core 22 passes, a sidewall portion 24 extending outward from the bead portion 23 in the tire radial direction, and a tread portion 25 connecting the outer ends thereof. In the flat radial tire having the above, the flatness ratio H / SW, which is the ratio of the tire sectional height H to the tire width SW, is set to 0.25 to 0.70, and the tread width is expanded.

【0017】又ビード部23間には、トレッド部25、
サイドウォール部24を通る両端が前記ビードコア22
の廻りで折返すカーカス27が架け渡されるとともに、
該カーカス27の外側かつトレッド部25内方には強靭
なベルト層29が巻装される。
Between the bead portions 23, there are tread portions 25,
Both ends passing through the sidewall portion 24 are the bead cores 22.
As the carcass 27 that folds around is hung,
A strong belt layer 29 is wound around the outside of the carcass 27 and inside the tread portion 25.

【0018】カーカス27は、例えばナイロン、ポリエ
ステル、芳香族ポリアミド等の有機繊維コードをタイヤ
赤道COに対して60〜90°の角度で配列した本例で
は2枚のカーカスプライから形成され、該カーカス27
の折返し端はタイヤの最大巾位置近傍で終端している。
又ビード部23には、ビードコア22からカーカス27
の本体部と折返し部との間を通ってタイヤ半径方向外方
に先細状にのびる硬質のビードエイペックスゴム30が
設けられ、前記カーカス27のハイターンアップ構造と
協働してタイヤ横剛性を高めている。
The carcass 27 is formed of two carcass plies in this example in which organic fiber cords of nylon, polyester, aromatic polyamide or the like are arranged at an angle of 60 to 90 ° with respect to the tire equator CO. 27
The turn-up end ends in the vicinity of the maximum width position of the tire.
The bead portion 23 includes a bead core 22 and a carcass 27.
A hard bead apex rubber 30 is provided that extends outward in the tire radial direction between the main body portion and the folded-back portion of the tire, and cooperates with the high turn-up structure of the carcass 27 to increase the tire lateral rigidity. I am raising.

【0019】又ベルト層29は、本例ではカーカス27
に隣接する内外2枚のベルトプライから形成され、ベル
ト巾をタイヤ巾SWの0.7倍以上かつ0.85倍以下
としている。なお0.7倍未満の時、ショルダ部での拘
束力に欠け、高速回転に伴う遠心力等に起因して外径成
長を誘発するなどこの部分での接地圧を不均一に高め
る。又0.85倍をこえる時、タイヤ剛性を過度に高め
る。又各ベルトプライはタイヤ円周方向に対して10〜
30°の角度で傾斜するベルトコードにより形成され、
該ベルトコードとしては引張弾性率が2500kg/cm2
もしくはそれ以上の高モジュラスコード、例えば芳香族
ポリアミド繊維、カーボン繊維等の有機繊維コード及び
金属繊維、グラスファイバー等の無機繊維コードなどが
使用される。
The belt layer 29 is, in this example, the carcass 27.
Is formed from two inner and outer belt plies adjacent to each other, and the belt width is 0.7 times or more and 0.85 times or less of the tire width SW. When it is less than 0.7 times, the restraining force at the shoulder portion is insufficient, and the outer diameter growth is induced due to the centrifugal force and the like accompanying the high speed rotation, and the ground contact pressure at this portion is unevenly increased. When it exceeds 0.85 times, the tire rigidity is excessively increased. Also, each belt ply is 10 to 10 in the tire circumferential direction.
Formed by a belt cord inclined at an angle of 30 °,
The belt cord has a tensile elastic modulus of 2500 kg / cm 2
Alternatively, higher modulus cords such as organic fiber cords such as aromatic polyamide fibers and carbon fibers and inorganic fiber cords such as metal fibers and glass fibers are used.

【0020】又ベルト層29の端部にはカーカス27と
の間を充填する軟質のブレーカクッションゴム31が介
在し、応力の緩和が計られるとともに、ベルト層29の
外側には、補強バンド32が設けられ、遠心力等による
ベルト層29のリフティングを抑制する。なお補強バン
ド32は、ベルト層29の外端部のみを被覆し該外端部
からのセパレーションを予防する第1のバンドプライ3
2Aと、ベルト層29の全巾をバンドプライ32Aとと
もに覆い面内剛性を均一に高める第2のバンドプライ3
2Bとからなり、いずれも例えばナイロン等、比較的高
強度を有しかつ低質量の有機繊維コードから形成してい
る。
At the end of the belt layer 29, a soft breaker cushion rubber 31 filling the space between the carcass 27 is interposed to relax stress, and a reinforcing band 32 is provided outside the belt layer 29. It is provided to suppress lifting of the belt layer 29 due to centrifugal force or the like. The reinforcing band 32 covers only the outer end portion of the belt layer 29 and prevents the separation from the outer end portion of the first band ply 3.
2A and the second band ply 3 that covers the entire width of the belt layer 29 together with the band ply 32A to uniformly increase the in-plane rigidity.
2B, both of which are made of an organic fiber cord having a relatively high strength and a low mass, such as nylon.

【0021】そしてこのような低い偏平率を有しかつト
レッド剛性を高めたタイヤにあっては、その走行性能を
十分に発揮させるために、図3に示すごとく、踏み込み
側及びけり出し側となる接地外縁ka、kbがタイヤ軸
方向に略直線状にのび接地圧の均一化を計った横長矩形
の接地面形状kをタイヤに付与することが必要である。
A tire having such a low flatness and a high tread rigidity is provided on the stepping-in side and the bulging-out side, as shown in FIG. 3, in order to sufficiently exhibit its running performance. It is necessary to provide the tire with a laterally long rectangular contact surface shape k in which the outer contact edges ka and kb extend substantially linearly in the axial direction of the tire and the contact pressure is made uniform.

【0022】そのために前記加硫金型1において、トレ
ッド面21を成形するトレッド成形面Saの輪郭線5
を、式1で示す関数y=fxを用いて理想のトレッドプ
ロファイル6に近似している。
Therefore, in the vulcanization mold 1, the contour line 5 of the tread molding surface Sa for molding the tread surface 21 is formed.
Is approximated to the ideal tread profile 6 using the function y = fx shown in Expression 1.

【0023】[0023]

【式1】[Formula 1]

【0024】なお前記理想のトレッドプロファイル6と
は、前記接地面形状Kを得るためにタイヤの試作段階に
おいて導き出されるプロファイルであって、タイヤサイ
ズ、ベルト剛性、ゴム硬度等に応じて異なり、一般に試
作実験の繰り返しによって決定される。
The ideal tread profile 6 is a profile that is derived at the trial manufacture stage of a tire in order to obtain the ground contact surface shape K, and differs depending on the tire size, belt rigidity, rubber hardness, etc. Determined by repeated experiments.

【0025】従って、このような理想のトレッドプロフ
ァイル6は、数式によって厳密に表すことは困難であ
り、従って本発明では、式1で示す前記関数y=fxに
よって表示されかつ理想のトレッドプロファイル6に近
似する輪郭線5を用いて加硫金型1を形成している。
Therefore, it is difficult to exactly represent such an ideal tread profile 6 by a mathematical expression. Therefore, in the present invention, the ideal tread profile 6 is represented by the function y = fx shown in the expression 1 and the ideal tread profile 6 is obtained. The vulcanization mold 1 is formed by using the approximate contour lines 5.

【0026】ここで関数y=fxは、トレッド面がタイ
ヤ赤道COと交わるタイヤ赤道点POを原点としてタイ
ヤ軸方向外方に向く座標軸をx軸、前記タイヤ赤道点P
Oを原点としてタイヤ半径方向内方に向く座標軸をy軸
として表しており、該関数y=fxの理想プロファイル
6への近似、すなわち係数aiの設定には、最小2乗法
が採用される。なお式1中iは任意の正の整数であっ
て、より高精度の輪郭線5を得るためには、iを4以上
の整数とすることが好ましい。
Here, the function y = fx is such that the coordinate axis facing outward in the tire axial direction with the origin at the tire equator point PO where the tread surface intersects with the tire equator CO is the x axis, and the tire equator point P is
The coordinate axis that points inward in the tire radial direction with O as the origin is represented as the y-axis, and the least-squares method is used to approximate the function y = fx to the ideal profile 6, that is, to set the coefficient ai. In Expression 1, i is an arbitrary positive integer, and in order to obtain the contour line 5 with higher accuracy, it is preferable that i is an integer of 4 or more.

【0027】又前記最小2乗法とは、統計解析におい
て、複数のデータの相関関係を曲線に当てはめるために
用いる方法であって、本例では図4aに示すように、理
想のプロファイル6上の任意のm個の点Pm(xm、y
m)と、該点Pmと等しいx座標を有する輪郭線5上の
m個の点Qm(xm、f(xm))との間の距離の2乗の和
(式2に示す)を求め、該式2の値を最小とするaiを
推定する一方、その中で式1に示す関数y=fxが前記
理想のプロファイル6に最も近似するaiの値を定める
ことにより輪郭線5を特定しうる。
The least squares method is a method used for fitting the correlation of a plurality of data to a curve in statistical analysis, and in this example, as shown in FIG. M points Pm (xm, y
m) and the m points Qm (xm, f (xm)) on the contour line 5 having the x coordinate equal to the point Pm, the sum of squares of the distances (shown in Equation 2) is obtained, The contour 5 can be specified by estimating ai which minimizes the value of the expression 2 and determining the value of ai in which the function y = fx shown in the expression 1 is the closest to the ideal profile 6. ..

【0028】[0028]

【式2】 [Formula 2]

【0029】このように輪郭線5を前記関数y=fxに
より設定しているため、xの増加とともにその曲率が滑
らかにかつ連続的に変化するトレッド成形面Saを得る
ことができる。なお該トレッド成形面Saには、要求に
応じてトレッド面21に縦溝10A、横溝10B等を含
むトレッドパターン10を凹設するためのリブ11…を
タイヤ半径方向内方に突設させることができる。
Since the contour line 5 is set by the function y = fx as described above, it is possible to obtain the tread molding surface Sa whose curvature changes smoothly and continuously as x increases. It should be noted that the tread molding surface Sa may be provided with ribs 11 ... Which project the tread pattern 10 including the vertical groove 10A, the horizontal groove 10B and the like on the tread surface 21 inwardly in the tire radial direction as required. it can.

【0030】(具体例)図2に示す構造をなすタイヤサ
イズが205/60R15のラジアルタイヤを、表1に
示す仕様の輪郭線5を有する加硫金型を用いて形成する
一方該タイヤの走行性能を実車走行によるフィーリング
テストにより評価した。
(Concrete Example) A radial tire having a tire size of 205 / 60R15 having the structure shown in FIG. 2 is formed by using a vulcanizing mold having a contour line 5 having the specifications shown in Table 1, while running the tire. The performance was evaluated by a feeling test by running in an actual vehicle.

【0031】[0031]

【表1】 [Table 1]

【0032】なお評価は、従来タイヤ1を100とした
指数で表しており指数値が大なほど優れている。
The evaluation is represented by an index with the conventional tire 1 being 100, and the larger the index value, the better.

【0033】[0033]

【発明の効果】叙上のごとく本発明の加硫金型は、トレ
ッド成形面の輪郭線を式1に示す関数y=fxにより設
定しているため、加硫したタイヤのトレッド面を適正化
できタイヤ性能を向上しうる。
As described above, in the vulcanizing mold of the present invention, the contour line of the tread molding surface is set by the function y = fx shown in Formula 1, so that the tread surface of the vulcanized tire is optimized. The tire performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す加硫金型の子午断面図
である。
FIG. 1 is a meridional sectional view of a vulcanizing mold showing an embodiment of the present invention.

【図2】それによって加硫成形されるタイヤの一例を示
す断面図である。
FIG. 2 is a cross-sectional view showing an example of a tire vulcanized and molded thereby.

【図3】理想の接地面形状を示す線図である。FIG. 3 is a diagram showing an ideal ground plane shape.

【図4】a式1の近似手段を説明する線図である。FIG. 4 is a diagram illustrating an approximation unit of a expression 1;

【図4】b式1によって示す輪郭線の一例を示す線図で
ある。
FIG. 4 is a diagram showing an example of a contour line represented by b expression 1.

【図5】従来技術を説明するトレッドプロファイルの線
図である。
FIG. 5 is a diagram of a tread profile illustrating a conventional technique.

【図6】従来技術を説明するトレッドプロファイルの線
図である。
FIG. 6 is a diagram of a tread profile illustrating the prior art.

【符号の説明】[Explanation of symbols]

5 輪郭線 21 トレッド面 T タイヤ PO タイヤ赤道点 5 contour line 21 tread surface T tire PO tire equator point

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 30:00 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location B29L 30:00 4F

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タイヤの加硫成形用の加硫金型であって、
タイヤのトレッド面を成形するトレッド成形面の子午断
面における輪郭線は、タイヤ赤道点からタイヤ軸方向外
方にx軸を、タイヤ赤道点から半径方向内方にy軸を定
めた座標において、変曲点をもたない次の式1により設
定してなる加硫金型。 【式1】
1. A vulcanizing mold for vulcanizing and molding a tire, comprising:
The contour line in the meridional section of the tread molding surface for molding the tread surface of the tire is changed at the coordinates where the x axis is defined outward from the tire equator point in the axial direction of the tire and the y axis is defined radially inward from the tire equator point. A vulcanization mold set by the following formula 1 having no bending point. [Formula 1]
JP6901991A 1991-03-07 1991-03-07 Vulcanizing mold Expired - Lifetime JPH085065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6901991A JPH085065B2 (en) 1991-03-07 1991-03-07 Vulcanizing mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6901991A JPH085065B2 (en) 1991-03-07 1991-03-07 Vulcanizing mold

Publications (2)

Publication Number Publication Date
JPH05131458A true JPH05131458A (en) 1993-05-28
JPH085065B2 JPH085065B2 (en) 1996-01-24

Family

ID=13390456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6901991A Expired - Lifetime JPH085065B2 (en) 1991-03-07 1991-03-07 Vulcanizing mold

Country Status (1)

Country Link
JP (1) JPH085065B2 (en)

Also Published As

Publication number Publication date
JPH085065B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US5117886A (en) Pneumatic radial tire for passenger cars
JP2017124685A (en) Pneumatic tire
JPH0747806A (en) Pneumatic tire
US11104185B2 (en) Method of manufacturing motorcycle tire for uneven terrain travel
JPH05229308A (en) Pneumatic radial tire
JP4333975B2 (en) Pneumatic tire and manufacturing method thereof
EP0292563B1 (en) Radial tire for passenger cars and production thereof
CA2014572C (en) Pneumatic radial tire with improved inflected sidewall profile
JPH111103A (en) Pneumatic tire
JPH10287106A (en) Pneumatic tire
EP0434015B1 (en) Pneumatic radial tire for passenger vehicle
US5176768A (en) Pneumatic radial tire for passenger vehicle with defined carcass curvature
JP2568925B2 (en) Pneumatic radial tires for passenger cars
JPH05131458A (en) Vulcanizing mold
JP6658789B2 (en) Pneumatic tire
JPH0367701A (en) Pneumatic radial tire
US20220063335A1 (en) Pneumatic tire
JP2004237808A (en) Pneumatic tire and manufacturing method thereof
JP3099237B2 (en) Pneumatic radial tires for passenger cars
JP3349218B2 (en) Pneumatic tire
JP2020163898A (en) Pneumatic tire
JPH06102401B2 (en) Pneumatic radial tires
JP3410648B2 (en) Heavy load tire and method of manufacturing the same
JP3488659B2 (en) Pneumatic tire
JPH11334312A (en) Pneumatic tire and manufacture thereof