JPH05129879A - Surface acoustic wave amplifier - Google Patents

Surface acoustic wave amplifier

Info

Publication number
JPH05129879A
JPH05129879A JP28697091A JP28697091A JPH05129879A JP H05129879 A JPH05129879 A JP H05129879A JP 28697091 A JP28697091 A JP 28697091A JP 28697091 A JP28697091 A JP 28697091A JP H05129879 A JPH05129879 A JP H05129879A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
piezoelectric semiconductor
semiconductor substrate
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28697091A
Other languages
Japanese (ja)
Inventor
Hitoshi Takeuchi
均 武内
Koichi Sakamoto
孝一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP28697091A priority Critical patent/JPH05129879A/en
Publication of JPH05129879A publication Critical patent/JPH05129879A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the surface acoustic wave amplifier whose structure is simple to offer ease of manufacture in which a large gain is obtained. CONSTITUTION:The amplifier is roughly formed by a P-channel piezoelectric semiconductor substrate 2, a couple of interdigital electrodes 3,4 provided on the upper side of the substrate 2 and a power supply 12. A P-channel GaAs or a P-channel CdS or the like whose impurity concentration is 10<15>-10<16> particles/cm<3> is employed for the material of the P-channel piezoelectric semiconductor substrate 2. Let the mobile velocity of positive holes being the carrier be V(d) and propagation velocity of a surface acoustic wave 15 be V(s), then a high DC electric field is applied between interdigital electrodes 3,4 with the power supply 12 so as to satisfy the relation of V(d)>V(s) to amplify the surface acoustic wave 15. Since the impurity concentration of the P-channel piezoelectric semiconductor substrate 2 is high, the number of the carriers is increased more than that of a conventional amplifier and the amplified surface acoustic wave 15 is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面弾性波増幅器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave amplifier.

【0002】[0002]

【従来の技術と課題】GaAsやCdS等の圧電半導体
材料を用いて作製した表面弾性波フィルタに適切な直流
電界を印加すれば、増幅機能をも有するフィルタが得ら
れることが知られている。従来の圧電半導体材料は不純
物濃度が低い(例えば、1014個/cm3程度)n型圧
電半導体であって、限られた直流電界でしか有効な利得
が得られず、その利得も40dB/cm程度(不純物濃
度が1014個/cm3のGaAsの場合)であった。
2. Description of the Related Art It is known that a filter having an amplifying function can be obtained by applying an appropriate DC electric field to a surface acoustic wave filter made of a piezoelectric semiconductor material such as GaAs or CdS. A conventional piezoelectric semiconductor material is an n-type piezoelectric semiconductor having a low impurity concentration (for example, about 10 14 pieces / cm 3 ), and an effective gain can be obtained only in a limited DC electric field, and the gain is 40 dB / cm. It was about the level (in the case of GaAs having an impurity concentration of 10 14 / cm 3 ).

【0003】これとは別に、高利得を得るために、大き
な電気機械結合係数を有する圧電体と大きなキャリア移
動度を有する半導体を張り合わせた構造の表面弾性波増
幅器も提案されている。しかし、この増幅器は構造及び
製造工程が複雑になるという問題点があった。そこで、
本発明の課題は、構造がシンプルで製造し易く、かつ、
大きな利得が得られる表面弾性波増幅器を提供すること
にある。
In addition to this, in order to obtain a high gain, a surface acoustic wave amplifier having a structure in which a piezoelectric body having a large electromechanical coupling coefficient and a semiconductor having a large carrier mobility are bonded together has also been proposed. However, this amplifier has a problem in that the structure and manufacturing process are complicated. Therefore,
The problem of the present invention is that the structure is simple and easy to manufacture, and
An object is to provide a surface acoustic wave amplifier that can obtain a large gain.

【0004】[0004]

【課題を解決するための手段】以上の課題を解決するた
め、本発明に係る表面弾性波増幅器は、(a)不純物濃
度が高いP型圧電半導体基板と、(b)前記圧電半導体
基板の表面に設けた一対のすだれ状電極と、(c)前記
すだれ状電極間に直流電界を印加する電源と、を備えた
ことを特徴とする。不純物濃度が高いP型圧電半導体と
しては、不純物濃度が1015〜1016個/cm3のP型
GaAsやP型CdS等が用いられる。
In order to solve the above problems, a surface acoustic wave amplifier according to the present invention comprises (a) a P-type piezoelectric semiconductor substrate having a high impurity concentration, and (b) a surface of the piezoelectric semiconductor substrate. And a power source for applying a DC electric field between the interdigital transducers (c). As the P-type piezoelectric semiconductor having a high impurity concentration, P-type GaAs or P-type CdS having an impurity concentration of 10 15 to 10 16 pieces / cm 3 is used.

【0005】[0005]

【作用】以上の構成において、電源によってすだれ状電
極間に直流電界を印加すると、この直流電界によってP
型圧電半導体のキャリアである正孔が表面弾性波の伝搬
方向に対して平行に移動する。この正孔の移動速度をV
(d)、表面弾性波の伝搬速度をV(s)とすると、 V(d)>V(s) の関係を満足するように直流電界の強さを大きくすれば
正孔が表面弾性波に付随する電界と結合し、表面弾性波
が増幅される。そして、P型圧電半導体の不純物濃度が
高いため、キャリアの数は従来の増幅器と比較して多
い。従って、表面弾性波の増幅量も大きくなる。
In the above structure, when a DC electric field is applied between the interdigital electrodes by the power source, the DC electric field causes P
The holes, which are carriers of the piezoelectric semiconductor, move parallel to the propagation direction of the surface acoustic wave. The moving speed of this hole is V
(D) If the propagation velocity of the surface acoustic wave is V (s), if the strength of the DC electric field is increased so that the relationship of V (d)> V (s) is satisfied, the holes become surface acoustic waves. Combined with the accompanying electric field, the surface acoustic wave is amplified. Since the P-type piezoelectric semiconductor has a high impurity concentration, the number of carriers is larger than that of the conventional amplifier. Therefore, the amplification amount of the surface acoustic wave also increases.

【0006】[0006]

【実施例】以下、本発明に係る表面弾性波増幅器の一実
施例を添付図面を参照して説明する。図1に示すよう
に、表面弾性波増幅器1は、概略、P型圧電半導体基板
2と、P型半導体基板1の上面に設けた入力用すだれ状
電極3、出力用すだれ状電極4及びすだれ状電極3,4
間に直流電界を印加する電源12にて構成されている。
圧電半導体基板2の材料としては、不純物濃度が1015
個/cm3及び1016個/cm3のP型GaAsが用いら
れる。すだれ状電極3,4は電気−機械エネルギー変換
機能を有すると共に、直流電界を表面弾性波15の伝搬
方向と平行に圧電半導体基板2に印加するための電極機
能も有する。すだれ状電極3,4の材料としてはアルミ
ニウム等が用いられ、フォトエッチング法等の手段によ
り形成されている。すだれ状電極3,4の電極ピッチd
は、表面弾性波15の波長をλとすれば、 d=(n+1/2)λ (n=0,1,2,3…) を満足するように設計される。表1に本実施例のすだれ
状電極3,4の電極ピッチdの設計値を示す。なお、製
造加工時に要求される電極ピッチdの平均公差は約±λ
/4である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the surface acoustic wave amplifier according to the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the surface acoustic wave amplifier 1 includes a P-type piezoelectric semiconductor substrate 2, an input interdigital electrode 3, an output interdigital electrode 4, and a comb-shaped electrode provided on the upper surface of the P-type semiconductor substrate 1. Electrodes 3,4
It is composed of a power supply 12 for applying a DC electric field therebetween.
The material of the piezoelectric semiconductor substrate 2 has an impurity concentration of 10 15
P-type GaAs of 10 / cm 3 and 10 16 / cm 3 are used. The interdigital electrodes 3 and 4 have an electro-mechanical energy conversion function and also have an electrode function for applying a DC electric field to the piezoelectric semiconductor substrate 2 in parallel with the propagation direction of the surface acoustic wave 15. Aluminum or the like is used as a material for the interdigital electrodes 3, 4 and is formed by means such as a photoetching method. Electrode pitch d of the interdigital electrodes 3 and 4
Is designed to satisfy d = (n + 1/2) λ (n = 0,1,2,3 ...), where λ is the wavelength of the surface acoustic wave 15. Table 1 shows design values of the electrode pitch d of the interdigital electrodes 3 and 4 of this example. The average tolerance of the electrode pitch d required during manufacturing is about ± λ
/ 4.

【0007】[0007]

【表1】 [Table 1]

【0008】すだれ状電極3,4はそれぞれ引き出し電
極3a,3b、4a,4bにて入力側CR並列回路5及
び出力側CR並列回路6に電気的に接続されている。さ
らに、入力側CR並列回路5は高周波トランス9を介し
て交流パルス発生器に電気的に接続している。出力側C
R並列回路6は高周波トランス10を介して受信器に電
気的に接続されている。入力側と出力側の間は電源12
が電気的に接続され、すだれ状電極3,4間に適切な直
流電界が印加される。
The interdigital electrodes 3 and 4 are electrically connected to the input-side CR parallel circuit 5 and the output-side CR parallel circuit 6 by the extraction electrodes 3a, 3b, 4a and 4b, respectively. Further, the input side CR parallel circuit 5 is electrically connected to the AC pulse generator via the high frequency transformer 9. Output side C
The R parallel circuit 6 is electrically connected to the receiver via a high frequency transformer 10. Power supply 12 between input side and output side
Are electrically connected, and an appropriate DC electric field is applied between the interdigital electrodes 3 and 4.

【0009】以上の構成からなる装置を用いて表面弾性
波増幅器1の増幅作用を評価した。電源12によってす
だれ状電極3,4間に10KV/cmの直流パルス電界
を印加して、P型圧電半導体基板2のキャリアである正
孔の移動速度V(d)が表面弾性波15の伝搬速度V
(s)より大きくなる状態にする。この状態の下で、交
流パルス発生器から入力用すだれ状電極3に電気信号を
供給する。電気信号は表面弾性波15に変換され、表面
弾性波15は圧電体基板2の表面部分をすだれ状電極4
に向かって伝搬する。正孔は表面弾性波15に付随する
電界に結合し、表面弾性波15が増幅される。特に、
The amplifying action of the surface acoustic wave amplifier 1 was evaluated using the apparatus having the above-mentioned structure. By applying a DC pulsed electric field of 10 KV / cm between the interdigital electrodes 3 and 4 by the power source 12, the moving speed V (d) of holes which are carriers of the P-type piezoelectric semiconductor substrate 2 is the propagation speed of the surface acoustic wave 15. V
(S) The state becomes larger than that. Under this condition, an electric signal is supplied from the AC pulse generator to the input interdigital transducer 3. The electric signal is converted into surface acoustic waves 15, and the surface acoustic waves 15 cover the surface portion of the piezoelectric substrate 2 with the interdigital transducer 4.
Propagate toward. The holes are coupled to the electric field associated with the surface acoustic wave 15, and the surface acoustic wave 15 is amplified. In particular,

【0010】[0010]

【数1】 [Equation 1]

【0011】の関係を満足する表面弾性波15の角周波
数ωで最大の増幅利得が得られる。さらに、従来のn型
圧電半導体を用いた表面弾性波増幅器においては、
The maximum amplification gain is obtained at the angular frequency ω of the surface acoustic wave 15 which satisfies the relationship of Furthermore, in the conventional surface acoustic wave amplifier using the n-type piezoelectric semiconductor,

【0012】[0012]

【数2】 [Equation 2]

【0013】の関係式を満足しなければ大きな利得が得
られなかった。ところが、本実施例のように不純物濃度
が高いP型圧電半導体を用いた場合、(2)式を満足し
なくても大きな増幅利得が得られた。表2には評価結果
が示されている。表面弾性波15は共鳴角周波数ω
(P)にて増幅される。なお、表2には、表1の設計値
に基づいて作製したすだれ状電極3,4の電極ピッチd
の実測値及び平均誤差も示している。
A large gain cannot be obtained unless the relational expression of is satisfied. However, in the case of using the P-type piezoelectric semiconductor having a high impurity concentration as in this example, a large amplification gain was obtained without satisfying the expression (2). Table 2 shows the evaluation results. The surface acoustic wave 15 has a resonance angular frequency ω
It is amplified at (P). In addition, in Table 2, the electrode pitch d of the interdigital electrodes 3 and 4 produced based on the design values in Table 1 is shown.
The actual measurement value and the average error of are also shown.

【0014】[0014]

【表2】 [Table 2]

【0015】表2より、従来の表面弾性波増幅器の利得
が40dB/cm程度であるのに比べ、本実施例1,2
の表面弾性波増幅器の利得は100〜300dB/cm
以上であり、著しくアップしていることが認められる。
なお、本発明に係る表面弾性波増幅器は前記実施例に限
定するものではなく、その要旨の範囲内で種々に変形す
ることができる。
As shown in Table 2, the gain of the conventional surface acoustic wave amplifier is about 40 dB / cm.
The surface acoustic wave amplifier has a gain of 100 to 300 dB / cm.
It is above, and it is recognized that it has remarkably improved.
The surface acoustic wave amplifier according to the present invention is not limited to the above embodiment, but can be variously modified within the scope of the gist thereof.

【0016】[0016]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、圧電半導体基板の材料として、不純物濃度が高
いP型圧電半導体を用いたので、従来の表面弾性波増幅
器と比較してキャリアの数が多くなり、増幅機能が向上
した表面弾性波増幅器を得ることができる。しかも、製
造に際しては、圧電半導体基板の材料として不純物濃度
が高いP型圧電半導体を採用するだけですみ、圧電体と
半導体を貼り合わせた表面弾性波増幅器と比較して構
造、製造工程共に簡略なものとなる。
As is clear from the above description, according to the present invention, since the P-type piezoelectric semiconductor having a high impurity concentration is used as the material of the piezoelectric semiconductor substrate, the P-type piezoelectric semiconductor is compared with the conventional surface acoustic wave amplifier. A surface acoustic wave amplifier having an increased number of carriers and an improved amplification function can be obtained. Moreover, in manufacturing, it is only necessary to adopt a P-type piezoelectric semiconductor having a high impurity concentration as the material of the piezoelectric semiconductor substrate, and the structure and manufacturing process are simpler than those of a surface acoustic wave amplifier in which a piezoelectric body and a semiconductor are bonded together. Will be things.

【0017】また、直流電界の印加方向を逆にすれば、
表面弾性波を減衰させることができ、スイッチング機能
を備えさせることも可能である。
If the application direction of the DC electric field is reversed,
Surface acoustic waves can be attenuated and a switching function can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る表面弾性波増幅器の一実施例を示
す概略構成図。
FIG. 1 is a schematic configuration diagram showing an embodiment of a surface acoustic wave amplifier according to the present invention.

【符号の説明】[Explanation of symbols]

1…表面弾性波増幅器 2…P型圧電半導体 3,4…すだれ状電極 12…電源 1 ... Surface acoustic wave amplifier 2 ... P-type piezoelectric semiconductor 3, 4 ... Interdigital electrode 12 ... Power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 不純物濃度が高いP型圧電半導体基板
と、 前記圧電半導体基板の表面に設けた一対のすだれ状電極
と、 前記すだれ状電極間に直流電界を印加する電源と、 を備えたことを特徴とする表面弾性波増幅器。
1. A P-type piezoelectric semiconductor substrate having a high impurity concentration, a pair of interdigital electrodes provided on the surface of the piezoelectric semiconductor substrate, and a power supply for applying a DC electric field between the interdigital electrodes. A surface acoustic wave amplifier characterized by:
JP28697091A 1991-11-01 1991-11-01 Surface acoustic wave amplifier Pending JPH05129879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28697091A JPH05129879A (en) 1991-11-01 1991-11-01 Surface acoustic wave amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28697091A JPH05129879A (en) 1991-11-01 1991-11-01 Surface acoustic wave amplifier

Publications (1)

Publication Number Publication Date
JPH05129879A true JPH05129879A (en) 1993-05-25

Family

ID=17711319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28697091A Pending JPH05129879A (en) 1991-11-01 1991-11-01 Surface acoustic wave amplifier

Country Status (1)

Country Link
JP (1) JPH05129879A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025792A1 (en) * 1995-02-16 1996-08-22 Asahi Kasei Kogyo Kabushiki Kaisha Elastic surface wave functional device and electronic circuit using the element
US6198197B1 (en) 1995-02-16 2001-03-06 Asahi Kasei Kogyo Kabushiki Kaisha Surface acoustic wave element and electronic circuit using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025792A1 (en) * 1995-02-16 1996-08-22 Asahi Kasei Kogyo Kabushiki Kaisha Elastic surface wave functional device and electronic circuit using the element
US6198197B1 (en) 1995-02-16 2001-03-06 Asahi Kasei Kogyo Kabushiki Kaisha Surface acoustic wave element and electronic circuit using the same

Similar Documents

Publication Publication Date Title
JPS584485B2 (en) frequency selection device
US3686579A (en) Solid-state, acoustic-wave amplifiers
US3568079A (en) Acoustic signal amplifier
JPS6320044B2 (en)
JPS5835404B2 (en) Surface acoustic wave parametric device
JPH05129879A (en) Surface acoustic wave amplifier
US3826932A (en) An ultrasonic convolver having piezoelectric and semiconductor properties
US4900969A (en) Surface acoustic wave convolver
US4088969A (en) Tapped surface acoustic wave delay line
US3406350A (en) Ultrasonic amplifier device
US3736533A (en) Apparatus for efficiently converting acoustic energy into electrical energy
JPH0419850Y2 (en)
JPS616916A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode
Wolter Acoustoelectric amplification of Rayleigh waves in presence of a dc transverse magnetic field
USRE27293E (en) Semiconductor device for producing and amplifying electrical signals of very high frequency
JPH05129880A (en) Surface acoustic wave amplifier
US3714604A (en) Self excited electron phonon resonator
SU822316A1 (en) Device for convolution of electric signals on surface acoustic waves
JPS60236312A (en) Unidirectional surface acoustic wave converter of floating electrode internal reflection type
JPH09162697A (en) Surface acoustic wave convolver
JPS56134819A (en) Surface wave filter
JP2625520B2 (en) Manufacturing method of surface acoustic wave convolver
US3389343A (en) Ultrasonic amplifier device with means for preventing self-oscillation
JPS6130338Y2 (en)
JP2853094B2 (en) Surface acoustic wave device