JPH05130779A - Controller for voltage type pwm inverted - Google Patents

Controller for voltage type pwm inverted

Info

Publication number
JPH05130779A
JPH05130779A JP3288032A JP28803291A JPH05130779A JP H05130779 A JPH05130779 A JP H05130779A JP 3288032 A JP3288032 A JP 3288032A JP 28803291 A JP28803291 A JP 28803291A JP H05130779 A JPH05130779 A JP H05130779A
Authority
JP
Japan
Prior art keywords
inverter
voltage
degrees
voltage type
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3288032A
Other languages
Japanese (ja)
Inventor
Makoto Hara
信 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3288032A priority Critical patent/JPH05130779A/en
Publication of JPH05130779A publication Critical patent/JPH05130779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To reduce electromagnetic noise without enlarging the device in case of controlling an induction motor by a voltage type PWM inverter. CONSTITUTION:The magnetic flux vector is brought closer to the locus of a circle thereby reducing electromagnetic noise than a conventional one by providing it with an integrator, which seeks the phase angle of an inverter by integrating an inverter frequency command, and a carrier frequency modulator 9, which modulates the frequency of a modulation signal to go up by a certain angle with every 60 deg. phase angle as center.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電圧形PWMインバ
ータで誘導電動機(以下、単に誘導機ともいう)を可変
速駆動する際の騒音を低減させるための、電圧形PWM
インバータの制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage type PWM inverter for reducing noise when an induction motor (hereinafter, also simply referred to as an induction machine) is driven at a variable speed by a voltage type PWM inverter.
The present invention relates to an inverter control device.

【0002】[0002]

【従来の技術】最近、電圧形PWMインバータを用いて
誘導機を可変速駆動する傾向が高まって来ており、現在
ではビルの空調設備のような民間設備にも用いられるに
至っている。こうして人の近くで使われ始めると、イン
バータ駆動による誘導機の電磁騒音がクローズアップさ
れて来る。図5に一般的な電圧形PWMインバータの構
成を示し、図6にその各部信号波形を示す。なお、図5
において、1は正弦波発生器、2は三角波発生器、3は
コンパレータ、4は反転器、5はベース駆動回路、6は
電圧形インバータ、7は誘導機(IM)を示す。すなわ
ち、正弦波発生器1はインバータ周波数指令fm と電圧
指令Vm とから図6に(イ)で示す如き正弦波の制御信
号を発生し、三角波発生器2はキャリア周波数指令fc
から図6(ロ)の如き三角波変調信号Sm を出力する。
コンパレータ3はこれらの信号を比較(2値化)し、そ
の結果にもとづきベース駆動回路5を経て電圧形インバ
ータ6のスイッチング素子をオン,オフすることによ
り、図6(ハ)の如き出力を得て誘導機7の可変速駆動
を行なう。
2. Description of the Related Art Recently, there has been an increasing tendency to drive an induction machine at a variable speed by using a voltage type PWM inverter, and nowadays it is also used for private facilities such as air conditioning equipment of buildings. In this way, when it starts to be used near people, the electromagnetic noise of the induction machine driven by the inverter comes to the fore. FIG. 5 shows the configuration of a general voltage type PWM inverter, and FIG. 6 shows the signal waveform of each part. Note that FIG.
In FIG. 1, 1 is a sine wave generator, 2 is a triangular wave generator, 3 is a comparator, 4 is an inverter, 5 is a base drive circuit, 6 is a voltage source inverter, and 7 is an induction machine (IM). That is, the sine wave generator 1 generates a sine wave control signal as shown in FIG. 6A from the inverter frequency command f m and the voltage command V m, and the triangular wave generator 2 generates the carrier frequency command f c.
To output a triangular wave modulation signal S m as shown in FIG.
The comparator 3 compares (binarizes) these signals and, based on the result, turns on and off the switching element of the voltage source inverter 6 via the base drive circuit 5, thereby obtaining an output as shown in FIG. The induction machine 7 is driven at a variable speed.

【0003】[0003]

【発明が解決しようとする課題】このように、電圧形P
WMインバータからはパルス状の電圧が誘導機に与えら
れるため、誘導機からは電磁騒音と呼ばれる特有の騒音
が発生することになる。ところで、この騒音の周波数分
析を行なうと、キャリア周波数成分が支配的になってい
ることが知られている。そこで、この対策としてIGB
T(絶縁ゲートバイポーラモードトランジスタ)やMO
SFET(MOS型電解効果トランジスタ)などの高速
なスイッチング素子を使用して、PWMのスイッチング
周波数(またはキャリア周波数)を上げることにより、
可聴範囲外に電磁騒音を移動させる方法を採ることがあ
る。しかし、このようにすると、スイッチング周波数の
上昇に伴うスイッチング素子の損失増加を招くだけでな
く、冷却用フィンが大型化するという問題がある。ま
た、コストアップになるため、適用分野が限定されてし
まうという問題もある。したがって、この発明の課題は
装置を大型化することなく、電磁騒音を低減することに
ある。
As described above, the voltage source P
Since a pulsed voltage is applied to the induction machine from the WM inverter, a specific noise called electromagnetic noise is generated from the induction machine. By the way, it is known that carrier frequency components are dominant when frequency analysis of this noise is performed. Therefore, as a countermeasure, IGB
T (insulated gate bipolar mode transistor) and MO
By using a high-speed switching element such as SFET (MOS type field effect transistor) and increasing the switching frequency (or carrier frequency) of PWM,
The method of moving electromagnetic noise out of the audible range may be adopted. However, this causes a problem that not only the loss of the switching element increases with the increase of the switching frequency but also the cooling fin becomes large. In addition, there is also a problem that the field of application is limited because the cost increases. Therefore, an object of the present invention is to reduce electromagnetic noise without increasing the size of the device.

【0004】[0004]

【課題を解決するための手段】このような課題を解決す
るため、この発明では、電圧指令と周波数指令とから正
弦波制御信号を発生する信号発生器と、この正弦波制御
信号と変調信号とを比較する比較器とを少なくとも有
し、その比較結果にもとづき誘導電動機を駆動する電圧
形インバータをパルス幅変調(PWM)制御する電圧形
PWMインバータの制御装置において、前記周波数指令
を積分する積分器と、この積分器出力にもとづき前記制
御信号の位相角60度毎を中心にして或る角度間だけ前
記変調信号の周波数を上げるように変調する変調器とを
設けたことを特徴としている。
In order to solve such a problem, according to the present invention, a signal generator for generating a sine wave control signal from a voltage command and a frequency command, and a sine wave control signal and a modulation signal are provided. In a controller of a voltage type PWM inverter for pulse width modulation (PWM) controlling a voltage type inverter for driving an induction motor based on the comparison result, an integrator for integrating the frequency command. And a modulator which modulates the control signal so as to raise the frequency of the modulation signal by a certain angle based on the output of the integrator at every 60 degrees of the phase angle of the control signal.

【0005】[0005]

【作用】パルス幅変調用制御信号の位相角60度毎を中
心にして或る角度間だけ、変調信号の周波数を上げるこ
とにより、電磁騒音の低減化を図る。
The electromagnetic noise is reduced by increasing the frequency of the modulation signal for a certain angle around each 60 ° phase angle of the pulse width modulation control signal.

【0006】[0006]

【実施例】図1にこの発明の実施例を示す。この実施例
は図5に示す従来例に対し、積分器8およびキャリア周
波数変調器9を付加して構成される。その他は図5と同
様である。すなわち、積分器8はインバータ周波数指令
m を積分し、インバータ位相角θm に変換するが、こ
の位相は制御信号の位相と同期することになる。キャリ
ア周波数変調器9はインバータ位相角θm を入力され、
キャリア周波数を位相角に応じて変化させるようにす
る。その出力はキャリア周波数指令fc となり、以下は
図5の動作と同様となる。キャリア周波数変調器9とし
ては、例えば図2に示すように0度,60度,120度
…のように60度毎を中心に±α度(α≦30度)の間
だけキャリア周波数指令fc を高くするような特性とす
る。ここでは、この間を連続的な一定値としているが不
連続にしても良く、或る傾きを持たせるようにしても良
い。
FIG. 1 shows an embodiment of the present invention. This embodiment is constructed by adding an integrator 8 and a carrier frequency modulator 9 to the conventional example shown in FIG. Others are the same as in FIG. That is, the integrator 8 integrates the inverter frequency command f m and converts it into the inverter phase angle θ m , which is synchronized with the phase of the control signal. The carrier frequency modulator 9 receives the inverter phase angle θ m ,
The carrier frequency is changed according to the phase angle. The output becomes the carrier frequency command f c , and the operation thereafter is the same as that of FIG. As the carrier frequency modulator 9, for example 0 degrees as shown in FIG. 2, 60 °, the carrier frequency command f c only between 120 ° ... ± alpha degrees around the every 60 degrees as a (alpha ≦ 30 °) Is set to a high value. Here, the constant value is set to be a continuous constant value during this period, but it may be discontinuous or may have a certain inclination.

【0007】次に、キャリア周波数変調器の特性を0
度,60度,120度…を中心に±α度(α≦30度)
の間だけキャリア周波数指令fc を高くするようにする
根拠について、以下に説明する。いま、PWMパターン
によって得られる電圧を空間ベクトルとして捉えると、
6種類の電圧ベクトルと2種類の零ベクトルとの計8種
類となる。これを数式にて表わすと数1となる。ただ
し、太字はベクトル量を示し、以下同様とする。
Next, the characteristic of the carrier frequency modulator is set to 0.
± α degrees (α ≦ 30 degrees) centering around degrees, 60 degrees, 120 degrees, etc.
The rationale for increasing the carrier frequency command f c only during the period will be described below. Now, when the voltage obtained by the PWM pattern is taken as a space vector,
There are a total of 8 types of 6 types of voltage vectors and 2 types of zero vectors. When this is expressed by a mathematical expression, the number 1 is obtained. However, bold letters indicate vector amounts, and the same applies hereinafter.

【数1】 一方、磁束ベクトルの変化は数2のように表わされる。[Equation 1] On the other hand, the change in the magnetic flux vector is expressed as in Equation 2.

【数2】 [Equation 2]

【0008】また、磁束ベクトルは電圧ベクトルに対し
て90度遅れであることから、電圧ベクトルによって作
られる磁束ベクトルの軌跡に着目してこれらのベクトル
を表わすと図3のようになり、図3の各ゾーンで使用さ
れる電圧ベクトルは表1のようになる。
Further, since the magnetic flux vector is delayed by 90 degrees with respect to the voltage vector, focusing on the locus of the magnetic flux vector created by the voltage vector, these vectors are represented as shown in FIG. The voltage vector used in each zone is shown in Table 1.

【表1】 [Table 1]

【0009】ところで、図3に示す磁束ベクトルの軌跡
が円になるほど商用駆動に近づき、騒音を低減し得るこ
とが指摘されている。そこで、図3の一部を図4のよう
に拡大し、PWM制御時の磁束ベクトルの軌跡と円軌跡
との分散を調べてみると、60度毎の各ゾーンの1/2
等分角(ここでは30度)の近辺では両者の差が最も小
さく、0度と60度の点では最も大きくなることが分か
る。これは、30度付近では磁束ベクトルの進行方向で
ある円の接線方向の電圧ベクトルが存在するのに対し、
0度と60度の付近では磁束ベクトルと60度の角をな
す2本の電圧ベクトルと零ベクトルで、磁束ベクトルを
回転させて行くことになるためである。なお、この関係
は0〜60度,60度〜120度…の如き60度毎の各
ゾーンについても同様である。したがって、一般には、 θ=n・π/3〜n・π/3±π/6 (n=0,1,…5)の範囲ではキャリア周波数を上げ
ることにより、磁束ベクトルの軌跡をより円の軌跡に近
づけることが可能となる。
By the way, it has been pointed out that as the locus of the magnetic flux vector shown in FIG. 3 becomes a circle, the drive becomes closer to the commercial drive and the noise can be reduced. Therefore, when a part of FIG. 3 is enlarged as shown in FIG. 4 and the dispersion of the magnetic flux vector locus and the circular locus during PWM control is examined, it is ½ of each zone at every 60 degrees.
It can be seen that the difference between the two is the smallest near the equiangular angle (here, 30 degrees), and is the largest at the points of 0 degree and 60 degrees. This is because there is a voltage vector in the tangential direction of the circle that is the traveling direction of the magnetic flux vector near 30 degrees,
This is because in the vicinity of 0 degree and 60 degrees, the magnetic flux vector is rotated by the two voltage vectors and the zero vector forming an angle of 60 degrees with the magnetic flux vector. This relationship is the same for each zone of 60 degrees such as 0 to 60 degrees, 60 to 120 degrees. Therefore, generally, by increasing the carrier frequency in the range of θ = n · π / 3 to n · π / 3 ± π / 6 (n = 0, 1, ... 5), the locus of the magnetic flux vector becomes more circular. It is possible to get closer to the trajectory.

【0010】[0010]

【発明の効果】この発明によれば、誘導機を電圧形PW
Mインバータにより制御する場合に、磁束ベクトルが円
軌跡から離れる60度毎を中心にして或る角度だけキャ
リア周波数を上げるようにしたので、磁束ベクトルの軌
跡をより円の軌跡に近づけることができる。その結果、
高速なスイッチング素子であるIGBTやMOSFET
を用いたり冷却フィンを大型化することなく、簡単かつ
安価に電磁騒音を低減することが可能となる。
According to the present invention, the induction machine is a voltage source PW.
When controlled by the M inverter, the carrier frequency is increased by a certain angle around every 60 degrees where the magnetic flux vector deviates from the circular locus, so that the magnetic flux vector locus can be made closer to the circular locus. as a result,
High speed switching elements such as IGBT and MOSFET
It is possible to easily and inexpensively reduce the electromagnetic noise without using the above or increasing the size of the cooling fin.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す要部ブロック図であ
る。
FIG. 1 is a block diagram of essential parts showing an embodiment of the present invention.

【図2】キャリア周波数変調器の特性例を説明するため
の特性図である。
FIG. 2 is a characteristic diagram for explaining a characteristic example of a carrier frequency modulator.

【図3】電圧ベクトルと磁束ベクトルとの関係を説明す
るための説明図である。
FIG. 3 is an explanatory diagram for explaining a relationship between a voltage vector and a magnetic flux vector.

【図4】この発明の原理を説明するための説明図であ
る。
FIG. 4 is an explanatory diagram for explaining the principle of the present invention.

【図5】電圧形PWMインバータの一般的な例を示す構
成図である。
FIG. 5 is a configuration diagram showing a general example of a voltage-type PWM inverter.

【図6】図5の各部波形を示す波形図である。FIG. 6 is a waveform diagram showing waveforms at various points in FIG.

【符号の説明】[Explanation of symbols]

1…正弦波発生器、2…三角波発生器、3…コンパレー
タ、4…反転器、5…ベース駆動回路、6…PWMイン
バータ、7…誘導電動機(IM)、8…積分器、9…キ
ャリア周波数変調器
1 ... Sine wave generator, 2 ... Triangle wave generator, 3 ... Comparator, 4 ... Inverter, 5 ... Base drive circuit, 6 ... PWM inverter, 7 ... Induction motor (IM), 8 ... Integrator, 9 ... Carrier frequency Modulator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電圧指令と周波数指令とから正弦波制御
信号を発生する信号発生器と、この正弦波制御信号と変
調信号とを比較する比較器とを少なくとも有し、その比
較結果にもとづき誘導電動機を駆動する電圧形インバー
タをパルス幅変調(PWM)制御する電圧形PWMイン
バータの制御装置において、 前記周波数指令を積分する積分器と、この積分器出力に
もとづき前記制御信号の位相角60度毎を中心にして或
る角度間だけ前記変調信号の周波数を上げるように変調
する変調器とを設けたことを特徴とする電圧形PWMイ
ンバータの制御装置。
1. At least a signal generator for generating a sine wave control signal from a voltage command and a frequency command, and a comparator for comparing the sine wave control signal with a modulation signal, and induction based on the comparison result. In a control device of a voltage type PWM inverter that controls a pulse width modulation (PWM) of a voltage type inverter that drives an electric motor, an integrator that integrates the frequency command, and a phase angle of the control signal every 60 degrees based on the integrator output. And a modulator for performing modulation so as to raise the frequency of the modulation signal for a certain angle with respect to the center.
JP3288032A 1991-11-01 1991-11-01 Controller for voltage type pwm inverted Pending JPH05130779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3288032A JPH05130779A (en) 1991-11-01 1991-11-01 Controller for voltage type pwm inverted

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3288032A JPH05130779A (en) 1991-11-01 1991-11-01 Controller for voltage type pwm inverted

Publications (1)

Publication Number Publication Date
JPH05130779A true JPH05130779A (en) 1993-05-25

Family

ID=17724944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3288032A Pending JPH05130779A (en) 1991-11-01 1991-11-01 Controller for voltage type pwm inverted

Country Status (1)

Country Link
JP (1) JPH05130779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136138A (en) * 2004-11-08 2006-05-25 Nissan Motor Co Ltd Controller for pulse width modulation signal driven equipment
JP2021052469A (en) * 2019-09-24 2021-04-01 東芝三菱電機産業システム株式会社 Driving apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136138A (en) * 2004-11-08 2006-05-25 Nissan Motor Co Ltd Controller for pulse width modulation signal driven equipment
JP4677764B2 (en) * 2004-11-08 2011-04-27 日産自動車株式会社 Control device for pulse width modulation signal driving device
JP2021052469A (en) * 2019-09-24 2021-04-01 東芝三菱電機産業システム株式会社 Driving apparatus

Similar Documents

Publication Publication Date Title
Kwon et al. A novel SVM-based hysteresis current controller
Kwon et al. An improved space-vector-based hysteresis current controller
EP1710903A2 (en) Sensorless brushless direct current motor drive using pulse width modulation speed control at motor frequency
US4002958A (en) AC output power control system
JP2008236932A (en) Motor drive device and electrical apparatus using this
US5376872A (en) Control device for voltage type pulse width modulation inverter
EP0059924A1 (en) Control apparatus for electric cars propelled by induction motor
Petit et al. Deadbeat flux vector control for dynamic six-step operation of synchronous machines
JPH05130779A (en) Controller for voltage type pwm inverted
JP3373994B2 (en) Control device for single-phase motor and actuator using control device for single-phase motor
JPH08126368A (en) Control method for inverter driven ac motor
JPH01270771A (en) Controller for pwm inverter
KR930003236B1 (en) Control apparatus for pwm-controlled variable voltage/variable frequency inverters
JP2717913B2 (en) Switching frequency control method
US11777435B1 (en) Smooth transition control between overmodulation and six step pulse width modulation
JPS6328277A (en) Pwm signal generation circuit
Romeral Motion control for electric drives
JPH07263177A (en) X-ray device that consists of circuit arrangement for accelerating and decelerating rotating anode of rotation anode x-ray tube
JP2659365B2 (en) Control method of pulse width modulation control inverter
JPH04368488A (en) Motor drive
JPS611289A (en) Controller for motor
JPS601840B2 (en) inverter device
JP2000050692A (en) Drive control equipment of step motor and drive control method therefor
JPH06225581A (en) Controlling method for ac motor
JPH1028397A (en) Control method for inverter device