JPH05129100A - Undulator apparatus - Google Patents

Undulator apparatus

Info

Publication number
JPH05129100A
JPH05129100A JP28749991A JP28749991A JPH05129100A JP H05129100 A JPH05129100 A JP H05129100A JP 28749991 A JP28749991 A JP 28749991A JP 28749991 A JP28749991 A JP 28749991A JP H05129100 A JPH05129100 A JP H05129100A
Authority
JP
Japan
Prior art keywords
magnetic field
electromagnets
electron beam
undulator
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28749991A
Other languages
Japanese (ja)
Inventor
Shintaro Fukumoto
信太郎 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28749991A priority Critical patent/JPH05129100A/en
Publication of JPH05129100A publication Critical patent/JPH05129100A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To obtain a small-sized and low-priced device by arranging a plurality of horizontal magnetic field generating electromagnets and vertical magnetic field generating electromagnets alternately along the axis of an electron beam to allow the electron beam to meander. CONSTITUTION:Horizontal/vertical magnetic field generating electromagnets 19, 20 including an electrode 15, a yoke 16 and an excitation coil 17 are arranged at the same intervals on a frame 6. The electromagnets 19, 20 are electrically connected in such a manner that the exciting direction thereof turns intermittently by 90 deg. along an electron beam axis. The deflection capacities of electromagnets 18c, 18b on end parts are set to halves of those of electromagnets 19, 20. According to this constitution, it is possible to vary K value by increasing/decreasing exciting current even without varying the length of magnetic pole cavity and no magnetic field may be generated if magnetization process is stopped even though the apparatus is not removed from above the trajectory of the electron beam. Therefore, a drive mechanism can be eliminated so as to realize a small size and low price of the apparatus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シンクロトロン放射
(synchrotron radiation)の光
源装置であるアンジュレータ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an undulator device which is a light source device for synchrotron radiation.

【0002】[0002]

【従来の技術】シンクロトロン放射は、電子のエネルギ
ーが十分高ければ、そのスペクトルは真空紫外よりX線
領域に及ぶ連続分布を示し、その波長域の汎用光源とな
る。図3(a),(b)は例えば「加速器科学 第1巻
第4号1986・6」45頁〜64頁「シンクロトロン
放射の未来」に記載されたアンジュレータ装置の概念
図、図4(a),(b)は従来のアンジュレータ装置の
磁気回路の構成例をそれぞれ示す斜視図である。図5は
従来装置の製作例を示す側面図である。例えば図3,図
4および図5において、1は磁場発生装置、2は電子ビ
ームの軌道、3は永久磁石、4は磁極材、7はガイド、
8は支持アーム、9はサーボモータ、10はエンコー
ダ、11はボールネジ、12は架台、13は台車、14
はレールである。
2. Description of the Related Art Synchrotron radiation, if the energy of electrons is sufficiently high, has a spectrum showing a continuous distribution extending from the vacuum ultraviolet region to the X-ray region, and is a general-purpose light source in that wavelength region. 3 (a) and 3 (b) are conceptual diagrams of the undulator device described in "Future of Synchrotron Radiation" on pages 45 to 64 of "Accelerator Science Vol. 1, No. 4, 1986-6", for example. ) And (b) are perspective views showing a configuration example of a magnetic circuit of a conventional undulator device, respectively. FIG. 5 is a side view showing an example of manufacturing a conventional device. For example, in FIGS. 3, 4 and 5, 1 is a magnetic field generator, 2 is a trajectory of an electron beam, 3 is a permanent magnet, 4 is a pole member, 7 is a guide,
8 is a support arm, 9 is a servo motor, 10 is an encoder, 11 is a ball screw, 12 is a pedestal, 13 is a dolly, 14
Is a rail.

【0003】次に、動作について説明する。アンジュレ
ータ装置は、図3に示すように、磁場発生装置1は永久
磁石3等を組み合わせて周期的に変化する磁場を発生す
るようになっており、入射した電子ビームはローレンツ
力により磁場と直交する方向に力を受け、軌道2も周期
的に蛇行する。このとき、電子は加速度を受けシンクロ
トロン放射を行う。
Next, the operation will be described. As shown in FIG. 3, in the undulator device, the magnetic field generation device 1 is configured to generate a magnetic field that changes periodically by combining permanent magnets 3 and the like, and the incident electron beam is orthogonal to the magnetic field due to the Lorentz force. A force is applied in the direction, and the orbit 2 also meanders periodically. At this time, the electrons receive acceleration and emit synchrotron radiation.

【0004】例えば、この周期磁場By を By = B0sin(2πz/λu ) ……(1) とすれば、電子軌道のz軸に対する最大の傾きΨ0 とロ
ーレンツファクターγ-1との比Kは、磁場強度B0 (テ
スラ)と周期長λu (cm)とで K =Ψ0 /γ-1=0.934B0(テスラ)λu(cm) ……(2) と表される。但し、電子のエネルギーをE(GeV)と
して、 γ = 1957 ・ E ……(3) である。また、このシンクロトロン放射の基本波長λ1
は、 λ1 =λu(1+K2/2) / 2λ2 ……(4) となり、Kが大きくなる値、すなわち周期長が長く磁場
が高いほど、あるいは、電子ビームのエネルギーが低い
ほど基本波の波長は長くなることがわかる。さらに、高
調波特性がこのK値に強く依存し、K《1の場合、スペ
クトルは基本波のみとなる。一方、K》1の場合円軌道
のシンクロトロン放射によく似た高調波の列となり、広
帯域連続スペクトル光となる。K<3の放射をアンジュ
レータ放射、K>3の場合をウィグラー放射と呼んでい
る。特にアンジュレータ放射は、円軌道のシンクロトロ
ン放射の103 〜104 倍の高輝度が得られ、波長可変
の準単色光となり、電子ビームの蛇行面に平行な電気ベ
クトルを持つ直線偏光となる。この特性は極めて実用価
値の高いものである。
For example, if the periodic magnetic field B y is B y = B 0 sin (2πz / λ u ) (1), the maximum inclination Ψ 0 of the electron orbit with respect to the z axis and the Lorentz factor γ -1 are obtained. The ratio K of the magnetic field strength B 0 (Tesla) and the period length λ u (cm) is expressed as K = Ψ 0 / γ −1 = 0.934B 0 (Tesla) λ u (cm) (2) To be done. However, when the electron energy is E (GeV), γ = 1957 · E (3). Also, the fundamental wavelength λ 1 of this synchrotron radiation
Is, λ 1 = λ u (1 + K 2/2) / 2λ 2 ...... (4) next, K becomes large value, i.e. the higher the longer magnetic field period length, or more fundamental wave is low energy electron beam It can be seen that the wavelength of becomes longer. Further, the harmonic characteristic strongly depends on this K value, and when K << 1, the spectrum is only the fundamental wave. On the other hand, in the case of K >> 1, it becomes a train of harmonics much like the synchrotron radiation in a circular orbit, and becomes broadband continuous spectrum light. Radiation with K <3 is called undulator radiation, and radiation with K> 3 is called wiggler radiation. In particular, the undulator radiation has a brightness 10 3 to 10 4 times higher than that of synchrotron radiation in a circular orbit, becomes tunable quasi-monochromatic light, and becomes linearly polarized light having an electric vector parallel to the meandering surface of the electron beam. This characteristic is of extremely high practical value.

【0005】図4(a),(b)は従来の磁気回路の構
成例をそれぞれ示したものであり、磁場発生装置1を保
磁力と残留磁場の高い希土類磁石等の永久磁石3で構成
し、また図4(b)のように、飽和磁束密度の高い材質
の磁極材4を出し入れすることで各磁極の磁場強度を徴
調できるようにしたものもある。また、黒矢印は永久磁
石3の中の磁場方向および白ぬきの矢印は永久磁石間空
隙の磁場方向を示している。
FIGS. 4 (a) and 4 (b) respectively show examples of the construction of a conventional magnetic circuit, in which the magnetic field generator 1 is composed of a permanent magnet 3 such as a rare earth magnet having a high coercive force and a residual magnetic field. Also, as shown in FIG. 4 (b), there is also one in which the magnetic field strength of each magnetic pole can be adjusted by taking in and out the magnetic pole material 4 made of a material having a high saturation magnetic flux density. The black arrow indicates the magnetic field direction in the permanent magnet 3 and the open arrow indicates the magnetic field direction in the air gap between the permanent magnets.

【0006】図5は、実際の製作例を示したものであ
り、上記のように各磁極の磁場強度を徴調できるよう
に、サーボモータ9、エンコーダ10とボールネジ11
で、フレーム6に取り付けられたガイド7に沿わせて支
持アーム8に固定された永久磁石3を上下させ、磁極空
隙距離が可変にできるようにしている。また、これらの
磁場の影響を完全に取り除くために、装置を固定した架
台12を台車13に乗せ、レール14上を移動させて、
電子ビーム軌道2から取り外すこともできるようにして
いる。この場合、周期長λu は7.4(cm)であり、
電子のエネルギーが0.8(GeV)の電子蓄積リング
に用いた場合、(3)式より、γ=1566、(1)式
より磁場強度B0 を0.36(テスラ)とすれば、K〜
2.5となり、式(4)よりアンジュレータ放射基本波
長は約6182(nm)となることが分かる。
FIG. 5 shows an actual manufacturing example. In order to adjust the magnetic field strength of each magnetic pole as described above, the servo motor 9, the encoder 10 and the ball screw 11 are shown.
Then, the permanent magnet 3 fixed to the support arm 8 is moved up and down along the guide 7 attached to the frame 6 so that the magnetic pole gap distance can be made variable. Further, in order to completely remove the influence of these magnetic fields, the pedestal 12 to which the device is fixed is placed on the carriage 13 and moved on the rail 14,
It can also be detached from the electron beam track 2. In this case, the cycle length λ u is 7.4 (cm),
When used in an electron storage ring with electron energy of 0.8 (GeV), if γ = 1566 from equation (3) and the magnetic field strength B 0 is 0.36 (tesla) from equation (1), then K ~
It becomes 2.5, and it can be seen from Equation (4) that the undulator radiation fundamental wavelength is about 6182 (nm).

【0007】[0007]

【発明が解決しようとする課題】従来のアンジュレータ
装置は以上のように構成されているので、波長の選択は
(3)式から分かるように、ビームエネルギーもしくは
K値(parameter)を制御する必要がある。ア
ンジュレータ装置が装着される電子蓄積リングのビーム
エネルギーは長期間にわたって固定されているのが普通
であるから、日常的にはK値を可変にすることによって
行われている。また、周期長を可変にするのは困難なの
で、磁場を増減するために磁極間空隙長を変化させる。
また、完全に磁場の影響を完全になくしてしまうために
装置全体を電子ビームの軌道2から取り外すことが必要
である。これらのための駆動機構はたいへん大がかりに
なり、駆動のための時間もかかる等の課題があった。
Since the conventional undulator device is constructed as described above, it is necessary to control the beam energy or the K value (parameter) in order to select the wavelength, as can be seen from the equation (3). is there. Since the beam energy of the electron storage ring to which the undulator device is attached is usually fixed for a long period of time, it is routinely performed by making the K value variable. Further, since it is difficult to make the cycle length variable, the gap length between magnetic poles is changed to increase or decrease the magnetic field.
In addition, it is necessary to remove the entire apparatus from the electron beam trajectory 2 in order to completely eliminate the influence of the magnetic field. The driving mechanism for these is very large, and there is a problem that it takes time for driving.

【0008】以上は、磁場を単に垂直方向に発生させる
場合の説明であるが、磁場を水平方向に発生させる場
合、即ち電子ビームを垂直方向に蛇行させてアンジュレ
ータ放射光の偏光方向を変えたい場合には図5に示す装
置を90°回転させて設置しなければならない。さら
に、円偏光のアンジュレータ放射光を得るために、これ
らを組み合わせて軌道上の同一場所に垂直方向及び水平
方向の周期磁場を発生させることにより電子ビームを螺
旋状に蛇行させることが必要で、従来の方法では、この
ような装置を構成するのはさらに困難となる等の課題が
あった。
The above is a description of the case where the magnetic field is simply generated in the vertical direction. However, when the magnetic field is generated in the horizontal direction, that is, when the electron beam is meandered in the vertical direction and the polarization direction of the undulator radiation is changed. The device shown in FIG. 5 must be rotated by 90 ° before installation. Furthermore, in order to obtain circularly polarized undulator radiation, it is necessary to combine these to generate a vertical and horizontal periodic magnetic field at the same location on the orbit, and thus cause the electron beam to meander in a spiral shape. However, the above method has a problem that it is more difficult to construct such a device.

【0009】この発明は、上記のような課題を解消する
ためになされたもので、水平方法および垂直方向の周期
磁場を電子ビームの軌道上の同一場所に発生・除去した
り、強度を変化させるための駆動機構が不要なアンジュ
レータ装置を得ることを目的とする。
The present invention has been made to solve the above problems, and generates or removes a periodic magnetic field in the horizontal method and in the vertical direction at the same position on the orbit of an electron beam, or changes the intensity. It is an object of the present invention to obtain an undulator device that does not require a drive mechanism for.

【0010】この発明に係わるアンジュレータ装置は、
同一の電磁石を多数個、それぞれの磁極の方向が90°
ずつ回転した隣接位置関係で電子ビームの軌道上に沿っ
て配設したものである。
The undulator device according to the present invention is
Many same electromagnets, each magnetic pole direction is 90 °
They are arranged along the orbit of the electron beam in the adjacent positional relationship of rotating each.

【0011】[0011]

【作用】この発明におけるアンジュレータ装置は、電子
ビーム軸上に沿って、電磁石に発生させる偏向磁場(二
極磁場)の方向90°ずつ回転させることにより、電子
ビーム軸上に互いに位相が90°ずれた水平方向および
垂直方向の周期磁場を発生でき、その結果、電子ビーム
を螺旋状に蛇行させることができ、円偏光のアンジュレ
ータ放射光を得ることができる。
In the undulator device according to the present invention, the deflection magnetic field (bipolar magnetic field) generated by the electromagnet is rotated by 90 ° along the electron beam axis so that the phases thereof are deviated from each other by 90 ° on the electron beam axis. The horizontal and vertical periodic magnetic fields can be generated, and as a result, the electron beam can be spirally meandered and circularly polarized undulator radiation can be obtained.

【0012】[0012]

【実施例】実施例1.以下、この発明の一実施例を図に
ついて説明する。図1および図2において、15は磁
極、16は継鉄、17は励磁用コイル、18は端部用電
磁石、19,20は磁極15、継鉄16および励磁用コ
イル17からなる水平磁場発生用電磁石、垂直磁場発生
用電磁石である。図1は装置の正面図を示しており、電
極15、継鉄16および励磁用コイル17によって磁気
回路が構成され、励磁用コイル17に電流を流すことに
より磁極15間に偏向磁場が発生できる。図2は、フレ
ーム6上にこれらの電磁石19,20を等間隔に配列し
た状態を示す側面図である。これらの電磁石19,20
の励磁方向は、電子ビーム軸に沿って90°ずつ回転し
ていくように電気的な結線がされている。実際には、こ
れらの電磁石19,20の内、端部の2台の電磁石18
a,18bは偏向能力が、内部の電磁石の半分になるよ
うにする必要があり、全ての電磁石18,19を直列励
磁できるように端部の電磁石18a,18bは励磁用コ
イル17の巻き数を減らすか、端部は別電源として励磁
電流を減らすかして調整する。
EXAMPLES Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, 15 is a magnetic pole, 16 is a yoke, 17 is an exciting coil, 18 is an end electromagnet, and 19 and 20 are for generating a horizontal magnetic field composed of the magnetic pole 15, the yoke 16 and the exciting coil 17. An electromagnet and an electromagnet for generating a vertical magnetic field. FIG. 1 shows a front view of the apparatus. A magnetic circuit is constituted by the electrode 15, yoke 16 and exciting coil 17, and a deflection magnetic field can be generated between the magnetic poles 15 by passing a current through the exciting coil 17. FIG. 2 is a side view showing a state in which the electromagnets 19 and 20 are arranged on the frame 6 at equal intervals. These electromagnets 19, 20
The excitation direction is electrically connected so as to rotate by 90 ° along the electron beam axis. Actually, of these electromagnets 19 and 20, the two electromagnets 18 at the ends are
It is necessary that a and 18b have a deflection capability that is half that of the internal electromagnets, and the electromagnets 18a and 18b at the ends have the number of turns of the excitation coil 17 so that all the electromagnets 18 and 19 can be excited in series. Adjust it by reducing it or by reducing the exciting current as a separate power source at the end.

【0013】例えば、上記のような電磁石18,19の
配列が可能な周期長(電磁石4台分に相当する)λu
60(cm)として、電子のエネルギーが6(GeV)
の電子蓄積リングに用いる場合、(3)式より、γ=1
1742、K=2.5として、(1)式より磁場強度B
0 を0.0446(テスラ)とすれば、式(4)よりア
ンジュレータ放射基本波長は約900(nm)となるこ
とが分かる。
For example, when the period length (corresponding to four electromagnets) λ u at which the electromagnets 18 and 19 can be arranged as described above is 60 (cm), the electron energy is 6 (GeV).
When used for the electron storage ring of
1742 and K = 2.5, the magnetic field strength B is calculated from the equation (1).
If 0 is 0.0446 (Tesla), it can be seen from the formula (4) that the undulator radiation fundamental wavelength is about 900 (nm).

【0014】このように、電磁石18,19を用いたア
ンジュレータ装置は、周期長は従来装置と比較して1桁
程度大きなものとなるが、電子蓄積リングの電子エネル
ギーが6〜8(GeV)程度に大きければ、従来のアン
ジュレータ装置と同様の性能を得ることが可能となり、
磁極空隙長を変化させなくても、励磁電流を増減するこ
とによりK値を変化させることができ、装置を電子ビー
ム軌道上から排除しなくても、励磁をやめれば磁場も発
生されない。また、このような磁場の増減あるいはON
/OFFために必要な時間を大幅に短縮でき、アンジュ
レータ放射光の利用効率が向上する。
As described above, the undulator device using the electromagnets 18 and 19 has a cycle length about one digit larger than that of the conventional device, but the electron energy of the electron storage ring is about 6 to 8 (GeV). If it is large, it is possible to obtain the same performance as a conventional undulator device,
Even if the magnetic pole gap length is not changed, the K value can be changed by increasing or decreasing the exciting current, and even if the device is not removed from the electron beam trajectory, the magnetic field is not generated if the excitation is stopped. Also, increase or decrease of such magnetic field or ON
The time required for turning on / off can be significantly reduced, and the utilization efficiency of the undulator radiation light is improved.

【0015】実施例2.なお、上記実施例では、両端を
除いて全ての電磁石18,19を直列に励磁する場合、
即ち、螺旋状の磁場を発生させる場合を説明したが、水
平方向および水平方向の磁場発生用の電磁石を、即ち、
ひとつおきに直列に励磁し、水平方向磁場と垂直方向磁
場を独立に励磁を増減あるいはON/OFFできるよう
にしたものであってもよい。
Example 2. In the above embodiment, when all the electromagnets 18 and 19 except the both ends are excited in series,
That is, the case of generating a spiral magnetic field has been described, but an electromagnet for generating a horizontal magnetic field and a horizontal magnetic field is
It may be one in which every other magnetic field is excited in series so that the horizontal magnetic field and the vertical magnetic field can be independently increased / decreased or turned ON / OFF.

【0016】また、周期数を増減させても、上記実施例
と同様の効果を奏する。
Further, even if the number of cycles is increased or decreased, the same effect as in the above embodiment can be obtained.

【0017】[0017]

【発明の効果】以上のように、この発明によれば磁場発
生装置を偏向磁場を発生させる磁極および励磁用コイル
と継鉄からなる電磁石を磁極の方向を90°ずつ回転す
る関係で等間隔に配列し構成したので、螺旋状あるいは
水平方向、垂直方向の周期磁場の発生、磁場の増減ある
いはON/OFFが簡略化でき、高速化もはかれる。こ
れにより、駆動機構等が省略でき、装置が安価にでき、
省スペースがはかれる効果もある。
As described above, according to the present invention, the magnetic field generator generates magnetic poles for generating a deflection magnetic field, an exciting coil, and electromagnets made of yokes are rotated at regular intervals by 90 ° in the direction of the magnetic poles. Since they are arranged, the generation of a periodic magnetic field in a spiral shape, a horizontal direction, or a vertical direction, increase / decrease of the magnetic field, or ON / OFF can be simplified, and the speed can be increased. As a result, the drive mechanism etc. can be omitted, the device can be made inexpensive,
It also has the effect of saving space.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるアンジュレータ装置
用電磁石の正面図である。
FIG. 1 is a front view of an electromagnet for an undulator device according to an embodiment of the present invention.

【図2】この発明の一実施例によるアンジュレータ装置
の側面図である。
FIG. 2 is a side view of an undulator device according to an embodiment of the present invention.

【図3】従来のアンジュレータ装置の概念図である。FIG. 3 is a conceptual diagram of a conventional undulator device.

【図4】従来のアンジュレータ装置の磁気回路の構成例
を示す断面図である。
FIG. 4 is a cross-sectional view showing a configuration example of a magnetic circuit of a conventional undulator device.

【図5】従来のアンジュレータ装置の製作例を示す側面
図である。
FIG. 5 is a side view showing a manufacturing example of a conventional undulator device.

【符号の説明】[Explanation of symbols]

15 磁極 16 継鉄 17 励磁用コイル 18a,18b 端部用電磁石 19 水平磁場発生用電磁石 20 垂直磁場発生用電磁石 15 Magnetic poles 16 Yoke 17 Excitation coils 18a, 18b End electromagnets 19 Horizontal magnetic field generation electromagnets 20 Vertical magnetic field generation electromagnets

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電子ビーム軸に沿って、磁場が水平方向
に発生する水平磁場発生用電磁石と磁場が垂直方向に発
生する垂直磁場発生用電磁石とを交互に複数個配設し、
前記電子ビームを蛇行させるようになっていることを特
徴とするアンジュレータ装置。
1. A plurality of horizontal magnetic field generating electromagnets in which a magnetic field is generated in the horizontal direction and vertical magnetic field generating electromagnets in which a magnetic field is generated in the vertical direction are alternately arranged along an electron beam axis.
An undulator device characterized by causing the electron beam to meander.
JP28749991A 1991-11-01 1991-11-01 Undulator apparatus Pending JPH05129100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28749991A JPH05129100A (en) 1991-11-01 1991-11-01 Undulator apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28749991A JPH05129100A (en) 1991-11-01 1991-11-01 Undulator apparatus

Publications (1)

Publication Number Publication Date
JPH05129100A true JPH05129100A (en) 1993-05-25

Family

ID=17718138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28749991A Pending JPH05129100A (en) 1991-11-01 1991-11-01 Undulator apparatus

Country Status (1)

Country Link
JP (1) JPH05129100A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124400A (en) * 1983-12-07 1985-07-03 工業技術院長 Circularly polarized light generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124400A (en) * 1983-12-07 1985-07-03 工業技術院長 Circularly polarized light generator

Similar Documents

Publication Publication Date Title
Halbach Application of permanent magnets in accelerators and electron storage rings
US8638016B2 (en) Electromagnetic structure having a core element that extends magnetic coupling around opposing surfaces of a circular magnetic structure
JPH08330096A (en) Flat plasma generator using fluctuating magnetic pole
Ramian et al. Micro-undulator FELS
Pflueger Undulator technology
USH1615H (en) Magnetic fields for chiron wigglers
JPH05129100A (en) Undulator apparatus
JP4000555B2 (en) Periodic magnetic field generator
Shirasawa et al. Development of multi‐polarization‐mode undulator
JP3204920B2 (en) Permanent magnet type bending magnet device and electron storage ring
KR101268392B1 (en) Pulsed Magnet using Amorphous Metal Modules and Pulsed Magnet Assembly
Gluskin et al. The elliptical multipole wiggler project
KR101232232B1 (en) Permanent Magnet Assisted Electromagnetic Helical Undulator
JPH0757899A (en) Multiple deflecting electromagnet device
Martovetsky et al. Focusing Magnets for HIF based on Racetracks
Iwashita et al. Strong variable permanent multipole magnets
Derbenev et al. rf driven stable spin-flipping motion of a stored polarized beam
Chang et al. Design of a revolving helical staggered undulator
Chung et al. Conceptual Design of a Permanent Magnet Undulator for Fast Pulse-to-Pulse Polarization Switching in an FEL
Halbach Use of permanent magnets in accelerator technology: Present and future
Nakamura et al. Phase shifter prototype with laminated permalloy yokes for a polarization-controlled undulator
Bassalat et al. High Field Hybrid Permanent Magnet Wiggler Optimized for Tunable Synchrotron Radiation Spectrum
US20200352018A1 (en) Fast-switch undulator and method for polarizing electron beam
JPH0547500A (en) Undulator device
WO2024068600A1 (en) Quantum computing arrangement and quantum computer