JPH05130716A - Gas-insulated switching equipment - Google Patents
Gas-insulated switching equipmentInfo
- Publication number
- JPH05130716A JPH05130716A JP3286866A JP28686691A JPH05130716A JP H05130716 A JPH05130716 A JP H05130716A JP 3286866 A JP3286866 A JP 3286866A JP 28686691 A JP28686691 A JP 28686691A JP H05130716 A JPH05130716 A JP H05130716A
- Authority
- JP
- Japan
- Prior art keywords
- line
- gas
- phase
- bushing
- bus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Gas-Insulated Switchgears (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、UHV等の基幹系統用
ガス絶縁開閉装置に係り、特に、ガス絶縁電気設備機器
の配置構成に改良を施したガス絶縁開閉装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas insulated switchgear for a trunk system such as UHV, and more particularly to a gas insulated switchgear having an improved arrangement of gas insulated electrical equipment.
【0002】[0002]
【従来の技術】UHV送電は、長距離大容量送電、基幹
外輪系統等、大電力送電に伴う系統安定度・系統短絡電
流の増大等の技術的諸課題を解決すると共に、送電線ル
ート数の削減・送電ロスの低減等が図れる効果的な送電
方式として、日本及び世界各国で開発・実用化が進めら
れてきた。この様なUHV系統では、設備のコンパクト
化を実現するうえで、系統に発生する過電圧を制御する
ことが極めて重要である。UHVのような高電圧になる
と、電線〜電線間、電線〜対地間の静電容量に起因する
充電電流が増加し、500kV以下の系統では比較的影
響の少なかった現象が顕在化してくるからである。2. Description of the Related Art UHV power transmission solves various technical problems such as long-distance large-capacity power transmission, backbone outer ring system, etc., such as increase in system stability and system short-circuit current associated with high-power transmission, and the number of transmission line routes. As an effective power transmission method that can reduce power consumption and reduce transmission loss, it has been developed and put to practical use in Japan and around the world. In such a UHV system, it is extremely important to control the overvoltage generated in the system in order to make the equipment compact. At a high voltage such as UHV, the charging current due to the capacitance between the wires and between the wires and the ground increases, and a phenomenon that is relatively unaffected in the system of 500 kV or less becomes apparent. is there.
【0003】また、UHV系統では、高性能避雷器の採
用及び遮断器の抵抗投入・抵抗遮断方式の採用等によ
り、投入・遮断サージが効果的に抑制されるが、特に、
無負荷送電線を充電するときに、電源側電圧が遮断器を
通して送電線に侵入することにより発生する投入サージ
に対しては、開放端の反射係数を下げるためにリアクト
ルを設置することが考えられる。Further, in the UHV system, a high-performance lightning arrester and a circuit breaker resistance closing / resisting breaking system are used to effectively suppress closing / breaking surges.
When charging a no-load transmission line, it is conceivable to install a reactor to reduce the reflection coefficient at the open end against the input surge that occurs when the power supply side voltage enters the transmission line through the circuit breaker. ..
【0004】即ち、UHV送電線の膨大な充電電流を適
度に抑制し、系統電圧を適正に維持するためには、送電
線にリアクトル(分路リアクトル)を直接接続し、送電
線のキャパシタンス(C)と相殺・補償することが効果
的である。しかしながら、リアクトルのインダクタンス
(L)と送電線のキャパシタンス(C)が、送電線の運
転様相や補償率によっては共振回路を形成し、持続性の
過電圧が発生し、UHV変電所の送電線引込口に設置さ
れている避雷器の熱的破壊へと至る恐れがあるため、こ
の共振現象を的確に把握し、分路リアクトルとの補償方
式、補償度を適切に選ぶことが重要となる。That is, in order to appropriately suppress the enormous charging current of the UHV transmission line and maintain the system voltage appropriately, a reactor (shunt reactor) is directly connected to the transmission line and the capacitance (C It is effective to offset and compensate. However, the inductance (L) of the reactor and the capacitance (C) of the transmission line form a resonance circuit depending on the operation aspect of the transmission line and the compensation rate, and a persistent overvoltage occurs, which causes the transmission line inlet of the UHV substation. Since there is a risk of thermal damage to the lightning arrester installed in, it is important to properly grasp this resonance phenomenon and to select the compensation method and degree of compensation with the shunt reactor appropriately.
【0005】一方、送電線事故時には、事故相のみを遮
断し、事故点のアーク電流が消滅するのを待って、再度
事故相を自動投入するシステム(高速再閉路システム)
を採用している。特に、2回線送電線では、2回線合計
6相のうち異なる2相が健全であれば再閉路を行う「高
速度多相再閉路方式」を採用している。しかしながら、
UHV送電線では送電電圧が高いため、事故時・事故発
生後、事故相の遮断器が開放された後も、健全相からの
誘導によって事故点のアークを通じ電流が流れ続けるこ
とによりアークが消滅せず、再閉路失敗となると共に、
送電線ルート全体が停止に至るという重大事態となり得
る。このため、UHV系統では、事故相を開放直後ただ
ちに接地し、アーク間電圧をほとんど零にし、アークへ
のエネルギーの供給を断って消弧させる「高速自動接地
方式」が採用されている。On the other hand, in the case of a power line accident, a system that shuts off only the accident phase, waits for the arc current at the accident point to disappear, and then automatically turns on the accident phase again (high-speed reclosing system).
Has been adopted. In particular, in the two-line power transmission line, the "high-speed multi-phase reclosing system" is adopted, in which two different phases out of a total of six phases are normally closed. However,
Since the UHV transmission line has a high transmission voltage, the arc is extinguished by continuing to flow current through the arc at the accident point by induction from the sound phase even after the accident or after the accident and after the circuit breaker in the accident phase has been opened. Without reclosing,
There can be a serious situation in which the entire power line route is shut down. For this reason, the UHV system employs a "high-speed automatic grounding method" in which the accident phase is grounded immediately after opening, the inter-arc voltage is made almost zero, and the energy supply to the arc is cut off to extinguish the arc.
【0006】図4及び図5は、従来のガス絶縁開閉装置
(以下、GISと略記する)の配置構成を示したもので
ある。即ち、図4に示したガス絶縁開閉装置において
は、主母線1は単相形で互いに平行に配置されており、
各回線引出し部である母線側断路器3は各相それぞれ千
鳥状に分岐され、接続母線2を介して甲・乙間が接続さ
れている。また、前記接続母線2の同軸上に、計器用変
流器4及び遮断器5が主母線軸と直角方向に接続されて
いる。4 and 5 show the arrangement of a conventional gas insulated switchgear (hereinafter abbreviated as GIS). That is, in the gas-insulated switchgear shown in FIG. 4, the main buses 1 are of single-phase type and are arranged in parallel with each other.
The busbar side disconnector 3 which is each line drawing portion is staggered in each phase, and the upper and lower shells are connected via the connecting busbar 2. Further, the current transformer 4 for an instrument and the circuit breaker 5 are coaxially connected to the connecting bus bar 2 in a direction perpendicular to the main bus bar axis.
【0007】さらに、遮断器5には計器用変流器4、線
路側断路器6及び線路側高速接地開閉器7が接続され、
ブッシング接続用管路母線8を介してブッシング12と
接続されている。この接続用管路母線8は、中央のブッ
シング12bに接続される管路母線8bの両側に、他相
の管路母線8a,8cが近接して平行に配設されてい
る。また、各管路母線8a〜8cには、それぞれ避雷器
10及び分路リアクトル用開閉器9を介して、分路リア
クトル11が接続されている。なお、各相の分路リアク
トル11は主母線1と平行に配置されている。Further, the circuit breaker 5 is connected with a current transformer 4 for an instrument, a line-side disconnector 6 and a line-side high-speed grounding switch 7,
It is connected to the bushing 12 via a bushing connecting pipe bus 8. The connecting line busbars 8 are arranged on both sides of the line busbar 8b connected to the central bushing 12b, and the other-phase pipe line busbars 8a and 8c are arranged in parallel in close proximity to each other. A shunt reactor 11 is connected to each of the bus lines 8a to 8c through a lightning arrester 10 and a shunt reactor switch 9. The shunt reactor 11 of each phase is arranged in parallel with the main bus 1.
【0008】また、図5に示したガス絶縁開閉装置にお
いては、各管路母線8a〜8cに接続される分路リアク
トル11の内、一相の分路リアクトル11aが、他の分
路リアクトル11b,11cとは位置をずらせて配置さ
れている。他の構成は図4に示したガス絶縁開閉装置と
同様である。Further, in the gas-insulated switchgear shown in FIG. 5, of the shunt reactors 11 connected to the respective bus lines 8a to 8c, the one-phase shunt reactor 11a is the other shunt reactor 11b. , 11c are arranged at different positions. Other configurations are similar to those of the gas-insulated switchgear shown in FIG.
【0009】この様に、従来のガス絶縁開閉装置におい
ては、分路リアクトル11は線路回線のブッシング接続
用管路母線8の外側の空きスペースに配置されていた。As described above, in the conventional gas-insulated switchgear, the shunt reactor 11 is arranged in an empty space outside the bus line 8 for connecting the bushing of the line circuit.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、上述し
た様な従来のガス絶縁開閉装置には、以下に述べる様な
解決すべき課題があった。即ち、図4に示したガス絶縁
開閉装置においては、ブッシング12までの管路母線8
の長さは比較的短いが、各相の分路リアクトル11を主
母線1と平行に配置しているため、分路リアクトル接続
用管路母線13が長くなり、また、GISヤードへの重
機進入スペースが狭くなっていた。However, the conventional gas-insulated switchgear as described above has the following problems to be solved. That is, in the gas insulated switchgear shown in FIG.
Has a relatively short length, but since the shunt reactor 11 for each phase is arranged in parallel with the main bus line 1, the shunt reactor connection pipe bus line 13 becomes long, and the heavy equipment enters the GIS yard. The space was getting smaller.
【0011】また、図5に示したガス絶縁開閉装置にお
いては、各相の分路リアクトルをそれぞれブッシング接
続用管路母線8の側方に隣接して配置しているため、分
路リアクトル接続用管路母線は短くて済むが、二相の分
路リアクトル11a,11bをブッシング接続用管路母
線8と平行に配置するため、ブッシング接続用管路母線
8が非常に長くなっていた。Further, in the gas-insulated switchgear shown in FIG. 5, since the shunt reactors of the respective phases are arranged adjacent to the side of the bushing connecting pipe busbar 8, the shunt reactors are connected. Although the pipeline busbar can be short, the two-phase shunt reactors 11a and 11b are arranged in parallel with the bushing connection pipeline bus 8, so that the bushing connection pipeline bus 8 is very long.
【0012】本発明は上記の様な従来技術の欠点を解消
するために提案されたもので、その目的は、ブッシング
及び分路リアクトルとの接続用管路母線をできるだけ短
くし、据付スペースの縮小化を可能としたガス絶縁開閉
装置を提供することにある。The present invention has been proposed in order to solve the above-mentioned drawbacks of the prior art, and the purpose thereof is to shorten the pipe bus bar for connection with the bushing and the shunt reactor as much as possible to reduce the installation space. It is to provide a gas-insulated switchgear that can be realized.
【0013】[0013]
【課題を解決するための手段】本発明は、ガス絶縁変電
所の線路回路で、遮断器等の機器が単相器によって構成
されるガス絶縁開閉装置において、主母線軸と直角方向
に回線引出し部を設け、この回線引出し部と線路回線の
ブッシングとを接続する各相の管路母線を、ブッシング
の相間離隔距離に合わせて互いに平行に配設し、また、
前記管路母線間の空間に各相の分路リアクトルを設置し
たことを特徴とするものである。DISCLOSURE OF THE INVENTION The present invention is a line circuit of a gas insulated substation, and in a gas insulated switchgear in which a device such as a circuit breaker is a single-phase device, a line is drawn out in a direction perpendicular to a main bus axis. And a line busbar of each phase connecting the line drawing part and the bushing of the line circuit is arranged in parallel with each other according to the separation distance between the phases of the bushing, and
The shunt reactor of each phase is installed in the space between the bus lines.
【0014】[0014]
【作用】本発明のガス絶縁開閉装置によれば、ブッシン
グ接続用管路母線をブッシングの相間離隔距離に合わせ
て互いに平行に配設し、管路母線間の空間に各相の分路
リアクトルを配置することにより、ガス絶縁開閉装置の
機器の配置構成をコンパクト化でき、また、管路母線の
長さを従来に比べて大幅に短縮できる。According to the gas insulated switchgear of the present invention, the bushing connecting pipe busbars are arranged in parallel with each other in accordance with the spacing distance between the bushings, and the shunt reactors of each phase are provided in the space between the pipe busbars. By arranging them, the arrangement of the devices of the gas insulated switchgear can be made compact, and the length of the pipe busbar can be greatly shortened compared to the conventional one.
【0015】[0015]
【実施例】以下、本発明の一実施例を図1乃至図3に基
づいて具体的に説明する。なお、図4及び図5に示した
従来型と同一の部材には同一の符号を付して、説明は省
略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to FIGS. The same members as those of the conventional type shown in FIGS. 4 and 5 are designated by the same reference numerals, and the description thereof will be omitted.
【0016】本実施例においては、図1に示した様に、
各相のブッシング接続用管路母線20は対応するブッシ
ング12の離隔距離に合わせて互いに平行に配設されて
いる。そして、各管路母線20の間に分路リアクトル1
1が配置されている。なお、各相の分路リアクトル11
は主母線1と平行に配置されている。また、他の構成は
図4及び図5に示した従来型と同様である。In this embodiment, as shown in FIG.
The bushing connecting pipe bus bars 20 of the respective phases are arranged in parallel with each other in accordance with the distance between the corresponding bushings 12. Then, the shunt reactor 1 is provided between each pipeline bus 20.
1 is arranged. In addition, the shunt reactor 11 of each phase
Are arranged parallel to the main bus 1. Further, other configurations are similar to those of the conventional type shown in FIGS. 4 and 5.
【0017】この様に配置構成されたガス絶縁開閉装置
においては、線路回線のブッシング接続用管路母線20
がブッシングの相間離隔距離に合わせて平行に配設さ
れ、その相間の空きスペースに分路リアクトル11が設
置されているので、ブッシング接続用管路母線20のみ
ならず、分路リアクトル接続用管路母線も短くすること
ができる。また、各相の管路母線間の空きスペースを有
効に利用できるので、ガス絶縁変電所のスペースの縮小
化も可能となる。In the gas-insulated switchgear arranged as described above, the line bus bushing connecting bus bar 20 is connected.
Are arranged in parallel according to the separation distance between the phases of the bushings, and the shunt reactor 11 is installed in the empty space between the phases, so that not only the bushing connection pipeline bus 20 but also the shunt reactor connection pipeline The bus bar can also be shortened. Moreover, since the empty space between the pipeline bus lines of each phase can be effectively used, the space of the gas insulated substation can be reduced.
【0018】[0018]
【発明の効果】以上述べた様に、本発明のガス絶縁開閉
装置によれば、主母線軸と直角方向に回線引出し部を設
け、この回線引出し部と線路回線のブッシングとを接続
する各相の管路母線を、ブッシングの相間離隔距離に合
わせて互いに平行に配設し、管路母線間の空間に各相の
分路リアクトルを設置することにより、ブッシング及び
分路リアクトルとの接続用管路母線をできるだけ短く
し、据付スペースの縮小化を可能としたガス絶縁開閉装
置を提供することができる。As described above, according to the gas-insulated switchgear of the present invention, the line lead-out portion is provided in the direction perpendicular to the main bus axis, and each phase connecting the line lead-out portion and the line line bushing is connected. The pipe busbars of are arranged in parallel with each other according to the separation distance between the phases of the bushings, and the shunt reactors of each phase are installed in the space between the busbars to connect the bushing and the shunt reactor. It is possible to provide a gas-insulated switchgear that shortens the road busbar as much as possible and reduces the installation space.
【図1】本発明のガス絶縁開閉装置の一実施例を示す平
面図FIG. 1 is a plan view showing an embodiment of a gas-insulated switchgear of the present invention.
【図2】図1の側面図FIG. 2 is a side view of FIG.
【図3】UHV系統の線路回線の単線結線図[Fig. 3] Single line connection diagram of UHV system line circuit
【図4】従来のガス絶縁開閉装置の一例を示す平面図FIG. 4 is a plan view showing an example of a conventional gas-insulated switchgear.
【図5】従来のガス絶縁開閉装置の他の例を示す平面図FIG. 5 is a plan view showing another example of a conventional gas-insulated switchgear.
1…主母線 2…接続母線 3…母線側断路器 4…計器用変流器 5…遮断器 6…線路側断路器 7…線路側高速接地開閉器 8…ブッシング接続用管路母線 9…分路リアクトル用開閉器 10…避雷器 11…分路リアクトル 12…ブッシング 13…分路リアクトル接続用管路母線 20…ブッシング接続用管路母線 1 ... Main bus 2 ... Connecting bus 3 ... Bus side disconnecting switch 4 ... Measuring current transformer 5 ... Circuit breaker 6 ... Track side disconnecting switch 7 ... Track side high-speed grounding switch 8 ... Bushing connecting conduit bus 9 ... Min Switch for road reactor 10 ... Lightning arrester 11 ... Shunt reactor 12 ... Bushing 13 ... Pipeline bus for connecting shunt reactor 20 ... Pipeline bus for connecting bushing
Claims (1)
の機器が単相器によって構成されるガス絶縁開閉装置に
おいて、 主母線軸と直角方向に回線引出し部を設け、この回線引
出し部と線路回線のブッシングとを接続する各相の管路
母線を、ブッシングの相間離隔距離に合わせて互いに平
行に配設し、また、前記管路母線間の空間に各相の分路
リアクトルを設置したことを特徴とするガス絶縁開閉装
置。1. In a gas-insulated switchgear in which a circuit such as a circuit breaker is a single-phase device in a line circuit of a gas-insulated substation, a line lead-out portion is provided in a direction perpendicular to a main bus axis, and the line lead-out portion is provided. The line busbars of each phase that connect the line and the bushing of the line are arranged in parallel with each other according to the separation distance between the bushings, and the shunt reactor of each phase is installed in the space between the line busbars. Gas insulated switchgear characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3286866A JPH05130716A (en) | 1991-10-31 | 1991-10-31 | Gas-insulated switching equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3286866A JPH05130716A (en) | 1991-10-31 | 1991-10-31 | Gas-insulated switching equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05130716A true JPH05130716A (en) | 1993-05-25 |
Family
ID=17710029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3286866A Pending JPH05130716A (en) | 1991-10-31 | 1991-10-31 | Gas-insulated switching equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05130716A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100869006B1 (en) * | 2006-03-27 | 2008-11-17 | 가부시끼가이샤 도시바 | Gas insulation switchgear |
JP2008301586A (en) * | 2007-05-30 | 2008-12-11 | Japan Ae Power Systems Corp | Phase modifying equipment with switch for electric power systems |
-
1991
- 1991-10-31 JP JP3286866A patent/JPH05130716A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100869006B1 (en) * | 2006-03-27 | 2008-11-17 | 가부시끼가이샤 도시바 | Gas insulation switchgear |
JP2008301586A (en) * | 2007-05-30 | 2008-12-11 | Japan Ae Power Systems Corp | Phase modifying equipment with switch for electric power systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109038445B (en) | Voltage reduction capacitor-based live ice melting topological system and ice melting method thereof | |
CN2884641Y (en) | Overvoltage limit and small current earthing selective integrator of power transfer and distribution system | |
CN202444259U (en) | Novel grounding protection and wire selection apparatus for medium-voltage distribution system | |
Esmeraldo et al. | Circuit-breaker requirements for alternative configurations of a 500 kV transmission system | |
US4200907A (en) | Method of taking a pole of a high-voltage d-c transmission station out of service | |
JPH05130716A (en) | Gas-insulated switching equipment | |
Schnerer et al. | Single phase switching tests on 765 kV and 750 kV transmission lines | |
JP3156875B2 (en) | Gas insulated switchgear | |
Hara et al. | Fault protection of metallic return circuit of Kii channel HVDC system | |
JPH0742174Y2 (en) | Gas insulated switchgear | |
CN2638313Y (en) | Reactive compensation and arc-extinguishing resonance-extinguishing device | |
JPH05304703A (en) | Gas insulated switchgear | |
JPH05111116A (en) | Gas insulation switching device | |
JPH05336626A (en) | Gas-insulated switching device | |
CN108649477A (en) | All insulation type voltage transformer GIS cabinets | |
Shirkovets et al. | Schemes, Neutral Grounding Treatment and Organization of Ground Fault Relay Protection in 20 kV Networks of Megalopolises | |
Xiao et al. | Electromagnetic transient analysis of 500 kV XLPE submarine cable interconnection project from Zhenhai To Zhoushan | |
CN210224772U (en) | GIS wiring and arrangement structure | |
JP3096174B2 (en) | Gas insulated switchgear | |
CN108281917B (en) | Extra-high voltage alternating current transformer substation and design method thereof | |
Horowitz et al. | Relaying the AEP 765-kV system | |
JPS61254011A (en) | Gas insulated switchgear | |
JP3351633B2 (en) | Pole breaker device | |
Lou et al. | Electromagnetic Transient Analysis of 750kV Four-circuit Transmission Line on the Same Tower | |
JP2000175317A (en) | Gas isolation switching device |