JPH05129699A - Laser device and production thereof - Google Patents

Laser device and production thereof

Info

Publication number
JPH05129699A
JPH05129699A JP28888791A JP28888791A JPH05129699A JP H05129699 A JPH05129699 A JP H05129699A JP 28888791 A JP28888791 A JP 28888791A JP 28888791 A JP28888791 A JP 28888791A JP H05129699 A JPH05129699 A JP H05129699A
Authority
JP
Japan
Prior art keywords
laser
solid
wavelength conversion
conversion material
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28888791A
Other languages
Japanese (ja)
Other versions
JP3234259B2 (en
Inventor
Tetsuo Yanai
哲夫 谷内
Kazuhisa Yamamoto
和久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28888791A priority Critical patent/JP3234259B2/en
Publication of JPH05129699A publication Critical patent/JPH05129699A/en
Application granted granted Critical
Publication of JP3234259B2 publication Critical patent/JP3234259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To eliminate optical precision adjustment so as to realize the cost reduction through mass-production. CONSTITUTION:A solid-state laser material 1 is excited by a semiconductor laser 7 and the excited light is converted into one half of wavelength through a wavelength conversion material 3. The other face of the plate material 1, which is provided with a plane reflecting mirror 2 on one face, is brought into contact with one face of the material 3 which is provided with a reflecting mirror 4. Further hardening flexible adhesive 5 is filled in recessed grooves 6 that are prepared on the outside of laser oscillation for either of the other face of the material 1 and one face of the material 3. In this case, it is desired that the contacting faces of the materials 1 and 3 make a tilt angle of 1 to 10 degrees against the reflecting surfaces of the mirrors 2 and 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光情報処理に使用さ
れるレーザー装置に関するもので、特に、半導体レーザ
ーにより固体レーザー材料を励起し、発生した光を波長
変換材料で例えば2分の1の波長に変換するタイプの小
型軽量のレーザー装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser device used for optical information processing, and in particular, a solid-state laser material is excited by a semiconductor laser, and the generated light is converted into, for example, a half of the light by a wavelength conversion material. The present invention relates to a small and lightweight laser device of a wavelength converting type.

【0002】[0002]

【従来の技術】従来から固体レーザーによるレーザー発
振と非線形光学効果による波長変換とを利用して青色か
ら緑色の光を発生させるレーザー光源が開発されてい
る。以下、従来のレーザー光源について説明する。図4
は従来の半導体レーザー励起によるレーザー光源の側面
図を示す。図4において、21は一面に平面反射ミラー
22が形成された例えばNdドープYAG(イットリウ
ム・アルミニウム・ガーネット)結晶からなる板状の固
体レーザー材料、23は例えばKTP(KTiOP
4 )結晶からなる板状の波長変換材料、24は球面反
射ミラーであり、光学ガラス(例えばBK7)等の透明
体25で保持されている。26は励起用の半導体レーザ
ー、27はレーザー光である。
2. Description of the Related Art Conventionally, a laser light source for generating blue to green light has been developed by utilizing laser oscillation by a solid laser and wavelength conversion by a nonlinear optical effect. The conventional laser light source will be described below. Figure 4
Shows a side view of a conventional laser light source excited by a semiconductor laser. In FIG. 4, 21 is a plate-shaped solid laser material made of, for example, Nd-doped YAG (yttrium-aluminum-garnet) crystal having a plane reflection mirror 22 formed on one surface, and 23 is, for example, KTP (KTiOP).
A plate-shaped wavelength conversion material made of O 4 ) crystal, 24 is a spherical reflection mirror, and is held by a transparent body 25 such as optical glass (for example, BK7). 26 is a semiconductor laser for excitation, and 27 is a laser beam.

【0003】以上のような構成のレーザー光源は、半導
体レーザー26のレーザー光を固体レーザー材料21に
照射して固体レーザー材料21を励起することにより、
平面反射ミラー22と球面反射ミラー24の間でレーザ
ー発振させ、波長変換材料23で波長を半分に変換し
て、緑色のレーザー光27を発生させる。
The laser light source having the above structure irradiates the solid laser material 21 with the laser light of the semiconductor laser 26 to excite the solid laser material 21.
Laser oscillation is generated between the plane reflection mirror 22 and the spherical reflection mirror 24, the wavelength is converted into half by the wavelength conversion material 23, and the green laser light 27 is generated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来例の構成では、平面反射ミラー22を形成した固体
レーザー材料21と波長変換材料23と球面反射ミラー
24を形成した透明体25とが別部品として作成されて
おり、この3部品の光学精密調整が不可欠であるため
に、量産化が難しく低コスト化が困難であるという問題
があった。
However, in the configuration of the above-mentioned conventional example, the solid-state laser material 21 having the plane reflecting mirror 22 formed therein, the wavelength conversion material 23, and the transparent body 25 having the spherical reflecting mirror 24 formed therein are separate parts. Since the optical precision adjustment of these three parts is indispensable, there is a problem that mass production is difficult and cost reduction is difficult.

【0005】この発明の目的は、光学精密調整を不要に
することができ、量産化が容易で低コスト化を達成する
ことができるレーザー装置を提供することである。
An object of the present invention is to provide a laser device which can eliminate the need for optical precision adjustment, can be mass-produced easily, and can achieve cost reduction.

【0006】[0006]

【課題を解決するための手段】この発明のレーザー装置
は、一面に第1の反射ミラーを形成した板状の固体レー
ザー材料の他面と一面に第2の反射ミラーを形成した板
状の波長変換材料の他面とを接触させている。そして、
固体レーザー材料の他面および波長変換材料の他面の少
なくとも一方のレーザー発振領域の外側位置に設けた凹
溝に硬化収縮性接着剤を充填している。この際、固体レ
ーザー材料の他面および波長変換材料の他面どうしの接
触面は第1および第2の反射ミラーの反射面に対して1
度ないし10度の範囲で傾斜させるのが望ましい。
SUMMARY OF THE INVENTION A laser device of the present invention is a plate-shaped wavelength laser having a second reflection mirror formed on one surface and the other surface of a plate-shaped solid laser material having a first reflection mirror formed on one surface. It is in contact with the other side of the conversion material. And
A curing shrinkable adhesive is filled in a groove provided on the outer surface of the laser oscillation region on at least one of the other surface of the solid-state laser material and the other surface of the wavelength conversion material. At this time, the contact surface between the other surface of the solid-state laser material and the other surface of the wavelength conversion material is 1 with respect to the reflecting surfaces of the first and second reflecting mirrors.
It is desirable to incline in the range of 10 to 10 degrees.

【0007】また、この発明のレーザー装置の製造方法
は、一面に第1の反射ミラーが形成される板状の固体レ
ーザー材料と一面に第2の反射ミラーが形成される板状
の波長変換材料との少なくとも一方の他面のレーザー発
振領域の外側位置に凹溝を形成し、この凹溝に硬化収縮
性接着剤を充填した後、前記固体レーザー材料および前
記波長変換材料の他面どうしを接触させ、前記硬化収縮
性接着剤を硬化させることを特徴とする。
Further, according to the method of manufacturing a laser device of the present invention, a plate-shaped solid-state laser material having a first reflection mirror formed on one surface and a plate-shaped wavelength conversion material having a second reflection mirror formed on one surface. A groove is formed at a position outside the laser oscillation region on at least one of the other surfaces of the solid laser material and the wavelength conversion material, and the other surface of the solid laser material and the wavelength conversion material are contacted with each other. Then, the curing shrinkable adhesive is cured.

【0008】[0008]

【作用】この発明の構成によれば、固体レーザー材料と
波長変換材料とが硬化収縮性接着剤の硬化収縮により互
いに引き合った状態に強固に接着一体化され、温度,機
械振動などに対して安定で信頼性の高いレーザー装置を
実現することができる。また、固体レーザー材料と波長
変換材料と第1および第2の反射ミラーとが一体化され
ているので、レーザー発振させる際の光学精密調整が不
要であり、量産化が容易で低コスト化を達成することが
できる。
According to the structure of the present invention, the solid laser material and the wavelength conversion material are firmly bonded and integrated with each other due to the curing shrinkage of the curing shrinkable adhesive, and are stable against temperature, mechanical vibration and the like. It is possible to realize a highly reliable laser device. Further, since the solid-state laser material, the wavelength conversion material, and the first and second reflection mirrors are integrated, there is no need for precision optical adjustment when oscillating the laser, and mass production is easy and cost reduction is achieved. can do.

【0009】[0009]

【実施例】以下、この発明の実施例について、図面を参
照しながら説明する。図1は半導体レーザー励起による
この発明の一実施例のレーザー光源の側面図を示す。こ
のレーザー光源の構成および動作を図1を参照しながら
説明する。なお、レーザー装置とは、レーザー光源のう
ち、励起用半導体レーザーを除く構成をいう。図1にお
いて、1は例えばNdドープYVO4 結晶からなる板状
の固体レーザー材料、2は固体レーザー材料の一面に形
成した平面反射ミラー、3は例えばKTP結晶からなる
板状の波長変換材料、4は波長変換材料の一面に形成し
た平面反射ミラーであり、固体レーザー材料1および波
長変換材料3の他面どうしを相互に接触させている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a side view of a laser light source according to an embodiment of the present invention excited by a semiconductor laser. The configuration and operation of this laser light source will be described with reference to FIG. The laser device refers to a structure of the laser light source excluding the excitation semiconductor laser. In FIG. 1, 1 is a plate-shaped solid-state laser material made of, for example, Nd-doped YVO 4 crystal, 2 is a plane reflection mirror formed on one surface of the solid-state laser material, 3 is a plate-shaped wavelength conversion material made of, for example, KTP crystal, 4 Is a plane reflection mirror formed on one surface of the wavelength conversion material, and the other surfaces of the solid-state laser material 1 and the wavelength conversion material 3 are in contact with each other.

【0010】5は固体レーザー材料の他面のレーザー発
振領域の両外側位置に形成した凹溝6に充填した紫外線
硬化型の硬化収縮性接着剤(例えば、スリーボンド社製
の3056等)であり、固体レーザー材料1と波長変換
材料3とを接着し、このときに収縮による引張力によっ
て固体レーザー材料1と波長変換材料3とを互いに引き
合った状態に強固に一体化し、固体レーザー材料1と波
長変換材料3の他面どうしを圧接させ、温度,機械振動
などに対して安定化させる。
Reference numeral 5 denotes an ultraviolet-curing type curing shrinkable adhesive (for example, 3056 manufactured by ThreeBond Co., Ltd.) filled in the concave grooves 6 formed on both sides of the laser oscillation region on the other surface of the solid laser material. The solid-state laser material 1 and the wavelength conversion material 3 are adhered to each other, and at this time, the solid-state laser material 1 and the wavelength conversion material 3 are firmly integrated with each other by a pulling force due to contraction, so that the solid-state laser material 1 and the wavelength conversion material 3 are converted. The other surfaces of the material 3 are brought into pressure contact with each other to stabilize them against temperature, mechanical vibration and the like.

【0011】7は励起用の半導体レーザー、8はレーザ
ー装置から出射するレーザー光である。以上のように構
成されたこの実施例について、以下その動作を説明す
る。半導体レーザー7により励起された固体レーザー材
料1は、平面反射ミラー2,4の間でレーザー発振(波
長1064nm)し、その光は波長変換材料3で1/2
に波長変換され、波長532nmの緑色のレーザー光8
が発生する。
Reference numeral 7 is a semiconductor laser for excitation, and 8 is a laser beam emitted from a laser device. The operation of this embodiment configured as described above will be described below. The solid-state laser material 1 excited by the semiconductor laser 7 oscillates (wavelength 1064 nm) between the plane reflection mirrors 2 and 4, and the light thereof is 1/2 in the wavelength conversion material 3.
Laser light with a wavelength of 532 nm converted to green
Occurs.

【0012】固体レーザー材料1であるNdドープYV
4 および波長変換材料3であるKTPの屈折率は、各
々1.97,1.87であって異なる値であるために、接合
面において0.5%程度の反射が生ずる。このために、固
体レーザー材料1および波長変換材料3の接合面9は平
面反射ミラー2,4の反射面に対し例えば3度傾斜を付
けることによりレーザー発振への不要反射の影響を除去
している。
Nd-doped YV solid-state laser material 1
Since the refractive indexes of O 4 and KTP as the wavelength conversion material 3 are 1.97 and 1.87, which are different values, reflection of about 0.5% occurs at the joint surface. For this reason, the bonding surface 9 of the solid-state laser material 1 and the wavelength conversion material 3 is inclined by, for example, 3 degrees with respect to the reflecting surfaces of the plane reflecting mirrors 2 and 4, thereby eliminating the influence of unnecessary reflection on the laser oscillation. ..

【0013】この実施例のレーザー装置によれば、固体
レーザー材料1と波長変換材料3とが硬化収縮性接着剤
5の紫外線照射による硬化収縮により互いに引き合った
状態に強固に接着一体化され、温度,機械振動などに対
して安定で信頼性を高めることができる。また、固体レ
ーザー材料1と波長変換材料3と反射ミラー2,4とが
一体化されているので、レーザー発振させる際の光学精
密調整が不要であり、量産化が容易で低コスト化を達成
することができる。
According to the laser device of this embodiment, the solid laser material 1 and the wavelength conversion material 3 are firmly bonded and integrated in a state where they are attracted to each other by the curing shrinkage of the curing shrinkable adhesive 5 by the irradiation of ultraviolet rays, and the temperature , Stable and reliable against mechanical vibration. Further, since the solid-state laser material 1, the wavelength conversion material 3 and the reflection mirrors 2 and 4 are integrated, there is no need for optical precision adjustment when oscillating the laser, and mass production is easy and cost reduction is achieved. be able to.

【0014】また、固体レーザー材料1と波長変換材料
3と平面反射ミラー2,4とが一体化されているので、
固体レーザー材料,波長変換材料および反射ミラーが別
体である場合に比べてレーザー装置の小型化を図ること
ができる。図2はこの発明のレーザー装置の製造方法を
示す工程順断面図である。以下、図2を参照しながらレ
ーザー装置の製造方法を説明する。
Since the solid-state laser material 1, the wavelength conversion material 3 and the plane reflection mirrors 2 and 4 are integrated,
The size of the laser device can be reduced compared to the case where the solid-state laser material, the wavelength conversion material, and the reflection mirror are separate bodies. 2A to 2D are cross-sectional views in order of the steps, showing the method for manufacturing a laser device of the present invention. Hereinafter, a method for manufacturing a laser device will be described with reference to FIG.

【0015】まず図2(a)に示すように、凹溝6が形
成された固体レーザー材料1に紫外線硬化型の硬化収縮
性接着剤5を塗布する。この後図2(b)に示すよう
に、波長変換材料3を圧着し、不要な硬化収縮性接着剤
5を除き、つぎに紫外線10を照射することにより凹溝
6内の硬化収縮性接着剤5を硬化反応させると、図2
(c)に示す状態となる。その後、接着した固体レーザ
ー材料1および波長変換材料3に平面反射ミラー2,4
がそれぞれ形成されてレーザー装置となる。
First, as shown in FIG. 2A, an ultraviolet curable curing shrinkable adhesive 5 is applied to the solid laser material 1 in which the concave groove 6 is formed. After that, as shown in FIG. 2B, the wavelength conversion material 3 is pressure-bonded to remove the unnecessary curing shrinkable adhesive 5, and then the ultraviolet ray 10 is irradiated to cure the shrinkable adhesive in the groove 6. As shown in FIG.
The state shown in (c) is obtained. Then, the solid-state laser material 1 and the wavelength conversion material 3 which are adhered to the plane reflection mirrors 2 and 4 are attached.
Are respectively formed into a laser device.

【0016】図3はこの発明のレーザー装置の製造方法
を示す他の工程順断面図である。この図3は、複数のレ
ーザー装置を同時に作成できることを示すものである。
この製造方法では、図3(a)に示すように、長尺の板
状の固体レーザー材料1に対し、0.2mmから0.5mm
の間隔で長手方向に複数個の凹溝6を形成し、この長尺
の固体レーザー材料1と同じく長尺の波長変換材料3と
を硬化収縮型接着剤5によって接着一体化し、接着一体
化した固体レーザー材料1および波長変換材料3を結晶
切断器(図示せず)により破線11の位置で切断するこ
とにより、図3(b)に示すように、複数個のレーザー
装置を同時に得る。
3A to 3D are sectional views in order of the other steps, showing the method for manufacturing a laser device according to the present invention. This FIG. 3 shows that a plurality of laser devices can be produced simultaneously.
In this manufacturing method, as shown in FIG. 3 (a), the length of the plate-shaped solid laser material 1 is 0.2 mm to 0.5 mm.
A plurality of recessed grooves 6 are formed in the longitudinal direction at intervals of, and the long solid laser material 1 and the long wavelength conversion material 3 are adhered and integrated by a curing shrinkage type adhesive 5 to be adhered and integrated. By cutting the solid-state laser material 1 and the wavelength conversion material 3 at the position of the broken line 11 by a crystal cutter (not shown), a plurality of laser devices are simultaneously obtained as shown in FIG. 3 (b).

【0017】この実施例の製造方法によれば、複数のレ
ーザー装置を同時に作製可能であり、従来方法では実現
が困難である量産プロセスによる低コスト化が可能であ
る。なお、上記実施例では、固体レーザー材料1とし
て、NdドープYVO4 結晶を用いたが、これに代え
て、NdドープYAG(イットリウムアルミニウムガー
ネット)結晶,NdドープYLF〔YLiF4 (イット
リウムリチウムフロライド)〕結晶、NYAB〔Ndx
1-x Al3 (BO3 4 ,x=0.01〜0.05(ネオジウ
ムイットリウムアルミボレイト)〕結晶を使用してもよ
い。また、上記実施例では、波長変換材料3として、K
TP結晶を用いたが、これに代えて、KNbO3 結晶、
NYAB結晶、BBO〔β−BaB2 4 (ベータ−バ
リウムボレイト)〕結晶、LBO〔LiB3 5 (リチ
ウムボレイト)〕結晶を用いてもよい。
According to the manufacturing method of this embodiment, a plurality of laser devices can be manufactured at the same time, and the cost can be reduced by the mass production process which is difficult to realize by the conventional method. Although Nd-doped YVO 4 crystal was used as the solid-state laser material 1 in the above embodiment, Nd-doped YAG (yttrium aluminum garnet) crystal, Nd-doped YLF [YLiF 4 (yttrium lithium fluoride) was used instead. ] Crystal, NYAB [Nd x
Y 1-x Al 3 (BO 3 ) 4 , x = 0.01 to 0.05 (neodymium yttrium aluminum borate)] crystal may be used. Further, in the above embodiment, the wavelength conversion material 3 is K
A TP crystal was used, but instead of this, a KNbO 3 crystal,
A NYAB crystal, a BBO [β-BaB 2 O 4 (beta-barium borate)] crystal, or an LBO [LiB 3 O 5 (lithium borate)] crystal may be used.

【0018】また、上記実施例では、凹溝6を固体レー
ザー材料1の他面に形成したが、もちろん波長変換材料
3の他面に形成してもよく、さらにその両方に形成して
もよい。また、上記実施例では、レーザー発振への不要
反射の影響を除去するために、固体レーザー材料1と波
長変換材料3の接合面は、反射ミラー2,4の反射面に
対して3度傾斜させていたが、この角度には限らない。
この傾斜角度は1度ないし10度程度の範囲に設定する
のが好ましい。これは、1度より小さいと不要反射の影
響を十分に除去できず、また10度より大きいとレーザ
ー発振が困難になるからである。
In the above embodiment, the concave groove 6 is formed on the other surface of the solid-state laser material 1, but of course it may be formed on the other surface of the wavelength conversion material 3 or both of them. .. Further, in the above-mentioned embodiment, in order to eliminate the influence of unnecessary reflection on the laser oscillation, the joint surface of the solid-state laser material 1 and the wavelength conversion material 3 is inclined by 3 degrees with respect to the reflection surfaces of the reflection mirrors 2 and 4. However, it is not limited to this angle.
This inclination angle is preferably set in the range of about 1 to 10 degrees. This is because if it is less than 1 degree, the effect of unnecessary reflection cannot be sufficiently removed, and if it is greater than 10 degrees, laser oscillation becomes difficult.

【0019】[0019]

【発明の効果】この発明のレーザー装置によれば、固体
レーザー材料と波長変換材料とが硬化収縮性接着剤の硬
化収縮により互いに引き合った状態に強固に接着一体化
され、温度,機械振動などに対して安定で信頼性の高い
レーザー装置を実現することができる。また、固体レー
ザー材料と波長変換材料と第1および第2の反射ミラー
とが一体化されているので、レーザー発振させる際の光
学精密調整が不要であり、量産化が容易で低コスト化を
達成することができる。
According to the laser device of the present invention, the solid-state laser material and the wavelength conversion material are firmly bonded and integrated in a state of being attracted to each other by the curing shrinkage of the curing shrinkable adhesive, so that the temperature and mechanical vibrations are prevented. On the other hand, it is possible to realize a stable and highly reliable laser device. Further, since the solid-state laser material, the wavelength conversion material, and the first and second reflection mirrors are integrated, there is no need for precision optical adjustment when oscillating the laser, and mass production is easy and cost reduction is achieved. can do.

【0020】また、固体レーザー材料と波長変換材料と
第1および第2の反射ミラーとが一体化されているの
で、固体レーザー材料,波長変換材料および反射ミラー
が別体である場合に比べてレーザー装置の小型化を図る
ことができる。
Further, since the solid-state laser material, the wavelength conversion material, and the first and second reflection mirrors are integrated, compared with the case where the solid-state laser material, the wavelength conversion material and the reflection mirror are separate bodies, It is possible to reduce the size of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例のレーザー装置の構成を示
す概略側面図である。
FIG. 1 is a schematic side view showing the configuration of a laser device according to an embodiment of the present invention.

【図2】図1のレーザー装置の製造方法を示す工程順側
面図である。
2A to 2C are side views in order of the steps, showing the method for manufacturing the laser device in FIG.

【図3】図1のレーザー装置の製造方法を示す工程順側
面図である。
3A to 3D are side views in order of the steps, showing a method for manufacturing the laser device of FIG.

【図4】従来例のレーザー装置の構成例を示す側面図で
ある。
FIG. 4 is a side view showing a configuration example of a conventional laser device.

【符号の説明】[Explanation of symbols]

1 固体レーザー材料 2 平面反射ミラー 3 波長変換材料 4 平面反射ミラー 5 硬化収縮性接着剤 6 凹溝 7 半導体レーザー 9 接合面 1 solid-state laser material 2 plane reflection mirror 3 wavelength conversion material 4 plane reflection mirror 5 curing shrinkable adhesive 6 concave groove 7 semiconductor laser 9 bonding surface

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/094 Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01S 3/094

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一面に第1の反射ミラーを形成した板状
の固体レーザー材料と、一面に第2の反射ミラーを形成
し他面を前記固体レーザー材料の他面に接触させた板状
の波長変換材料と、前記固体レーザー材料および前記波
長変換材料の少なくとも一方の他面のレーザー発振領域
の外側位置に設けた凹溝に充填した硬化収縮性接着剤と
を備えたレーザー装置。
1. A plate-shaped solid-state laser material having a first reflection mirror formed on one surface thereof, and a plate-like solid laser material having a second reflection mirror formed on one surface thereof and the other surface thereof in contact with the other surface of the solid-state laser material. A laser device comprising: a wavelength conversion material; and a curing shrinkable adhesive filled in a groove provided outside the laser oscillation region on at least one other surface of the solid-state laser material and the wavelength conversion material.
【請求項2】 固体レーザー材料と波長変換材料の他面
どうしの接触面を第1および第2の反射ミラーの反射面
に対して1度ないし10度の範囲で傾斜させたことを特
徴とする請求項1記載のレーザー装置。
2. A contact surface between the other surfaces of the solid-state laser material and the wavelength conversion material is tilted within a range of 1 to 10 degrees with respect to the reflecting surfaces of the first and second reflecting mirrors. The laser device according to claim 1.
【請求項3】 一面に第1の反射ミラーが形成される板
状の固体レーザー材料と一面に第2の反射ミラーが形成
される板状の波長変換材料との少なくとも一方の他面の
レーザー発振領域の外側位置に凹溝を形成し、この凹溝
に硬化収縮性接着剤を充填した後、前記固体レーザー材
料および前記波長変換材料の他面どうしを接触させ、前
記硬化収縮性接着剤を硬化させることを特徴とするレー
ザー装置の製造方法。
3. A laser oscillation of at least one of a plate-shaped solid-state laser material having a first reflection mirror formed on one surface and a plate-shaped wavelength conversion material having a second reflection mirror formed on one surface thereof. After forming a concave groove on the outer side of the region and filling the concave groove with a curing shrinkable adhesive, the other surfaces of the solid laser material and the wavelength conversion material are brought into contact with each other to cure the curing shrinkable adhesive. A method of manufacturing a laser device, comprising:
JP28888791A 1991-11-05 1991-11-05 Laser device manufacturing method Expired - Fee Related JP3234259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28888791A JP3234259B2 (en) 1991-11-05 1991-11-05 Laser device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28888791A JP3234259B2 (en) 1991-11-05 1991-11-05 Laser device manufacturing method

Publications (2)

Publication Number Publication Date
JPH05129699A true JPH05129699A (en) 1993-05-25
JP3234259B2 JP3234259B2 (en) 2001-12-04

Family

ID=17736063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28888791A Expired - Fee Related JP3234259B2 (en) 1991-11-05 1991-11-05 Laser device manufacturing method

Country Status (1)

Country Link
JP (1) JP3234259B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004081A1 (en) * 2002-06-26 2004-01-08 Sony Corporation Optical element, light emitting device, and method of manufacturing optical element
JP2010032568A (en) * 2008-07-25 2010-02-12 Shimadzu Corp Optical element and method of manufacturing optical element
WO2011074215A1 (en) * 2009-12-14 2011-06-23 パナソニック株式会社 Wavelength-converting laser source, optical element, and image-displaying device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004081A1 (en) * 2002-06-26 2004-01-08 Sony Corporation Optical element, light emitting device, and method of manufacturing optical element
EP1517414A1 (en) * 2002-06-26 2005-03-23 Sony Corporation Optical element, light emitting device, and method of manufacturing optical element
EP1517414A4 (en) * 2002-06-26 2006-01-18 Sony Corp Optical element, light emitting device, and method of manufacturing optical element
US7842132B2 (en) 2002-06-26 2010-11-30 Sony Corporation Optical element, light emitting device and method for producing optical element
US7907647B2 (en) 2002-06-26 2011-03-15 Sony Corporation Optical element, light emitting device and method for producing optical element
JP2010032568A (en) * 2008-07-25 2010-02-12 Shimadzu Corp Optical element and method of manufacturing optical element
WO2011074215A1 (en) * 2009-12-14 2011-06-23 パナソニック株式会社 Wavelength-converting laser source, optical element, and image-displaying device
US8743917B2 (en) 2009-12-14 2014-06-03 Panasonic Corporation Wavelength conversion light source, optical element and image display device

Also Published As

Publication number Publication date
JP3234259B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US5123025A (en) Miniature optical source
WO2011074215A1 (en) Wavelength-converting laser source, optical element, and image-displaying device
EP1763116A1 (en) Mode control waveguide laser
EP2849293A1 (en) Passive q-switch element and passive q-switch laser device
WO2005091447A1 (en) Laser equipment
JPH1065261A (en) Process of assembling two structures, device manufactured by this process and application to microlaser
JP2001251002A (en) Laser device
CN102484349B (en) The method of nonlinear crystal encapsulation and the application in diode pumped solid state thereof
JPH05129699A (en) Laser device and production thereof
JP3221586B2 (en) Optical wavelength converter
JP2004295088A (en) Wavelength conversion element
JPH07202308A (en) Solid state laser and manufacture therefor
US11101614B1 (en) Second-harmonic generation crystal
JP4099573B2 (en) OPTICAL ELEMENT, LIGHT EMITTING DEVICE, AND OPTICAL ELEMENT MANUFACTURING METHOD
US7072368B2 (en) Optical contacting method and apparatus
JPS61189686A (en) Laser device
JPH06120586A (en) Solid state laser equipment
EP1864954A2 (en) Method for joining optical members, structure for integrating optical members and laser oscillation device
JPH07211976A (en) Optical resonator
JP2754101B2 (en) Laser diode pumped solid state laser
JPH0595145A (en) Solid-state laser
JP5018685B2 (en) Optical element and optical element manufacturing method
JPH0415969A (en) Semiconductor laser exciting solid laser
JPH06181350A (en) Output mirror, optical axis controlling method thereof, and ld exciting green laser device provided therewith
JPH06350173A (en) Polarized beam and longitudinal mode control element and solid-state laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees