JPH0512880B2 - - Google Patents

Info

Publication number
JPH0512880B2
JPH0512880B2 JP55173797A JP17379780A JPH0512880B2 JP H0512880 B2 JPH0512880 B2 JP H0512880B2 JP 55173797 A JP55173797 A JP 55173797A JP 17379780 A JP17379780 A JP 17379780A JP H0512880 B2 JPH0512880 B2 JP H0512880B2
Authority
JP
Japan
Prior art keywords
radio
anechoic chamber
transmitting antenna
radio wave
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55173797A
Other languages
Japanese (ja)
Other versions
JPS5797700A (en
Inventor
Tetsuo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
II ANDO SHII ENJINIARINGU KK
Original Assignee
II ANDO SHII ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by II ANDO SHII ENJINIARINGU KK filed Critical II ANDO SHII ENJINIARINGU KK
Priority to JP17379780A priority Critical patent/JPS5797700A/en
Publication of JPS5797700A publication Critical patent/JPS5797700A/en
Publication of JPH0512880B2 publication Critical patent/JPH0512880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電波無響室、更に詳細には送・受信間
の伝達関数の異常点を除去せしめる電波無響室に
関する。 電波無響室は自由空間を理想とした電波的にほ
ぼ無反射に近い測定室として知られている。しか
しながら実際上この電波無響室の無響特性は壁面
に装着した電波吸収体の電波吸収特性について制
限される。一般的には、低周波域ほど電波吸収体
の吸収特性は劣化し、このため電波吸収体を装着
した電波無響室の無響特性も劣化することにな
る。これは一般に電磁波の波長が長くなると電波
吸収体への浸透の深さ(スキン深さ)が深くな
り、吸収効果が減殺されることによる。つまり相
対的に、波長:λと吸収体の厚さ:tとの比:
λ/tが大きいほど吸収特性は劣化するといえ
る。従つて、従来の電波無響室は上記した低周波
域(実際にはVHF帯域)における無響特性の劣
化により種々の問題が生じていた。 本発明によると、上記問題の1つ、即ち送・受
信間の伝達関数に異常点が生ずるという問題を解
決する電波無響室が提供される。 まず、第1図乃至第4図を参照して、従来の電
波無響室及びその特性を説明する。 第1図は電波無響室における一般的な電波の反
射の様子を示している。この電波無響室には、送
信アンテナ2と受信アンテナ4とが配置されてい
る。電波無響室の壁面及び天井には周知の電波吸
収体が設けられている。送信アンテナ2からはそ
の周囲の空間に、電波が例えば均質に放射され
る。 放射される電波の波長:λが比較的短かく、従
つて、放射される電波の波長:λと吸収体の厚
さ:tとの比:λ/tが比較的小さい場合におい
ては、受信アンテナ4に受信される電波は、受信
アンテナ4に直接飛び込む直接波Dと、途中の壁
面(天井及び床)で反射する反対波R1及びR2と、
側壁で反射する反射波(図示示せず)とのベクト
ル和と考えることができる。 これに対して、放射される電波の波長:λが比
較的長く、従つて、放射される電波の波長:λと
吸収体の厚さ:tとの比:λ/tが大きい場合に
おいては、上記した通り電波無響室を構成する壁
の吸収体の吸収特性が劣化し、第2図に示した如
く送信アンテナ2に対向する壁面は電磁波的には
半鏡の状態となり、かなりの割合の電力が送信ア
ンテナ2に返つてくる。 第3図は第2図の等価回路を示す。第3図に
て、送信アンテナ2は半鏡状態の壁面により反射
された電波の影響を受けて、送信アンテナ2は、
本来を放射電波に加えて半鏡状態の壁面の影響に
よる電波も放射し、これによつて、第3図の端子
AA′よりみた場合の電源回路の電源電圧及びイン
ピーダンスを変化せしめる。即ち、端子AA′から
みた電源回路は、送信アンテナ2から放射される
本来の電波に対応する電源と、対向する壁面に対
する反射により生ずる電波R5〜R10に対応する電
源を加算したものとなる。また、受信アンテナ4
に受信される電波は、送信アンテナ2からの直接
波、即ち端子AA′から直接伝達されるものDと、
壁面に反射した後受信される電波、即ちR1……
R4とを加算したものと考えることができる。 このため実際の電波無響室においては、送・受
信間の伝達関数Ft(ω)(ω:角周波数)に好ま
しくない異常点が現われることがある。この異常
点を第4図に例示する。この異常点が電波無響室
に吸収体を設置した後に現われると、送信アンテ
ナ、受信アンテナの設置位置等を変化せしめて
も、本質的に異常点を除去することはできない。 本発明は上記の通りの状況に鑑みてなされたも
のである。 本発明に従う電波無響室の好適具体例を説明す
る。第5図の電波無響室の壁面及び天井等は、第
1図のものと同様に構成されている。本発明に従
う電波無響室においては、送信アンテナ2の対向
する壁面の影響を除くため誘電(もしくは磁性材
料)で形成された可動壁部材6,6′が設けられ
ている。この可動壁部材6,6′は反射波に所望
の減衰量と移相とを与え、これによつて、第6図
に示す如く異常点を消滅せしめる。可動壁部材
6,6′の厚さ、大きさ、誘電(もしくは磁性)
特性は上記効果を達成するため適切に選定され、
更に、種々の波長の放射電波、送・受信アンテナ
の設置位置等に適合するように、所望の位置に移
動できる。 例えば、水平偏波測定の場合、測定領域(クワ
イアツトゾーン:QZ)の真上の天井に取り付け
られ、その高さを適切に調整することにより測定
領域QZから発射された電磁波の位相及び振巾を
調整し、送・受信間の伝達関数の異常点を除去す
ることができる。 実施例 第7図乃至第9図に示したとおりの電波無響室
を作成した。第7図は電波無響室の正面図であ
り、第8図はその平面図、第9図はその側面図で
ある。 この電波無影響室は、長さ30m、幅25m、高さ
15mであり、図示したとおりに電波吸収体が配置
されている。電波吸収体として、中空誘電体ピラ
ミダル電波吸収体であるグレースジヤパン(株)製の
エコソーブ(商標)HPYを使用した。電波無響
室の床は、木材及び誘電体から構成し、電波吸収
体として、グレースジヤパン製のエコアース(商
標)を使用した。 送信アンテナ12は、一方の端壁からの距離が
9mで、両側壁の中央に位置し、床からの高さが
1mである位置に配置されている。送信アンテナ
14は、送信アンテナ12からの距離が10mであ
り、両側壁の中央に位置し、床からの高さが3m
である位置に配置されている。 可動壁部材を用いない状態で、周波数を変え
て、伝達関数の変化を測定した。 その結果は、第10図のアのとおりであつた。
このグラフは、39MHzにピークが存在し、異常点
が存在することを示している。 次に、送信アンテナ12の上方に可動壁部材1
6を設けた。 可動壁部材16は、グレースジヤパン(株)製のエ
コソーブ(商標)LS−30からなる。エコソーブ
LS−30は、高損失用フレキシブ電波吸収体であ
り、その特性は、次のとおりである。
The present invention relates to a radio anechoic chamber, and more particularly to a radio anechoic chamber for removing abnormal points in a transfer function between transmitting and receiving. A radio anechoic chamber is known as a measurement chamber that is ideally located in free space and has virtually no reflection of radio waves. However, in practice, the anechoic characteristics of this radio anechoic chamber are limited by the radio wave absorption characteristics of the radio wave absorber attached to the wall surface. Generally, the lower the frequency range, the worse the absorption characteristics of a radio wave absorber, and therefore the anechoic characteristics of a radio wave anechoic chamber equipped with the radio wave absorber will also deteriorate. This is because, in general, as the wavelength of electromagnetic waves becomes longer, the depth of penetration into the radio wave absorber (skin depth) increases, reducing the absorption effect. In other words, relatively speaking, the ratio of wavelength: λ to absorber thickness: t:
It can be said that the larger λ/t is, the worse the absorption characteristics are. Therefore, conventional radio anechoic chambers have had various problems due to the deterioration of anechoic characteristics in the above-mentioned low frequency range (actually, VHF band). According to the present invention, a radio anechoic chamber is provided that solves one of the above problems, that is, the problem that an abnormal point occurs in the transfer function between transmitting and receiving. First, a conventional radio anechoic chamber and its characteristics will be explained with reference to FIGS. 1 to 4. Figure 1 shows the general state of radio wave reflection in a radio anechoic chamber. A transmitting antenna 2 and a receiving antenna 4 are arranged in this radio anechoic chamber. Well-known radio wave absorbers are provided on the walls and ceiling of the radio anechoic chamber. For example, radio waves are uniformly radiated from the transmitting antenna 2 into the surrounding space. When the wavelength of the emitted radio wave: λ is relatively short, and therefore the ratio between the wavelength of the emitted radio wave: λ and the thickness of the absorber: t: λ/t is relatively small, the receiving antenna The radio waves received by the antenna 4 are a direct wave D that directly enters the receiving antenna 4, and opposite waves R1 and R2 that are reflected on the walls (ceiling and floor) along the way.
It can be considered as a vector sum with a reflected wave (not shown) reflected by the side wall. On the other hand, if the wavelength of the emitted radio wave: λ is relatively long, and therefore the ratio of the wavelength of the emitted radio wave: λ to the thickness of the absorber: t: λ/t is large, As mentioned above, the absorption characteristics of the wall absorbers that make up the radio anechoic chamber deteriorate, and as shown in Figure 2, the wall facing the transmitting antenna 2 becomes a semi-mirror in terms of electromagnetic waves, and a considerable proportion of Power is returned to the transmitting antenna 2. FIG. 3 shows an equivalent circuit of FIG. 2. In FIG. 3, the transmitting antenna 2 is affected by the radio waves reflected by the wall in a semi-mirror state, and the transmitting antenna 2 is
In addition to the originally radiated radio waves, radio waves due to the influence of the wall surface in a semi-mirror state are also radiated, and as a result, the terminal shown in Figure 3
The power supply voltage and impedance of the power supply circuit as seen from AA′ are changed. In other words, the power supply circuit viewed from terminal AA' is the sum of the power supply corresponding to the original radio waves radiated from the transmitting antenna 2 and the power supply corresponding to the radio waves R 5 to R 10 generated by reflection from the opposing wall surface. . In addition, the receiving antenna 4
The radio waves received by D are direct waves from the transmitting antenna 2, that is, those directly transmitted from the terminal AA',
Radio waves received after being reflected on the wall surface, i.e. R 1 ...
It can be thought of as adding R4 . Therefore, in an actual radio anechoic chamber, undesirable abnormal points may appear in the transmission/reception transfer function Ft(ω) (ω: angular frequency). This abnormal point is illustrated in FIG. If this abnormal point appears after the absorber is installed in the radio anechoic chamber, the abnormal point cannot essentially be removed even if the installation positions of the transmitting antenna and receiving antenna are changed. The present invention has been made in view of the above situation. A preferred specific example of the radio anechoic chamber according to the present invention will be described. The walls, ceiling, etc. of the radio anechoic chamber in FIG. 5 are constructed in the same manner as in FIG. 1. In the radio anechoic chamber according to the present invention, movable wall members 6, 6' made of dielectric (or magnetic material) are provided to eliminate the influence of the opposing wall surfaces of the transmitting antenna 2. The movable wall members 6, 6' impart a desired amount of attenuation and phase shift to the reflected waves, thereby eliminating the abnormal point as shown in FIG. Thickness, size, dielectric (or magnetic) of movable wall members 6, 6'
The characteristics are appropriately selected to achieve the above effects,
Furthermore, it can be moved to a desired position to suit the radiated radio waves of various wavelengths, the installation positions of transmitting/receiving antennas, etc. For example, in the case of horizontal polarization measurement, it is installed on the ceiling directly above the measurement area (quiet zone: QZ), and by adjusting its height appropriately, the phase and amplitude of the electromagnetic waves emitted from the measurement area QZ can be adjusted. can be adjusted to remove abnormal points in the transfer function between transmitting and receiving. Example A radio anechoic chamber as shown in FIGS. 7 to 9 was created. FIG. 7 is a front view of the radio anechoic chamber, FIG. 8 is a plan view thereof, and FIG. 9 is a side view thereof. This radio wave-free chamber is 30m long, 25m wide, and has a height of
It is 15m long, and radio wave absorbers are placed as shown in the diagram. As the radio wave absorber, Ecosorb (trademark) HPY manufactured by Grace Japan Co., Ltd., which is a hollow dielectric pyramidal radio wave absorber, was used. The floor of the radio anechoic chamber was made of wood and dielectric material, and Eco Earth (trademark) manufactured by Grace Japan was used as the radio wave absorber. The transmitting antenna 12 is located at a distance of 9 m from one end wall, at the center of both side walls, and at a height of 1 m from the floor. The transmitting antenna 14 is 10 m away from the transmitting antenna 12, is located in the center of both side walls, and has a height of 3 m from the floor.
It is placed in a certain position. Changes in the transfer function were measured by changing the frequency without using the movable wall member. The results were as shown in Figure 10A.
This graph has a peak at 39MHz, indicating that there is an abnormal point. Next, the movable wall member 1 is placed above the transmitting antenna 12.
6 was established. The movable wall member 16 is made of Ecosorb (trademark) LS-30 manufactured by Grace Japan Co., Ltd. ecosorb
LS-30 is a high-loss flexible radio wave absorber, and its characteristics are as follows.

【表】 K′及びK″は、それぞれ、複素誘電率の実数部
及び虚数部である。dB/cm及びIL−dB/inは、
それぞれ、電波投下率を示し、厚さ1cm当たり及
び1インチ当たりの透過損失を表している。 上記のとおりの材料からなり、長さLが2.436
mであり、幅Wが5.99mであり、厚さが10.16cm
(4インチ)の可動壁部材16を用いた。 この可動壁部材16を、送信アンテナ12の上
方の下記のとおりのa、b及びc位置に配置し
た。
[Table] K' and K'' are the real and imaginary parts of the complex permittivity, respectively. dB/cm and IL-dB/in are
Each shows the radio transmission rate and represents the transmission loss per 1 cm of thickness and per 1 inch of thickness. Made of the same material as above, length L is 2.436
m, width W is 5.99m, and thickness is 10.16cm
(4 inches) movable wall member 16 was used. This movable wall member 16 was placed above the transmitting antenna 12 at positions a, b, and c as shown below.

【表】 h1及びhdは、第9図に示したとおり、可動壁
部材16のそれぞれの端縁の床からの高さであ
る。 上記のとおりに可動壁部材を配置して、周波数
を変えて、伝達関数の変化を測定した。その結果
は、第10図のa〜cのとおりであつた。これら
グラフは、39MHzのピークが消滅し、異常点がな
くなつたことを示している。 上記の通りであるので、本発明に従う電波無響
室は、送・受信間の伝達関数の異常点を除去せし
めることができ、これによつて、 (1) 比較的厚さの薄い(即ち、ピラミツド状吸収
体においては高さの低い)吸収体を用いて、低
周波域まで使用でき、 (2) 調整が可能であるので、目的に応じてF限周
波数を調整でき、 (3) 従来、再設計するより対策がなかつた送・受
信伝達関数の異常点に対して安価で対処できる 等の多くの実用的効果を奏をする。
[Table] As shown in FIG. 9, h1 and hd are the heights of the respective edges of the movable wall member 16 from the floor. The movable wall member was arranged as described above, the frequency was changed, and changes in the transfer function were measured. The results were as shown in a to c in FIG. These graphs show that the 39MHz peak has disappeared and there are no abnormal points. As described above, the radio anechoic chamber according to the present invention can eliminate abnormal points in the transfer function between transmitting and receiving, and thereby: (1) has a relatively thin thickness (i.e., (2) It is adjustable, so the F-limit frequency can be adjusted depending on the purpose; (3) Conventionally, It has many practical effects, such as being able to deal with abnormal points in the transmitting/receiving transfer function at a lower cost than by redesigning the transmitting/receiving transfer function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、従来の電波無響室の電波
の様子を示す簡略図。第3図は、第1図及び第2
図の電波無響室の等価回路。第4図は、従来の電
波無響室の送・受信間の伝達関数Ft(ω)と角周
波数ωとの関係の一例を示す簡略図。第5図は、
本発明に従つて構成された電波無響室の簡略図。
第6図は、本発明に従つて構成された電波無響室
の送・受信間の伝達関数Ft(ω)と角周波数ωと
の関係の一例を示す簡略図。第7図は、好適実施
例に従う電波無響室の正面図。第8図は、第7図
の電波無響室の平面図。第9図は、第7図の電波
無響室の側面図。第10図は、第7図の電波無響
室の特性を示す図。 2……送信アンテナ、4……受信アンテナ、
6,6′……可動壁部材。
1 and 2 are simplified diagrams showing the state of radio waves in a conventional radio anechoic chamber. Figure 3 is similar to Figures 1 and 2.
Equivalent circuit of the radio anechoic chamber shown in the figure. FIG. 4 is a simplified diagram showing an example of the relationship between the transmission/reception transfer function Ft(ω) and the angular frequency ω in a conventional radio anechoic chamber. Figure 5 shows
1 is a simplified diagram of a radio anechoic chamber constructed in accordance with the present invention.
FIG. 6 is a simplified diagram showing an example of the relationship between the transmission/reception transfer function Ft(ω) and the angular frequency ω in a radio anechoic chamber configured according to the present invention. FIG. 7 is a front view of a radio anechoic chamber according to a preferred embodiment. FIG. 8 is a plan view of the radio anechoic chamber shown in FIG. 7. FIG. 9 is a side view of the radio anechoic chamber shown in FIG. 7. FIG. 10 is a diagram showing the characteristics of the radio anechoic chamber shown in FIG. 7. 2...Transmission antenna, 4...Reception antenna,
6, 6'...Movable wall member.

Claims (1)

【特許請求の範囲】 1 電波吸収体が設けられている壁面及び天井
と、床とを具備する電波無響室において、 送信アンテナの上方に高さ調整可能に設置され
且つ送信アンテナから放射された電波の一部を減
衰せしめ位相を変化せしめる誘電もしくは磁性材
で形成された可動壁部材が配置されており、 これによつて、送・受信間の伝達関数の直線性
からのずれが除去されること を特徴とする電波無響室。
[Claims] 1. In a radio anechoic chamber equipped with a wall and a ceiling provided with a radio wave absorber, and a floor, a radio wave absorber is installed above a transmitting antenna in a height adjustable manner, and radiated from the transmitting antenna. A movable wall member made of dielectric or magnetic material is placed that attenuates a portion of the radio waves and changes the phase, thereby eliminating deviations from the linearity of the transfer function between transmitting and receiving. A radio anechoic chamber characterized by:
JP17379780A 1980-12-11 1980-12-11 Radio wave no echo chamber Granted JPS5797700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17379780A JPS5797700A (en) 1980-12-11 1980-12-11 Radio wave no echo chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17379780A JPS5797700A (en) 1980-12-11 1980-12-11 Radio wave no echo chamber

Publications (2)

Publication Number Publication Date
JPS5797700A JPS5797700A (en) 1982-06-17
JPH0512880B2 true JPH0512880B2 (en) 1993-02-19

Family

ID=15967329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17379780A Granted JPS5797700A (en) 1980-12-11 1980-12-11 Radio wave no echo chamber

Country Status (1)

Country Link
JP (1) JPS5797700A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120983B2 (en) * 1987-05-08 1995-12-20 ティーディーケイ株式会社 Anechoic chamber
JPH0785517B2 (en) * 1990-06-15 1995-09-13 日本碍子株式会社 Anechoic chamber
WO2020208684A1 (en) * 2019-04-08 2020-10-15 三菱電機株式会社 Reflection point estimation device and reflection point estimation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120200A (en) * 1979-03-12 1980-09-16 Nippon Telegraph & Telephone Method of mounting radio wave absorber
JPS5742196A (en) * 1980-08-27 1982-03-09 Nitto Boseki Co Ltd Radio wave absorbing element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120200A (en) * 1979-03-12 1980-09-16 Nippon Telegraph & Telephone Method of mounting radio wave absorber
JPS5742196A (en) * 1980-08-27 1982-03-09 Nitto Boseki Co Ltd Radio wave absorbing element

Also Published As

Publication number Publication date
JPS5797700A (en) 1982-06-17

Similar Documents

Publication Publication Date Title
US6615026B1 (en) Portable telephone with directional transmission antenna
US3964069A (en) Constant beamwidth antenna
JPH0512880B2 (en)
US3631502A (en) Corrugated horn antenna
US3945016A (en) Wide-band spiral antenna
JPH0785517B2 (en) Anechoic chamber
Sayama et al. Characteristics evaluation and path loss measurement of vehicle glass mounted antenna for 28-GHz band
JPS6332278B2 (en)
JP2979898B2 (en) Anechoic chamber
CN111211417A (en) Antenna backward radiation suppression structure
JP2590549Y2 (en) Anechoic chamber
Zubkov et al. Backward surface magnetostatic waves in a ferrite-dielectric-metal structure
JP2981087B2 (en) Beam antenna
KR100245396B1 (en) Front to back ratio adjustable circumference antenna
JP3923460B2 (en) Antenna device
JPS5927527B2 (en) slot array antenna
JPH04140906A (en) Planar antenna
US3605098A (en) Phased array antenna including impedance matching apparatus
JP3265647B2 (en) Anechoic chamber
JPH09121116A (en) Planar antenna
JPS61292998A (en) Radio wave absorbing material
JP2841739B2 (en) Electromagnetic wave absorption characteristics evaluation device
RU2153742C1 (en) Broad-band aerial
JP3265648B2 (en) Anechoic chamber
JPH0346403A (en) Microwave energy distributer