JPH0512981B2 - - Google Patents

Info

Publication number
JPH0512981B2
JPH0512981B2 JP60086233A JP8623385A JPH0512981B2 JP H0512981 B2 JPH0512981 B2 JP H0512981B2 JP 60086233 A JP60086233 A JP 60086233A JP 8623385 A JP8623385 A JP 8623385A JP H0512981 B2 JPH0512981 B2 JP H0512981B2
Authority
JP
Japan
Prior art keywords
manganese
copper
manganese dioxide
precipitate
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60086233A
Other languages
Japanese (ja)
Other versions
JPS61245845A (en
Inventor
Tatsuo Muranaka
Motoya Haga
Kazumasa Kutsuzawa
Yoshiharu Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP60086233A priority Critical patent/JPS61245845A/en
Publication of JPS61245845A publication Critical patent/JPS61245845A/en
Publication of JPH0512981B2 publication Critical patent/JPH0512981B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は、二酸化マンガン系一酸化炭素酸化触
媒の製造法に関し、更に言えば、特に空気汚染物
質である一酸化炭素を酸化除去する能力の優れた
銅を担持した二酸化マンガン系一酸化炭素酸化触
媒の製造法にかかる。 〈従来の技術〉 従来より、銅を担持した二酸化マンガン系の一
酸化炭素酸化触媒はホプカライト触媒として著名
である。 かかる触媒は、代表的には、二酸化マンガンと
酸化銅とを混合した後、焼成して製造する方法、
マンガン及び銅を少なくとも含む金属硝酸塩混合
溶液を中和して金属水酸化物を共沈させ、次いで
酸化処理して製造する方法がある。(特開昭53−
116290号公報) しかして、前者の方法による触媒は、ミクロ的
にみると不均質系であることもあつて触媒能は満
足できるものではない。一方、後者は、均質系の
ものが得られ、前者の改良がなされるが、触媒の
ライフは必ずしも長くはない。 これは恐らく、二価マンガンの水酸化物を酸化
処理しても、二酸化マンガンまで実質的に酸化す
ることが困難であることによるものと思われる。 又、マンガン水酸化物の酸化による二酸化マン
ガンは、非常に嵩が大きいので、単位容量当りの
触媒能は低いという欠点がある。 更に、最近、マンガンおよび銅の可溶性塩の混
合溶液に酸化剤と過マンガン酸塩を含むアルカリ
溶液を添加して製造する二酸化マンガン系酸化触
媒の製造法が提案された。(特開昭60−7940号公
報) この方法は、水酸化マンガンを酸化する方式よ
りもマンガンの酸化率は高く、二酸化マンガンに
近いものであり、しかも、銅化合物が、二酸化マ
ンガンの生成の際に担持される点で改良された方
法と思われる。 〈発明が解決しようとする問題点〉 一般に、二酸化マンガンと銅酸化物の物理的混
合による触媒よりも、二酸化マンガン生成の際に
銅化合物を担持させた触媒の方が優れている。 しかして、二酸化マンガンの生成条件および銅
化合物の担持させる条件により、触媒能に大きな
バラツキがあり、工業的に信頼性ある品質のもの
としては、従来の方法ではそれぞれ一長一短があ
つて、満足ゆくものではない。 特に、この種の触媒能の評価として、比表面積
があるが、製造条件の微妙な相異にも拘らず、大
きく変化し、又、同じ比表面積の触媒能は異なる
という具合である。 他方、初期触媒能が高くても、そのライフが短
かく、又逆にそれが比較的低くても、ライフはあ
るレベルまでは長く保持されるという場合もあ
る。 従つて、本発明は、ライフの長い品質の安定し
たホプカライト触媒の改良を従来とは全く異なつ
た方法で提供するところにある。 〈問題点を解決するための手段および作用〉 すなわち、本発明は、マンガンおよび銅の混合
塩水溶液を鉱酸酸性にしてマンガンおよび銅の混
合塩結晶を析出させる第1工程、前工程から得ら
れる強酸化のスラリー系に過マンガン酸カリウム
を添加し酸化処理して二酸化マンガンを生成させ
る第2工程、前工程の沈澱物を母液と分離する第
3工程および得られた沈澱物をアルカリ剤で中和
処理する第4工程からなることを特徴とする二酸
化マンガン系一酸化炭素酸化触媒(以下、二酸化
マンガン系酸化触媒と略す。)の製造法にかかる
ものである。 第1工程 この工程は、前記のように、マンガンおよび銅
の混合塩結晶の析出工程である。 出発原料であるマンガンおよび銅塩は、いずれ
も可溶性塩であればよいが、代表的には、硫酸塩
又は硝酸塩があげられ、勿論、これらの塩は無水
物又は含水物のいずれであつてもよい。 一般に、硫酸塩は、触媒中に残存する硫黄分が
触媒毒となる傾向があるので、硝酸塩の方が好ま
しい場合が多いが、本発明では、硫酸塩でも満足
して充分使用できる。 又、他の原料である鉱酸は、硫酸および硝酸が
代表的に用いられる。 従つて、この工程では、後記の如く、母液の循
環使用を考慮すれば、多くの場合、硫酸塩−硫酸
又は硝酸塩−硝酸系で行われるが、触媒能からみ
るかぎり、これに限定する理由はない。 なお、触媒の使用目的によつて、あるいは、触
媒能をより向上させるために、銅の外に、ニツケ
ル、コバルト、亜鉛又は銀を担持させる場合が知
られているが、本発明でも、必要に応じ、それら
の可溶性塩を適宜、銅塩と共に使用することによ
り銅と共に担持させることができる。 かかるマンガンおよび銅の混合塩水溶液は鉱酸
と作用して鉱酸酸性にすることによりマンガンや
銅の塩の溶解度が酸濃度に従つて小さくなり、そ
れらの混合塩が析出する。鉱酸酸性にする場合、
金属混合塩水溶液に鉱酸を添加する又はその逆の
添加のいずれであつてもよい。 例えば、硫酸塩−硫酸系でみた場合、硫酸マン
ガンの溶解度はSolubilities of Inorganic and
Metal−organic Compounds,Seidell,Linke
Fourth Edition,VolumeP.563に記載されて
明らかである。 このように、この工程では、混合塩を溶液から
鉱酸により晶析させることが重要であり、原料水
溶液中の金属塩の実質的な量を析出させる方が好
ましいが、必ずしも全量を析出させる必要はな
い。 ここで、晶析する混合塩というのは、必ずしも
化学的に厳密なものとして定義しているのではな
く、広く、マンガンおよび銅塩との混合溶液が鉱
酸の作用により、析出する結晶として定義し、そ
の結晶がマンガンと銅の複塩又は固溶体としての
混晶であるかは問題ではない。 例えば、A Comprehensive Treatise On
Inorganic And Theoretical chemistry Vol.12,
P.421〜422;Mellor著によれば、硫酸系にあつ
ては、CuSO4・MnSO4・nH2O(n=1又は2)
の複塩とみる場合や、(Cu・Mn)SO4・nH2O
(n=5又は7)の如き固溶体が析出するとの報
告がある。 従つて、この工程での混合塩結晶は、恐らく、
少なくとも一部は相互に固溶した複塩と推定され
るが、かかる結晶は、微細であり、この結晶状態
で次の工程で過マンガン酸カリウムと作用して二
酸化マンガンを生成させるところに本発明の特徴
がある。即ち、反応機構の詳細は不明であるが、
マンガンと銅の混晶粒子に過マンガン酸カリウム
を作用させる方が触媒能が安定して向上させるこ
とができる。 しかして、出発原料における配合割合は、二酸
化マンガンに担持すべき銅の量に関係し、触媒能
に影響するが、本発明においては、モル比Mn/
Cu=1.4〜14.0の範囲にあり、特に2〜10の範囲
が好適である。 なお、ニツケル、コバルト、亜鉛又は銀塩も、
必要に応じ少量混合できることは前記したとおり
である。 第2工程 この工程は、前工程から得られる強酸性のスラ
リー系に、過マンガン酸カリウムを添加して二酸
化マンガンを生成させる工程である。 即ち、第1工程により、マンガンと銅との混合
結晶が微細に強酸性液中に分散した強酸性スラリ
ーが得られるが、これに、過マンガン酸カリウム
を作用させることにより、酸化反応を伴つて、マ
ンガン塩は黒褐色の二酸化マンガンに換転して沈
澱を生成する。 この工程における酸化反応は、常温又は加温の
いずれでもよいが、反応速度を考慮すれば、50〜
60℃の加温が好ましい。また、酸化反応を充分に
行わせるために、過マンガン酸カリウムの添加後
は、暫時撹拌を続けながら熟成する。 反応系の詳細は不明であるが、恐らく、生成す
る二酸化マンガンに一部銅イオンが固溶し、他の
銅塩は、殆ど、微細な銅塩の結晶状態で活性な二
酸化マンガンに吸着して共沈するものと思われ
る。 なお、過マンガン酸カリウムの添加量は、マン
ガン塩が過マンガン酸カリウムと反応して二酸化
マンガンを生成する理論量前後であり、好ましく
はやや小過剰がよく、また、添加する場合、結晶
又は水溶液のいずれでもよい。 第3工程 この工程は、前工程で生成する二酸化マンガン
含有の沈澱物を母液と分離する工程である。 分離する場合は、前工程で、加温状態にあれ
ば、冷却し常温にて行うのがよい。 この理由は、銅塩の溶解度を小さくして出来る
だけ母液中に銅イオンの混入を避け、銅の歩留り
を高くすると共に必要に応じて回収母液を鉱酸源
として第1工程へ循環使用するためである。 このように、分離された母液は、主として鉱酸
であるが、他に前工程により副生するカリウム塩
および溶解度分の銅塩により組成された強酸性溶
液となつている。 従つて、この母液は、金属塩の溶解又は析出の
ための鉱酸源として循環使用する方が工業的に有
利であるが、その際、分離するときの温度および
母液を必要に応じ濃縮又は希釈するなどその比重
等を管理することによつて、その組成をほぼ一定
組成に制御して循環使用させることができる。ま
た母液の循環使用により、塩類濃度が高くなつた
場合には、必要に応じカリウム塩を晶析分離して
使用することは云うまでもない。 他方、沈澱物は、活性な二酸化マンガンを主体
として、これに、銅塩が吸着したものではある
が、母液もかなり吸着した含水量の高いものであ
る。 なお、分離操作は常法の手段、例えば、遠心分
離、過又はデカンテーシヨン等適宜所望の方式
にて行えばよい。 第4工程 この工程は、分離回収した沈澱物をアルカリ剤
で中和処理する工程である。 即ち、沈澱物を水に分散させ、苛性アルカリ又
はアンモニア水で撹拌状態にて常温又は加温で中
和処理する。この処理は、付着の酸性分を中和す
ることは勿論であるが、銅塩を含水酸化物に転換
させ、活性な二酸化マンガンへの銅の担持が確実
なものにするためにあり、スラリー系のPHが9〜
10の範囲になるまで行うのがよい。 中和処理後は、常法により、分離および洗浄し
て銅担持の二酸化マンガンを得る。 かくして製造した二酸化マンガン系酸化触媒
は、要すれば乾燥した後、所望の結合剤と混練お
よび成型、乾燥することにより、酸化触媒として
所望する用途に利用することができる。 本発明にかかる二酸化マンガン系酸化触媒は、
X線回折に基づく分析では、実質的に非晶質であ
り、また、触媒の最終形態によつて異なるけれど
も、少なくとも比表面積が150m2/g以上の多孔
質で非常に酸化活性である。 また、二酸化マンガンに担持される銅の割合は
モル比(Mn/Cu)で0.9〜9.0、好ましくは1.5〜
7.5の範囲になつている。 実施例 1 硫酸マンガン(MnSO4・H2O)315gおよび硫
酸銅(CuSO4・5H2O)286gを50%硫酸1930g
に添加して混合金属塩水溶液を調製する。 次いで、この水溶液に濃硫酸(98%H2SO4
208mlを添加して温度50〜60℃で1時間撹拌を続
けて微細なマンガンと銅の混合硫酸塩結晶を析出
させる。 次いで、過マンガン酸カリウムの粉末225gを
徐々に撹拌状態のスラリーに添加し約2時間保持
続けて酸化反応を終了する。 次いで、酸化処理したスラリーに分離操作を容
易にするため少量の水を添加した後、別し、母
液と沈澱物とを分離する。沈澱物を水に再分散さ
せた後、苛性ソーダ溶液(48%NaOH)で撹拌
下PH9〜10になるまで中和した後、常法により、
分離、水洗および乾燥して銅担持の二酸化マンガ
ン系酸化触媒を得た。 実施例 2 硫酸マンガン(MuSO4・H2O)315gおよび硫
酸銅(CuSO4・5H2O)286gの結晶を実施例1
で分離回収した母液(H2SO4:50%、Mu:0.17
%、Cu:0.22%、K:0.66%、比重:1.397)
1387mlに溶解した後、濃硫酸(H2SO4:98%)
208mlを添加して撹拌を約1時間続け微細な硫酸
マンガンと硫酸銅の混合結晶を晶析する。 次いで、硫酸酸性のスラリーを50〜60℃の温度
において、過マンガン酸カリウム結晶225gを
徐々に添加して酸化反応を生ぜしめ、約2時間撹
拌を続ける。 次いで水358mlを添加して常温にて固液分離し
沈澱物と母液をそれぞれ回収する。 次いで、得られた沈澱物を水に再分散させた
後、28%アンモニア水でPH9.3に至るまで中和処
理した後、以下常法により、分離、水洗および乾
燥して銅担持の二酸化マンガン系酸化触媒を得
た。 実施例 3 水120mlに硫酸マンガン(MnSO4・H2O)119
g及び硫酸銅(CuSO4・5H2O)108gを加えて
調製した金属塩混合水溶液を45℃に加温する。こ
れに実施例2で回収し調製した母液(H2SO4
55%、Mn:0.16%、Cu:0.20%、K:0.65%、
比重:1.455)1340mlを添加し、更に濃硫酸(98
%H2SO4)90mlを添加して約1時間撹拌し、金
属塩の混晶を析出させる。次いで、得られたスラ
リーを温度55℃において過マンガン酸カリウムの
結晶粉末85gを徐々に添加し、添加後約2時間撹
拌下で酸化反応を生ぜしめ熟成する。熟成後、沈
澱物と液とを過・分離する。以下、実施例1
と同様の操作を行い銅担持の二酸化マンガン系酸
化触媒を得た。 実施例 4 実施例3で回収した母液(H2SO4:55%、
Mn:0.16%、Cu:1.20%、K:0.65%、比重:
1.455)1340mlに硫酸マンガン315g、硫酸銅214
g及び硫酸ニツケル(NiSO4・6H2O)250gを加
えて温度を40〜50℃にして金属塩混合液を調製す
る。これに、濃硫酸(98%H2SO4)229mlを添加
して、温度50〜60℃で約1時間熟成して金属塩の
混晶を析出させる。次いで、得られた強酸性のス
ラリーに、過マンガン酸カリウムの結晶粉末225
gを徐々に添加し、添加後約2時間撹拌を続けて
酸化反応を終了させる。次いで、このスラリーに
水を358ml加えた後、過して沈澱物と液とを
分離する。以下実施例1と同様の操作を行い銅担
持の二酸化マンガン系酸化触媒を得た。 比較例 1 硫酸マンガン(MnSO4・H2O)315gを水560
mlに溶解させた水溶液を温度45℃において濃硫酸
319mlを添加した後、約1時間熟成を続けて、硫
酸マンガンの結晶を析出させた。次いで、このス
ラリーに過マンガン酸カリウムの結晶粉末225g
を徐々に加えて反応を行ないさらに約2時間撹拌
を続けて酸化処理を終了させる。次いで、これを
水で希釈し、液がPH5以上まで洗浄を行なつた
後、過分離して、二酸化マンガン含水物を得
る。 他方、硫酸銅(CuSO4・5H2O)286gを水
1430mlに溶解させた硫酸銅水溶液に温度65℃にお
いて、苛性ソーダ溶液をPH9〜10まで加え沈澱を
生成させ、放冷後、液がPH7.5以下になるまで
洗浄を行なつていき、次いで過分離して含水酸
化銅を得る。それぞれ生成したケーキに水を加え
よく混合撹拌した後、常法により過および乾燥
して、銅を担持する二酸化マンガン系の酸化触媒
を得た。 比較例 2 硫酸マンガン(MnSO4・H2O)315gおよび硫
酸銅(CuSO4・5H2O)214gを水500mlに溶解さ
せて金属塩混合水溶液を調製する。次いで、過マ
ンガン酸カリウムの結晶粉末225gを添加して酸
化処理操作以後NaOH溶液でPH9〜10に中和し、
沈澱物を常法により分離、水洗および乾燥して銅
担持の二酸化マンガン系酸化触媒を得た。 比較例 3 硫酸マンガン(MuSO4・H2O)315gと硫酸銅
(CuSO4・5H2O)214gを水500mlに溶解させた
混合溶液を調製した後、これに過マンガン酸カリ
ウムの結晶粉末225gを10%KOH溶液700mlに溶
解させたアルカリ性過マンガン酸カリウム溶液を
添加してMnOx,CuOを共沈させた後、常法によ
り過、洗浄を行なつて銅担持の二酸化マンガン
系酸化触媒を得た。 触媒能の評価 1 試料の調製 実施例1〜4および比較例1〜3によつて製
造した各試料10g(120℃、4時間乾燥物基準)
にバインダーとしてベントナイト0.5gを適量
の水と共に混練した後、ペレツターで成形す
る。次いで、約200℃で乾燥したものを触媒試
料とする。 2 COガス除去方法 COガス濃度5000ppm、湿度50%、温度20℃
にある汚染空気を空間速度20000hr-1で試料触
媒を充填したカラムに導入し、触媒通過後の
COガス濃度およびその濃度が50ppmになるま
での時間を測定した。 なお、COガス濃度の測定は定電位電解法に
よる一酸化炭素測定器によつた。 3 測定結果 前記のCO除去測定による結果を、触媒物性
と共に第1表にて示す。
<Industrial Application Field> The present invention relates to a method for producing a manganese dioxide-based carbon monoxide oxidation catalyst, and more particularly, to a method for producing a manganese dioxide-based carbon monoxide oxidation catalyst, and more particularly, to a method for producing a manganese dioxide-based carbon monoxide oxidation catalyst, and more particularly, to a method for producing a manganese dioxide-based carbon monoxide oxidation catalyst. This invention relates to a method for producing a manganese-based carbon monoxide oxidation catalyst. <Prior Art> Conventionally, a copper-supported manganese dioxide-based carbon monoxide oxidation catalyst has been well-known as a hopcalite catalyst. Such a catalyst is typically produced by mixing manganese dioxide and copper oxide and then firing the mixture;
There is a method of manufacturing by neutralizing a metal nitrate mixed solution containing at least manganese and copper to co-precipitate a metal hydroxide, and then performing an oxidation treatment. (Unexamined Japanese Patent Publication No. 1973-
(Japanese Patent Publication No. 116290) However, the catalyst produced by the former method has a heterogeneous system when viewed microscopically, and its catalytic performance is not satisfactory. On the other hand, the latter is an improvement over the former by obtaining a homogeneous system, but the life of the catalyst is not necessarily long. This is probably due to the fact that even if divalent manganese hydroxide is oxidized, it is difficult to substantially oxidize it to manganese dioxide. Furthermore, manganese dioxide produced by oxidizing manganese hydroxide has a very large bulk, so it has the disadvantage of low catalytic activity per unit volume. Furthermore, a method for producing a manganese dioxide-based oxidation catalyst has recently been proposed, which is produced by adding an alkaline solution containing an oxidizing agent and permanganate to a mixed solution of soluble salts of manganese and copper. (Japanese Unexamined Patent Application Publication No. 60-7940) In this method, the oxidation rate of manganese is higher than that of the method of oxidizing manganese hydroxide, and the oxidation rate of manganese is close to that of manganese dioxide. This seems to be an improved method in that it is supported by <Problems to be Solved by the Invention> Generally, a catalyst in which a copper compound is supported during the production of manganese dioxide is superior to a catalyst in which manganese dioxide and copper oxide are physically mixed. However, the catalytic performance varies greatly depending on the conditions for producing manganese dioxide and the conditions for supporting the copper compound, and conventional methods each have their own merits and demerits and are not satisfactory in terms of industrially reliable quality. isn't it. In particular, specific surface area is used to evaluate this kind of catalytic ability, but it varies greatly despite subtle differences in manufacturing conditions, and the catalytic ability of the same specific surface area differs. On the other hand, even if the initial catalytic ability is high, its life may be short, and conversely, even if its initial catalytic ability is relatively low, its life may be maintained for a long time up to a certain level. Therefore, the present invention provides an improved hopcalite catalyst with a long life and stable quality by a method completely different from the conventional method. <Means and effects for solving the problems> That is, the present invention provides a first step in which a mixed salt aqueous solution of manganese and copper is acidified with mineral acid to precipitate mixed salt crystals of manganese and copper, which is obtained from the previous step. The second step is to add potassium permanganate to the strongly oxidized slurry system and perform oxidation treatment to produce manganese dioxide.The third step is to separate the precipitate from the previous step from the mother liquor, and to neutralize the obtained precipitate with an alkaline agent. The present invention relates to a method for producing a manganese dioxide-based carbon monoxide oxidation catalyst (hereinafter abbreviated as a manganese dioxide-based oxidation catalyst), which is characterized by comprising a fourth step of performing a sum treatment. First Step As mentioned above, this step is a step of precipitating mixed salt crystals of manganese and copper. Manganese and copper salts, which are the starting materials, may be any soluble salts, typically sulfates or nitrates, and of course, these salts may be anhydrous or hydrated. good. In general, nitrates are more preferred than sulfates because the sulfur content remaining in the catalyst tends to poison the catalyst; however, in the present invention, sulfates can also be satisfactorily used. Further, as mineral acids which are other raw materials, sulfuric acid and nitric acid are typically used. Therefore, in this process, in consideration of the circulation use of the mother liquor as described later, in many cases the process is carried out using a sulfate-sulfuric acid or nitrate-nitric acid system, but from the viewpoint of catalytic performance, there is no reason to limit it to this system. do not have. It is known that nickel, cobalt, zinc, or silver is supported in addition to copper depending on the purpose of use of the catalyst or to further improve the catalytic ability. Depending on the situation, soluble salts thereof can be used in conjunction with copper salts to support copper. Such a mixed salt aqueous solution of manganese and copper acts with a mineral acid to make it acidic, so that the solubility of the manganese and copper salts decreases according to the acid concentration, and the mixed salts precipitate. When making mineral acid acidic,
The mineral acid may be added to the metal mixed salt aqueous solution or vice versa. For example, in the sulfate-sulfuric acid system, the solubility of manganese sulfate is
Metal-organic compounds, Seidell, Linke
This is clearly stated in Fourth Edition, Volume P.563. Thus, in this process, it is important to crystallize the mixed salt from the solution with mineral acid, and although it is preferable to precipitate a substantial amount of the metal salt in the raw material aqueous solution, it is not always necessary to precipitate the entire amount. There isn't. Here, the mixed salt that crystallizes is not necessarily defined strictly chemically, but broadly defined as crystals that precipitate from a mixed solution of manganese and copper salts due to the action of mineral acids. However, it does not matter whether the crystal is a double salt of manganese and copper or a mixed crystal as a solid solution. For example, A Comprehensive Treatise On
Inorganic And Theoretical chemistry Vol.12,
P.421-422; According to Mellor, in the case of sulfuric acid type, CuSO 4・MnSO 4・nH 2 O (n=1 or 2)
When viewed as a double salt of (Cu・Mn)SO 4・nH 2 O
There is a report that a solid solution such as (n=5 or 7) is precipitated. Therefore, the mixed salt crystals in this process are probably
It is presumed that at least a portion of the salts are mutually solid-dissolved double salts, but such crystals are fine, and the present invention involves reacting with potassium permanganate in the next step in this crystalline state to produce manganese dioxide. It has the characteristics of That is, although the details of the reaction mechanism are unknown,
Catalytic ability can be stably improved by allowing potassium permanganate to act on mixed crystal particles of manganese and copper. Therefore, the blending ratio in the starting materials is related to the amount of copper to be supported on manganese dioxide and affects the catalytic ability, but in the present invention, the molar ratio Mn/
Cu is in the range of 1.4 to 14.0, particularly preferably in the range of 2 to 10. In addition, nickel, cobalt, zinc or silver salts are also available.
As mentioned above, a small amount can be mixed if necessary. Second Step This step is a step in which potassium permanganate is added to the strongly acidic slurry system obtained from the previous step to generate manganese dioxide. That is, in the first step, a strongly acidic slurry in which mixed crystals of manganese and copper are finely dispersed in a strongly acidic liquid is obtained. , manganese salts are converted to black-brown manganese dioxide to form a precipitate. The oxidation reaction in this step may be carried out at room temperature or with heating, but considering the reaction rate,
Heating at 60°C is preferred. Further, in order to carry out the oxidation reaction sufficiently, after the addition of potassium permanganate, the mixture is aged while stirring for a while. Although the details of the reaction system are unknown, it is likely that some copper ions are solidly dissolved in the manganese dioxide produced, and most of the other copper salts are adsorbed to the active manganese dioxide in the form of fine copper salt crystals. It is thought that they will co-precipitate. The amount of potassium permanganate to be added is around the theoretical amount at which manganese salt reacts with potassium permanganate to produce manganese dioxide, and preferably a slight excess. Either is fine. Third Step This step is a step in which the manganese dioxide-containing precipitate produced in the previous step is separated from the mother liquor. When separating, if it has been heated in the previous step, it is preferable to cool it and perform it at room temperature. The reason for this is to reduce the solubility of the copper salt, avoid copper ions from entering the mother liquor as much as possible, increase the yield of copper, and recycle the recovered mother liquor to the first step as a mineral acid source if necessary. It is. In this way, the separated mother liquor is a strongly acidic solution composed mainly of mineral acids, but also of potassium salts produced as by-products in the previous step and copper salts corresponding to the solubility. Therefore, it is industrially advantageous to recycle this mother liquor as a mineral acid source for dissolving or precipitating metal salts, but in this case, the temperature during separation and the mother liquor may be concentrated or diluted as necessary. By controlling its specific gravity, etc., it is possible to control its composition to a substantially constant composition and to recycle it. Furthermore, if the salt concentration increases due to the circulation of the mother liquor, it goes without saying that the potassium salt may be crystallized and separated as necessary. On the other hand, the precipitate is mainly composed of active manganese dioxide to which copper salts have been adsorbed, but it also has a high water content in which a considerable amount of mother liquor is also adsorbed. The separation operation may be carried out by any conventional means, such as centrifugation, filtration or decantation, as appropriate. Fourth Step This step is a step in which the separated and collected precipitate is neutralized with an alkaline agent. That is, the precipitate is dispersed in water and neutralized with caustic alkali or aqueous ammonia under stirring at room temperature or heating. This treatment not only neutralizes the acid content of the adhesion, but also converts the copper salt into a hydrous oxide and ensures that the copper is supported on the active manganese dioxide. PH is 9~
It is best to do this until you reach the 10 range. After the neutralization treatment, copper-supported manganese dioxide is obtained by separating and washing by a conventional method. The manganese dioxide-based oxidation catalyst thus produced can be used for desired purposes as an oxidation catalyst by drying if necessary, then kneading with a desired binder, molding, and drying. The manganese dioxide-based oxidation catalyst according to the present invention is
Analysis based on X-ray diffraction shows that it is substantially amorphous, porous with a specific surface area of at least 150 m 2 /g or more, and highly oxidizing active, although this varies depending on the final form of the catalyst. Furthermore, the molar ratio (Mn/Cu) of copper supported on manganese dioxide is 0.9 to 9.0, preferably 1.5 to 9.0.
It's in the 7.5 range. Example 1 315 g of manganese sulfate (MnSO 4 . H 2 O) and 286 g of copper sulfate (CuSO 4 .5H 2 O) were added to 1930 g of 50% sulfuric acid.
to prepare a mixed metal salt aqueous solution. This aqueous solution was then added with concentrated sulfuric acid (98% H 2 SO 4 ).
Add 208 ml and continue stirring for 1 hour at a temperature of 50-60°C to precipitate fine mixed sulfate crystals of manganese and copper. Next, 225 g of potassium permanganate powder was gradually added to the stirred slurry and maintained for about 2 hours to complete the oxidation reaction. Next, a small amount of water is added to the oxidized slurry to facilitate the separation operation, and then separated to separate the mother liquor and the precipitate. After redispersing the precipitate in water, it was neutralized with a caustic soda solution (48% NaOH) under stirring until the pH reached 9 to 10, and then by a conventional method.
The product was separated, washed with water, and dried to obtain a copper-supported manganese dioxide-based oxidation catalyst. Example 2 Crystals of 315 g of manganese sulfate (MuSO 4 .H 2 O) and 286 g of copper sulfate (CuSO 4 .5H 2 O) were prepared in Example 1.
Mother liquor separated and collected (H 2 SO 4 : 50%, Mu: 0.17
%, Cu: 0.22%, K: 0.66%, specific gravity: 1.397)
After dissolving in 1387ml, concentrated sulfuric acid (H 2 SO 4 : 98%)
Add 208 ml and continue stirring for about 1 hour to crystallize fine mixed crystals of manganese sulfate and copper sulfate. Then, 225 g of potassium permanganate crystals are gradually added to the sulfuric acid acidic slurry at a temperature of 50-60° C. to cause an oxidation reaction, and stirring is continued for about 2 hours. Next, 358 ml of water is added and solid-liquid separation is performed at room temperature to collect the precipitate and mother liquor, respectively. Next, the obtained precipitate was redispersed in water, neutralized with 28% ammonia water until the pH reached 9.3, and then separated, washed with water, and dried to obtain copper-supported manganese dioxide. A system oxidation catalyst was obtained. Example 3 Manganese sulfate (MnSO 4 H 2 O) 119 ml in 120 ml of water
A metal salt mixed aqueous solution prepared by adding 108 g of copper sulfate (CuSO 4 .5H 2 O) and 108 g of copper sulfate (CuSO 4 .5H 2 O) is heated to 45°C. To this was added the mother liquor collected and prepared in Example 2 (H 2 SO 4 :
55%, Mn: 0.16%, Cu: 0.20%, K: 0.65%,
Add 1340 ml of specific gravity: 1.455, and then add concentrated sulfuric acid (98
%H 2 SO 4 ) and stirred for about 1 hour to precipitate mixed crystals of the metal salt. Next, 85 g of crystalline powder of potassium permanganate is gradually added to the obtained slurry at a temperature of 55° C. After the addition, an oxidation reaction is caused and the slurry is aged for about 2 hours under stirring. After aging, the precipitate and liquid are filtered and separated. Below, Example 1
The same operation as above was carried out to obtain a copper-supported manganese dioxide-based oxidation catalyst. Example 4 Mother liquor recovered in Example 3 (H 2 SO 4 :55%,
Mn: 0.16%, Cu: 1.20%, K: 0.65%, Specific gravity:
1.455) Manganese sulfate 315g, copper sulfate 214 in 1340ml
g and 250 g of nickel sulfate (NiSO 4 .6H 2 O) were added thereto and the temperature was raised to 40 to 50° C. to prepare a metal salt mixture. To this, 229 ml of concentrated sulfuric acid (98% H 2 SO 4 ) is added and aged at a temperature of 50 to 60° C. for about 1 hour to precipitate a mixed crystal of metal salt. Next, 225% potassium permanganate crystal powder was added to the resulting strongly acidic slurry.
g is gradually added, and stirring is continued for about 2 hours after the addition to complete the oxidation reaction. Next, 358 ml of water is added to this slurry, and the slurry is filtered to separate the precipitate and the liquid. Thereafter, the same operation as in Example 1 was carried out to obtain a copper-supported manganese dioxide-based oxidation catalyst. Comparative example 1 315 g of manganese sulfate (MnSO 4 H 2 O) and 560 g of water
ml of the aqueous solution dissolved in concentrated sulfuric acid at a temperature of 45℃.
After adding 319 ml, aging was continued for about 1 hour to precipitate crystals of manganese sulfate. Next, 225 g of potassium permanganate crystal powder was added to this slurry.
was gradually added to carry out the reaction, and stirring was continued for about 2 hours to complete the oxidation treatment. Next, this is diluted with water, washed until the pH of the solution reaches 5 or more, and then subjected to excessive separation to obtain a hydrated manganese dioxide. On the other hand, add 286 g of copper sulfate (CuSO 4.5H 2 O) to water.
A caustic soda solution was added to a 1430ml aqueous solution of copper sulfate at a temperature of 65°C to a pH of 9 to 10 to form a precipitate. After cooling, the solution was washed until the pH reached 7.5 or less, and then over-separated. to obtain hydrated copper oxide. Water was added to each of the resulting cakes, and the mixture was thoroughly mixed and stirred, followed by filtering and drying in a conventional manner to obtain a manganese dioxide-based oxidation catalyst supporting copper. Comparative Example 2 A metal salt mixed aqueous solution is prepared by dissolving 315 g of manganese sulfate (MnSO 4 .H 2 O) and 214 g of copper sulfate (CuSO 4 .5H 2 O) in 500 ml of water. Next, 225 g of crystalline powder of potassium permanganate was added, and after the oxidation treatment, the pH was neutralized to 9 to 10 with NaOH solution.
The precipitate was separated by a conventional method, washed with water, and dried to obtain a copper-supported manganese dioxide-based oxidation catalyst. Comparative Example 3 After preparing a mixed solution in which 315 g of manganese sulfate (MuSO 4 .H 2 O) and 214 g of copper sulfate (CuSO 4 .5H 2 O) were dissolved in 500 ml of water, 225 g of crystalline powder of potassium permanganate was added to this. After adding an alkaline potassium permanganate solution prepared by dissolving MnO x and CuO in 700 ml of 10% KOH solution to coprecipitate MnO Obtained. Evaluation of catalytic ability 1 Sample preparation 10 g of each sample produced in Examples 1 to 4 and Comparative Examples 1 to 3 (120°C, 4 hours dry basis)
After kneading 0.5 g of bentonite as a binder with an appropriate amount of water, the mixture is molded using a pelleter. Next, the catalyst sample is dried at about 200°C. 2 CO gas removal method CO gas concentration 5000ppm, humidity 50%, temperature 20℃
The contaminated air at
The CO gas concentration and the time until the concentration reached 50 ppm were measured. The CO gas concentration was measured using a carbon monoxide meter using a constant potential electrolysis method. 3 Measurement Results The results of the CO removal measurement described above are shown in Table 1 along with the physical properties of the catalyst.

【表】【table】

【表】 〈発明の効果〉 本発明にかかる二酸化マンガン系酸化触媒は、
特に一酸化炭素を酸化除去する性能にすぐれ、か
つ湿度に対する性能の低下が少なく、従来のホプ
カライト触媒に比してその使用ライフが長いなど
触媒能のすぐれたものである。 他方、製造法の点からみると、アルカリの使用
量が少なくて済み、廃水も従来法に比べて少な
く、更に、硫酸を回収して循環して使用すれば硫
酸の使用量も節約できるなどの利点がある。 また、本発明にかかる方法によれば、品質の安
定した信頼性の高い触媒が工業的に有利に製造す
ることができる。
[Table] <Effects of the invention> The manganese dioxide-based oxidation catalyst according to the present invention is
In particular, it has excellent catalytic performance, with excellent performance in oxidizing and removing carbon monoxide, less deterioration in performance due to humidity, and a longer service life than conventional hopcalite catalysts. On the other hand, from the perspective of the manufacturing method, the amount of alkali used is small, the amount of waste water is also reduced compared to the conventional method, and the amount of sulfuric acid used can also be reduced by recovering and recycling the sulfuric acid. There are advantages. Further, according to the method of the present invention, a highly reliable catalyst with stable quality can be industrially advantageously produced.

Claims (1)

【特許請求の範囲】 1 マンガンおよび銅の混合塩水溶液を鉱酸酸性
にしてマンガンおよび銅の混合塩結晶を析出させ
る第1工程、前工程から得られる強酸性のスラリ
ー系に過マンガン酸カリウムを添加し酸化処理し
て二酸化マンガンを生成させる第2工程、前工程
の沈澱物を母液と分離する第3工程および得られ
た沈澱物をアルカリ剤で中和処理する第4工程か
らなることを特徴とする二酸化マンガン系一酸化
炭素酸化触媒の製造法。 2 マンガンおよび銅の混合塩水溶液がモル比
(Mn/Cu)が1.4〜14.0の範囲である特許請求の
範囲第1項記載の二酸化マンガン系一酸化炭素酸
化触媒の製造法。 3 強酸性のスラリー系が金属硫酸塩−硫酸系の
スラリーである特許請求の範囲第1項記載の二酸
化マンガン系一酸化炭素酸化触媒の製造法。 4 沈澱物を分離した母液はマンガンおよび銅塩
の溶解又は析出のための鉱酸源として循環使用す
る特許請求の範囲第1項又は第3項記載の二酸化
マンガン系一酸化炭素酸化触媒の製造法。
[Claims] 1. A first step in which an aqueous solution of a mixed salt of manganese and copper is acidified with a mineral acid to precipitate mixed salt crystals of manganese and copper. Potassium permanganate is added to the strongly acidic slurry system obtained from the previous step. A second step in which manganese dioxide is produced by addition and oxidation treatment, a third step in which the precipitate from the previous step is separated from the mother liquor, and a fourth step in which the obtained precipitate is neutralized with an alkali agent. A method for producing a manganese dioxide-based carbon monoxide oxidation catalyst. 2. The method for producing a manganese dioxide-based carbon monoxide oxidation catalyst according to claim 1, wherein the aqueous mixed salt solution of manganese and copper has a molar ratio (Mn/Cu) in the range of 1.4 to 14.0. 3. The method for producing a manganese dioxide-based carbon monoxide oxidation catalyst according to claim 1, wherein the strongly acidic slurry system is a metal sulfate-sulfuric acid slurry. 4. The method for producing a manganese dioxide-based carbon monoxide oxidation catalyst according to claim 1 or 3, wherein the mother liquor from which the precipitate is separated is recycled as a mineral acid source for dissolving or precipitating manganese and copper salts. .
JP60086233A 1985-04-24 1985-04-24 Preparation of manganese dioxide type oxidizing catalyst Granted JPS61245845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086233A JPS61245845A (en) 1985-04-24 1985-04-24 Preparation of manganese dioxide type oxidizing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086233A JPS61245845A (en) 1985-04-24 1985-04-24 Preparation of manganese dioxide type oxidizing catalyst

Publications (2)

Publication Number Publication Date
JPS61245845A JPS61245845A (en) 1986-11-01
JPH0512981B2 true JPH0512981B2 (en) 1993-02-19

Family

ID=13881072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086233A Granted JPS61245845A (en) 1985-04-24 1985-04-24 Preparation of manganese dioxide type oxidizing catalyst

Country Status (1)

Country Link
JP (1) JPS61245845A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178141B2 (en) 2005-01-27 2012-05-15 The Folger Coffee Company Articles of manufacture and methods for absorbing gasses released by roasted coffee packed in hermetically sealed containers
JP5598421B2 (en) * 2011-05-25 2014-10-01 新日鐵住金株式会社 Method for desulfurization / denitration of exhaust gas from sintering furnace and method for producing carbon monoxide oxidation catalyst
CN107768778A (en) * 2016-08-19 2018-03-06 中国科学院上海高等研究院 3 D stereo manganese bioxide electrode material and its preparation method and application

Also Published As

Publication number Publication date
JPS61245845A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
US1345323A (en) Catalyst and process of making it
JP3251951B2 (en) Zirconia with large surface area
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
US4386017A (en) Preparation of improved catalyst composition
JPH0512981B2 (en)
JPH10216522A (en) Catalyst for methanol synthesis
US4600704A (en) Catalyst
US4299735A (en) Heavy metal-manganese oxidation catalysts and process of producing same
EP0014413B1 (en) Process of producing rare earth-manganese oxidation catalysts
JPH08505568A (en) A catalyst in which the active ingredients are highly dispersively distributed.
JPH1057811A (en) Nox gas oxidizing agent and production thereof
US4659555A (en) Process for the preparation of basic copper carbonate
CN107115895B (en) A kind of preparation method of copper-zinc-based catalyst
JPH07118019A (en) Production of manganese dioxide
JP4015212B2 (en) Ion exchanger
US4568662A (en) Process for preparing alkylation catalysts
JP2994065B2 (en) Method for producing metal composite oxide powder
JP2773183B2 (en) Process for producing methanol synthesis catalyst precursor
JP2555636B2 (en) Method for producing copper-containing zeolite compact
JPH0130765B2 (en)
EP0022927B1 (en) Heavy metal manganese oxidation catalysts and process for their production
JP4213326B2 (en) Catalyst for alkylene oxide addition reaction
JP3715774B2 (en) Catalyst for producing carbonate ester, process for producing the same, and process for producing carbonate ester using the catalyst
US3111494A (en) Catalyst preparation
JPS59216878A (en) Production of 2-quinoxalinol