JPH05128173A - Radiation image reader - Google Patents

Radiation image reader

Info

Publication number
JPH05128173A
JPH05128173A JP28529091A JP28529091A JPH05128173A JP H05128173 A JPH05128173 A JP H05128173A JP 28529091 A JP28529091 A JP 28529091A JP 28529091 A JP28529091 A JP 28529091A JP H05128173 A JPH05128173 A JP H05128173A
Authority
JP
Japan
Prior art keywords
light
stimulated emission
emission light
photomultiplier tube
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28529091A
Other languages
Japanese (ja)
Inventor
Fumihiro Namiki
文博 並木
Shiro Takeda
志郎 武田
Takasuke Haraki
貴祐 原木
Kenji Ishiwatari
健二 石渡
Hideyuki Hirano
秀幸 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28529091A priority Critical patent/JPH05128173A/en
Publication of JPH05128173A publication Critical patent/JPH05128173A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Medical Treatment And Welfare Office Work (AREA)

Abstract

PURPOSE:To provide a small-sized and low-cost radiation image reader having high light collection efficiency of light collector and constant light collection efficiency. CONSTITUTION:The device converts stimulated phosphorescent light emitted by a stimulable phosphor panel 31 which absorbs radiated radiation energy and stores it as an latent image when excitation light radiates the panel into an electric signal and obtains image information. A photomultipliter tube 3 converting the stimulated phosphorescent light into the electric signal, and a light collection means 4 whose inside is hollow and surrounded with mirror walls, the area of whose aperture through which the stimulated phosphorescent light is made lincident is smaller than the area of photoelectrical surface of the photomultiplier tube 3, and which collects the stimulated phosphorescent light and leads it to the photomultiplier tube 3, are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【請求項10】 前記光学フィルタは複数の分割された光
学フィルタで構成されていることを特徴とする請求項9
の放射線画像読取装置。
10. The optical filter is composed of a plurality of divided optical filters.
Radiation image reading device.

【0002】[0002]

【産業上の利用分野】本発明は,放射線画像情報を蓄積
した蛍光体板またはシートに励起光ビームを走査するこ
とにより,放射線画像情報に対応した輝尽発光光を発生
させ,この輝尽発光光を光電変換して,放射線画像情報
を電気信号として読み出す放射線画像情報読取装置に関
する。特に,輝尽発光光を効率よく,しかも均一な集光
効率で集光し,光電変換する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generates stimulated emission light corresponding to radiation image information by scanning an excitation light beam on a phosphor plate or sheet that stores radiation image information, and this stimulated emission light is generated. The present invention relates to a radiation image information reading device that photoelectrically converts light and reads radiation image information as an electric signal. In particular, the present invention relates to a method of efficiently stimulating stimulated emission light and condensing it with a uniform condensing efficiency to perform photoelectric conversion.

【0003】X線画像のような放射線画像は病気診断用
などに広く用いられている。X線画像を得るための手段
としては,被写体を透過したX線を蛍光体層(蛍光スク
リ−ン)に照射し,これにより可視光を生じさせてこの
可視光を銀塩を使用したフィルムに照射して現像した,
いわゆる放射線写真が従来より利用されている。
Radiation images such as X-ray images are widely used for disease diagnosis and the like. As a means for obtaining an X-ray image, X-rays that have passed through the subject are irradiated to the phosphor layer (fluorescent screen), thereby generating visible light, and this visible light is converted into a film using silver salt. Irradiated and developed,
So-called radiography has been conventionally used.

【0004】一方,高感度,高解像度のX線撮像システ
ムとして,従来の銀塩感光剤をシート状に塗布したフィ
ルムに間接あるいは直接に放射線の二次元像を記録する
方法に代わり,蓄積性蛍光体を使用する方法が利用され
始めていのる。このような方式に関しては,基本的な方
式として,米国特許第3,859,527に詳しく述べ
られている。
On the other hand, as a high-sensitivity and high-resolution X-ray imaging system, instead of the conventional method of recording a two-dimensional image of radiation indirectly or directly on a film coated with a silver salt photosensitizer, a stimulable fluorescence is used. The method of using the body is beginning to be used. Such a method is described in detail in US Pat. No. 3,859,527 as a basic method.

【0005】このシステムに使用される蛍光体は,X線
などの放射線のエネルギを受けると,その蛍光体結晶中
にエネルギを蓄積する所謂蓄積性蛍光体と呼ばれるもの
で,この蓄積状態は比較的安定であり,しばらくあるい
は長時間にわたって保持される。この状態にある蛍光体
に,励起光として働く第1の光を照射すると,蓄積され
ているエネルギーに対応した強度の輝尽発光光が第二の
光として放出される。この時,第一の光は,可視光に限
らず,赤外線から紫外線の範囲の広い波長の光が使われ
る。ただし,その選択は使われる蛍光体材料によって異
なる。第二の光も赤外線のものから紫外線のものまで各
種ある。その違いも,使用する蛍光体材料に依存する。
The phosphor used in this system is a so-called accumulative phosphor that accumulates energy in the phosphor crystal when it receives the energy of radiation such as X-rays. It is stable and retained for a while or for a long time. When the phosphor in this state is irradiated with the first light that acts as the excitation light, the stimulated emission light having the intensity corresponding to the stored energy is emitted as the second light. At this time, the first light is not limited to visible light, and light having a wide wavelength range from infrared to ultraviolet is used. However, the choice depends on the phosphor material used. The second light also has various types from infrared rays to ultraviolet rays. The difference also depends on the phosphor material used.

【0006】この蓄積性蛍光体の特性を利用し,人体な
どの被写体を透過した放射線を上記蓄積性蛍光体に照射
記録し,放射線画像情報を得るX線撮像システムが実用
化されている。具体的には,被写体のX線情報を蓄積記
録した蓄積性蛍光体板またはシートに,レーザ光等の励
起光を走査することにより,輝尽発光光を発生させ,こ
の光を集光・受光し,光電変換器で電気信号に変換する
ことにより,蓄積された放射線の強度に比例した電気信
号を得る。その後,この電気信号に画像処理を施し,銀
塩フィルム上にプリントしたり,陰極線管CRTなどに
表示することにより,可視化された放射線画像を得る。
Utilizing the characteristics of the stimulable phosphor, an X-ray imaging system for obtaining radiation image information by irradiating and recording radiation transmitted through a subject such as a human body on the stimulable phosphor has been put into practical use. Specifically, a stimulable phosphor plate or sheet that stores and records X-ray information of a subject is scanned with excitation light such as laser light to generate stimulated emission light, and this light is collected and received. Then, an electric signal proportional to the intensity of the accumulated radiation is obtained by converting it into an electric signal by a photoelectric converter. Thereafter, this electric signal is subjected to image processing and printed on a silver salt film or displayed on a cathode ray tube CRT or the like to obtain a visualized radiation image.

【0007】従って,このようなシステムにおいてS/
Nの良い画像を得るためには,発生した輝尽発光光を効
率よく,かつ均一に集光して光電変換器に導く集光器が
重要となる。発生した輝尽発光光は指向性をもたず全空
間に発散して行くため,集光器としては可能な限り広い
立体角で集光でき,集光器内部での減衰や戻り光等の損
失が少ない放射線画像読取装置が望まれている。
Therefore, in such a system S /
In order to obtain an image with good N, it is important to use a condenser that efficiently and uniformly collects the generated stimulated emission light and guides it to the photoelectric converter. Since the generated stimulated emission light has no directivity and diverges into the entire space, it can be collected with a solid angle as wide as possible as a condenser, and there is no attenuation or return light inside the condenser. There is a demand for a radiographic image reading apparatus with low loss.

【0008】[0008]

【従来の技術】図10は,従来例を示す放射線画像読取装
置の構成図である。励起光光源34から出たレーザビーム
を,ガルバノメータ等で構成されるスキャナ35により主
走査方向(図の紙面上で横方向)に走査する。また,精
密微動台37によって主走査方向と直交する方向に蓄積性
蛍光板31を移動させることにより,励起光を蓄積性蛍光
板31の全面に走査することができる。レーザビームの1
走査により発生した輝尽発光光は,オプティカルファイ
バを多数束ねた集光器38で集光され, 光電変換器39に導
かれる。このとき,集光器38と光電変換器39の間には,
励起光レーザの波長の光は透過せず,輝尽発光光の波長
の光を透過させるフィルタ(図示せず)が設置される。
このフィルタにより選択的に取り出された輝尽発光光
は,光電変換器39で電気信号に変換され,初段増幅器50
によってA/D変換器51に最適な信号レベルに増幅され
る。A/D変換器51によりアナログ信号からデジタル信
号化された画像データは,画像メモリ52に蓄えられ,後
に画像処理を施し,CRT(図示せず)上や,ハードコ
ピーとして出力される。
2. Description of the Related Art FIG. 10 is a block diagram of a radiation image reading apparatus showing a conventional example. The laser beam emitted from the excitation light source 34 is scanned in the main scanning direction (horizontal direction on the paper surface of the figure) by the scanner 35 composed of a galvanometer or the like. Further, by moving the stimulable fluorescent plate 31 in a direction orthogonal to the main scanning direction by the precision fine movement table 37, it is possible to scan the entire surface of the stimulable fluorescent plate 31 with the excitation light. Laser beam 1
The stimulated emission light generated by scanning is condensed by a condenser 38 in which a large number of optical fibers are bundled, and is guided to a photoelectric converter 39. At this time, between the condenser 38 and the photoelectric converter 39,
A filter (not shown) that does not transmit light having the wavelength of the excitation light laser but transmits light having the wavelength of stimulated emission light is installed.
The stimulated emission light selectively extracted by this filter is converted into an electric signal by the photoelectric converter 39, and the first stage amplifier 50
Is amplified to a signal level optimum for the A / D converter 51. The image data converted from an analog signal to a digital signal by the A / D converter 51 is stored in the image memory 52, subjected to image processing later, and output on a CRT (not shown) or as a hard copy.

【0009】図11は従来例の集光器を示す図である。従
来,輝尽発光光を集光し,光電変換器39に導く手段とし
て,図11(a) に示すような,プラスティックファイバま
たはグラスファイバを多数束ねた所謂バンドル型集光器
や,特公昭56─11396,特公昭56─11397
に記載されている図11(b) に示すような,アクリル等の
プラスティック板を折り曲げた所謂導光性シート型集光
器が使用されていた。
FIG. 11 is a diagram showing a conventional collector. Conventionally, as means for collecting the stimulated emission light and guiding it to the photoelectric converter 39, a so-called bundle-type light collector in which a large number of plastic fibers or glass fibers are bundled, as shown in FIG. ─ 11396, Japanese Examined Patent Publication 56 ─ 11397
A so-called light guide sheet type concentrator, in which a plastic plate made of acrylic or the like is bent, was used as shown in Fig. 11 (b) of Fig.

【0010】これらの集光器38は,走査線上で直線状に
発生した輝尽発光光を円形の光電面を持つ一個の光電変
換器39に導くための形状を有している。
Each of these condensers 38 has a shape for guiding the stimulated emission light linearly generated on the scanning line to one photoelectric converter 39 having a circular photoelectric surface.

【0011】[0011]

【発明が解決しようとする課題】このような従来の集光
器38の第一の問題点は,輝尽発光光の集光効率が低いこ
とである。従来のバンドル型集光器では,集光できる立
体角は使用するプラスティックファイバまたはグラスフ
ァイバの開口数で決まる。一般的にプラスティックファ
イバや多成分系グラスファイバは,石英ファイバに比較
して大きな開口数のものが得られるが,一方,輝尽発光
光の波長の光に対する減衰率が大きく,全体としての集
光効率を向上させることは望めなかった。また,導光性
シート型集光器では,バンドル型集光器に比較して,集
光できる立体角は大きいが,輝尽発光光を伝達する媒体
はアクリルであるため,蓄積性蛍光体板31から発生した
輝尽発光光は,空気中を伝播し集光器38に入射する際,
空気とアクリルの屈折率の差による反射損失が生じた
り,伝播中に減衰してしまい理想的な集光効率を達成す
ることができなかった。
The first problem with such a conventional condenser 38 is that it has a low efficiency of collecting stimulated emission light. In conventional bundle-type concentrators, the solid angle that can be collected is determined by the numerical aperture of the plastic fiber or glass fiber used. Generally, plastic fibers and multi-component glass fibers have a larger numerical aperture than quartz fibers, but on the other hand, they have a large attenuation rate for the light of the wavelength of stimulated emission light, and the total light collection is I couldn't hope to improve efficiency. In addition, the light guide sheet type light collector has a larger solid angle than the bundle type light collector, but since acryl is the medium for transmitting the stimulated emission light, the stimulable phosphor plate is used. When the stimulated emission light generated from 31 propagates in the air and enters the condenser 38,
It was not possible to achieve the ideal light collection efficiency because reflection loss occurred due to the difference in the refractive index between air and acrylic, or it was attenuated during propagation.

【0012】次に,従来の集光器38の第二の問題点は,
集光効率のバラツキが大きいことである。バンドル型集
光器では,多数本のファイバの配列および透過率のバラ
ツキが原因で,また導光性シート型集光器では,アクリ
ルを折り曲げる時のストレスやアクリル板内部および表
面の欠陥などが原因で場所による集光効率のバラツキが
大きいという問題点があった。
Next, the second problem of the conventional condenser 38 is as follows.
This means that there are large variations in the light collection efficiency. In the bundle type concentrator, it is caused by the arrangement of many fibers and the dispersion of the transmittance. In the light guide sheet type concentrator, it is caused by the stress when the acrylic is bent and the defects inside and on the acrylic plate. However, there is a problem that the light collection efficiency varies greatly depending on the location.

【0013】次に,従来の集光器38の第三の問題点は,
集光ミラーが必要なことである。輝尽発光光は励起光が
照射された点を中心に,蓄積性蛍光体板31の上下の方向
を含む全空間に放射される。蓄積性蛍光体板31の下面
(裏側)へ向かう輝尽発光光については,蓄積性蛍光体
板31の裏面に設けられた反射膜等で表側へ反射させて有
効利用する方法が考案されているが,本発明の主旨では
ないので,詳述しない。表面に放射された輝尽発光光の
みに,注目すると,上記の従来の集光器38は,走査線の
片側のみに設けるのが通常であるので集光器38の設置さ
れていない片側に放射された輝尽発光光を集光すること
ができない。この問題を解決するために,従来は,走査
線に対して,集光器38と相対する位置にミラー61(図4
参照)を設置し,ミラー61で反射された輝尽発光光を集
光器38に向かわせることで,集光効率を向上させてい
た。しかし,全ての角度で放射された輝尽発光光を集光
器38に向かわせるためのミラーは,高い加工精度が要求
されるので高価になり,コスト上昇を招くと共に,位置
調整等に時間を必要とするという問題点があった。
Next, the third problem of the conventional condenser 38 is as follows.
That is, a collecting mirror is required. The stimulated emission light is emitted to the entire space including the up and down direction of the stimulable phosphor plate 31, centering on the point irradiated with the excitation light. Regarding the stimulated emission light traveling to the lower surface (back side) of the stimulable phosphor plate 31, a method has been devised in which it is effectively used by reflecting it to the front side with a reflective film or the like provided on the back surface of the stimulable phosphor plate 31. However, since it is not the gist of the present invention, it will not be described in detail. Focusing only on the stimulated emission light radiated on the surface, since the above-mentioned conventional condenser 38 is usually provided only on one side of the scanning line, it is radiated on one side where the condenser 38 is not installed. The stimulated emission light thus generated cannot be collected. In order to solve this problem, conventionally, the mirror 61 (see FIG.
(Refer to FIG. 4), and the stimulated emission light reflected by the mirror 61 is directed to the condenser 38 to improve the light collection efficiency. However, the mirror for directing the stimulated emission light emitted at all angles to the condenser 38 is expensive because high processing accuracy is required, which leads to cost increase and time adjustment for position adjustment. There was a problem that it was necessary.

【0014】本発明は,集光器の集光効率が高く,集光
器の場所による集光効率のバラツキが小さく,かつ,集
光器が小型で安価な放射線画像読取装置を提供すること
を目的とする。
The present invention provides a radiation image reader having a high light-collecting efficiency of the light collector, a small light-collecting efficiency variation depending on the position of the light collector, and a small light collector. To aim.

【0015】[0015]

【課題を解決するための手段】図1は,本発明の原理ブ
ロック図である。図において,31は,放射された放射線
エネルギーを吸収して潜像として蓄積し,励起光を照射
されることによって輝尽発光光を放出する蓄積性蛍光体
板,3は,輝尽発光光を電気信号に変換する光電子増倍
管,4は,内面が鏡面の壁によって囲まれた中空で,か
つ,光電子増倍管3の光電面の面積が,輝尽発光光が入
射する部分の開口の面積以上である構成を有し,輝尽発
光光を集光して光電子増倍管3へ導く集光手段である。
FIG. 1 is a block diagram showing the principle of the present invention. In the figure, 31 is a stimulable phosphor plate that absorbs the emitted radiation energy and accumulates it as a latent image, and emits stimulated emission light when irradiated with excitation light. 3 shows the stimulated emission light. The photomultiplier tube 4 for converting into an electric signal is hollow, the inner surface of which is surrounded by a mirror-like wall, and the photocathode area of the photomultiplier tube 3 is the opening of the portion where the photostimulated luminescent light enters. It is a condensing means having a structure of not less than the area and condensing the stimulated emission light to guide it to the photomultiplier tube 3.

【0016】[0016]

【作用】放射線エネルギーを吸収し,潜像として蓄積し
た蓄積性蛍光体板31に,励起光を照射することによって
放出される輝尽発光光を電気信号に変換し,画像情報を
得る放射線画像読取装置において,集光手段4は内面が
鏡面の壁によって囲まれた中空で,かつ,光電子増倍管
3の光電面の面積が,輝尽発光光が入射する部分の開口
の面積以上である構成を有して,輝尽発光光を集光して
光電子増倍管3へ導き,光電子増倍管3は輝尽発光光を
電気信号に変換する。従って,輝尽発光光は集光手段4
内を空気を媒体として伝達するので,集光手段4の入射
面における光学的界面を無くなる。また,集光手段4の
壁面の内面を角度によらず一定の反射率を有する鏡面と
するので,入射した輝尽発光光が集光手段4の外へ放出
されない。さらに,壁面が入射口から光電子増倍管3へ
向かうに従って次第に広がってゆく構造とするので,入
射した輝尽発光光が反射を繰り返すうちに入射口に戻
り,光電子増倍管3に到達しない事態が生じない。
[Function] A radiation image reading device that absorbs radiation energy and converts the stimulated emission light emitted by irradiating the stimulable phosphor plate 31 accumulated as a latent image with excitation light into an electric signal to obtain image information In the device, the condensing means 4 is hollow, the inner surface of which is surrounded by walls of mirror surfaces, and the area of the photocathode of the photomultiplier tube 3 is equal to or larger than the area of the opening where the stimulated emission light is incident. And collects the stimulated emission light and guides it to the photomultiplier tube 3, and the photomultiplier tube 3 converts the stimulated emission light into an electric signal. Therefore, the stimulated emission light is collected by the light collecting means 4.
Since air is transmitted through the inside as a medium, the optical interface on the incident surface of the light collecting means 4 is eliminated. Further, since the inner surface of the wall surface of the light collecting means 4 is a mirror surface having a constant reflectance regardless of the angle, incident stimulated emission light is not emitted to the outside of the light collecting means 4. Furthermore, since the wall surface has a structure that gradually expands from the entrance to the photomultiplier tube 3, the incident photostimulable light returns to the entrance while repeating reflection, and does not reach the photomultiplier tube 3. Does not occur.

【0017】[0017]

【実施例】図2は,本発明の第1の実施例の集光器の構
造図であって,図2(a) は斜視図を, 図2(b) は分解図
を示す。図3は,本発明の第1の実施例の集光器及び光
電変換器の構成図であって,その平面図及び側面図を表
す。図2については,本出願人は,特願平2─4079
35号(平成2年12月27日出願)として出願したも
のである。
2A and 2B are structural views of a condenser according to a first embodiment of the present invention. FIG. 2A is a perspective view and FIG. 2B is an exploded view. FIG. 3 is a configuration diagram of a condenser and a photoelectric converter according to the first embodiment of the present invention, showing a plan view and a side view thereof. Regarding FIG. 2, the present applicant filed Japanese Patent Application No. 2-4079.
It was filed as No. 35 (filed on December 27, 1990).

【0018】本発明の集光器は上記従来の集光器38の3
つの問題点を解決すべく発明されたもので,基本となる
形は図2,図3に示すように,集光器4aの上壁面41,側
壁面42及び下壁面43は内面が鏡面処理された金属,ガラ
ス,樹脂等の板で構成されており,壁面が入射口45から
光電変換器3a又は3bへ向かうに従って,次第に広がって
ゆく構造をしている。即ち,集光器4aの入射口45より出
射口46の面積の方が大きく,かつ,入射口45の走査方向
の長さ及び走査方向に直交する方向の長さより,出射口
46の走査方向の長さ及び走査方向に直交する方向の長さ
の方が長い。従って,出射口46に密接して配置される光
電変換器3a又は3bは光電面の面積が出射口46の面積以上
の単一の光電変換器3bか,または光電面の面積の合計が
出射口46の面積以上の複数の光電変換器3aで構成され
る。
The collector of the present invention is the same as the conventional collector 38 described above.
It was invented to solve one of the problems, and the basic shape is, as shown in FIG. 2 and FIG. 3, the inner surface of the upper wall surface 41, the side wall surface 42 and the lower wall surface 43 of the condenser 4a is mirror-finished. It is composed of a plate of metal, glass, resin, or the like, and has a structure in which the wall surface gradually expands from the entrance 45 toward the photoelectric converter 3a or 3b. That is, the area of the exit port 46 is larger than the area of the entrance port 45 of the condenser 4a, and the exit port is determined by the length of the entrance port 45 in the scanning direction and the length in the direction orthogonal to the scanning direction.
The length of 46 in the scanning direction and the length in the direction orthogonal to the scanning direction are longer. Therefore, the photoelectric converter 3a or 3b arranged closely to the emission port 46 is a single photoelectric converter 3b having a photoelectric surface area larger than that of the emission port 46, or the total area of the photoelectric surfaces is the emission port. It is composed of a plurality of photoelectric converters 3a having an area of 46 or more.

【0019】集光器4aの内部の輝尽発光光を伝達する媒
体を空気にすることによって,集光器4aの入射面におけ
る光学的界面を無くし,入射角が大きくなっても輝尽発
光光が集光器4aの内部に入射するようにした。また,入
射した輝尽発光光が集光器4aの外へ放出されないよう
に, 集光器4aの壁面の内面を,角度によらず一定の反射
率を有する鏡面とし,また入射した輝尽発光光が,反射
を繰り返すうちに入射口41に戻り,光電変換器3a又は3b
に到達しない事態が生じないように,壁面が入射口45か
ら光電変換器3a又は3bへ向かうに従って,次第に広がっ
てゆく構造とした。このように集光器4aを構成にするこ
とで,従来の第一の問題点である集光効率を改善するこ
とができた。
By using air as the medium for transmitting the stimulated emission light inside the condenser 4a, the optical interface on the incident surface of the condenser 4a is eliminated, and the stimulated emission light is increased even if the incident angle becomes large. Are made to enter the inside of the light collector 4a. In order to prevent the incident stimulated emission light from being emitted to the outside of the condenser 4a, the inner surface of the wall surface of the condenser 4a is made a mirror surface having a constant reflectance regardless of the angle, and the incident stimulated emission light is also used. While the light is repeatedly reflected, it returns to the entrance 41, and the photoelectric converter 3a or 3b
In order to prevent the situation where the wall surface is not reached, the structure is such that the wall surface gradually expands from the entrance 45 toward the photoelectric converter 3a or 3b. By configuring the condenser 4a in this way, it was possible to improve the conventional first problem of the condensing efficiency.

【0020】また,本発明の集光器4aでは伝達媒体が空
気であるため,従来例の第二の問題点である伝達媒体内
の欠陥や不均一性に起因する集光効率のバラツキは発生
しない。
Further, in the concentrator 4a of the present invention, since the transmission medium is air, the second problem of the conventional example is that the concentration efficiency varies due to defects and non-uniformity in the transmission medium. do not do.

【0021】図4は,本発明の第1の実施例の集光器の
作用を説明する図である。集光器4aの設置されていない
片側に放射された輝尽発光光は,走査線に対して集光器
4aと相対する位置に設置されたミラー61で反射させて,
集光器4aに向かわせることによって集光効率を向上させ
る。
FIG. 4 is a diagram for explaining the operation of the condenser according to the first embodiment of the present invention. The stimulated emission light radiated on one side where the condenser 4a is not installed is the condenser for the scanning line.
It is reflected by a mirror 61 installed at a position opposite to 4a,
The light collection efficiency is improved by directing it toward the light collector 4a.

【0022】さらに,本発明の第2の実施例の集光器7a
によれば,集光効率を向上させると共に,図4のミラー
61を不要とすることが可能となる。図5は,本発明の第
2の実施例の集光器の作用を説明する図である。
Further, the condenser 7a according to the second embodiment of the present invention.
According to the mirror of FIG.
It becomes possible to eliminate 61. FIG. 5 is a diagram for explaining the operation of the condenser of the second embodiment of the present invention.

【0023】図5において反射板74は,図4のミラー61
と同様な働きをして集光効率を改善する。図6は,本発
明の第2の実施例の集光器の構造図であって,図6(a)
は斜視図を, 図6(b) は分解図を示す。
In FIG. 5, the reflector 74 is the mirror 61 of FIG.
It has the same function as and improves the light collection efficiency. FIG. 6 is a structural diagram of a condenser according to a second embodiment of the present invention, which is shown in FIG.
Shows a perspective view and FIG. 6 (b) shows an exploded view.

【0024】図6(b) において集光器7aは,その一部に
励起光を通すためのスリット77を設け,さらに,図4で
ミラー61が設置されていた位置にも,壁面41〜43と同じ
材質で構成された反射板74を設ける。
In FIG. 6 (b), the condenser 7a is provided with a slit 77 for passing the excitation light in a part thereof, and further, at the position where the mirror 61 is installed in FIG. A reflecting plate 74 made of the same material as is provided.

【0025】集光器7aは図6(b) に示すように,内面が
鏡面処理された金属板を5枚を組み合わせたものであ
り,輝尽発光光の入射口75は長辺の長さが約360m
m,短辺は1〜30mmの長方形である。出射口76は長
辺,短辺ともに入射口よりも大きく,それぞれ400m
m,80mmである。光電変換器3aは光電面が100×
80mmの長方形のものを走査線方向に4個配列する。
図6では光電変換器3aを4個配列した場合を示してある
が,入射口75の大きさに応じて,配列する個数を変えれ
ば色々な大きさの輝尽蛍光板に対応できる。
As shown in FIG. 6 (b), the condenser 7a is a combination of five metal plates whose inner surfaces are mirror-finished, and the entrance 75 for stimulated emission light has a long side length. Is about 360 m
m, the short side is a rectangle of 1 to 30 mm. The exit port 76 is larger than the entrance port on both the long and short sides and is 400 m
m, 80 mm. The photoelectric converter 3a has a photoelectric surface of 100 ×
Four 80 mm rectangles are arranged in the scanning line direction.
Although FIG. 6 shows a case where four photoelectric converters 3a are arranged, the number of arranged photoelectric converters 3a can be changed according to the size of the entrance 75 to accommodate various sizes of photostimulable fluorescent plates.

【0026】また,上壁面71にレーザ光が通るための約
300μm×360mmの大きさのスリット77が開けて
ある。金属板で構成された各壁面71〜73は図7で示した
角度を満足するように構成されている。
Further, the upper wall surface 71 is provided with a slit 77 having a size of about 300 μm × 360 mm for allowing laser light to pass therethrough. Each of the wall surfaces 71-73 made of a metal plate is configured so as to satisfy the angle shown in FIG.

【0027】図7は,本発明の第2の実施例の集光器の
断面図である。図7において,反射板74が蓄積性蛍光体
板31の表面となす角度∠ABOをθ2,上壁面71と走査
線となす角度∠CAOをθ1,上壁面71と蓄積性蛍光体
板31の表面のなす角度∠CGBをθ3,下壁面73と蓄積
性蛍光体板31の表面のなす角度∠FEDをθ4とすれ
ば,θ2≧90°とすることで,発光点Oから∠AOB
に放出された輝尽発光光は,反射板74で反射され,全て
集光器7aの内部に取り込まれて, 蓄積性蛍光体板31の表
面に戻ることはない。
FIG. 7 is a sectional view of a condenser according to the second embodiment of the present invention. In FIG. 7, the angle ∠ABO formed by the reflection plate 74 and the surface of the stimulable phosphor plate 31 is θ2, the angle ∠CAO formed by the upper wall surface 71 and the scanning line is θ1, and the upper wall surface 71 and the surface of the stimulable phosphor plate 31. If the angle ∠CGB formed by θ3 and the angle between the lower wall surface 73 and the surface of the stimulable phosphor plate 31 ∠FED are θ4, then θ2 ≧ 90 ° and ∠AOB from the light emission point O
The stimulated emission light emitted to is reflected by the reflector 74, is entirely taken into the inside of the condenser 7a, and does not return to the surface of the stimulable phosphor plate 31.

【0028】また,θ1≧90°,かつ,θ4≦θ3と
することで,発光点Oから∠AOB以外にに放出された
輝尽発光光は,全て集光器7aの内部に取り込まれ,反射
を繰り返す内に蓄積性蛍光体板31の表面に戻ることな
く,光電変換器3a又は3bの光電面に到達する。
By setting θ1 ≧ 90 ° and θ4 ≦ θ3, all the stimulated emission light emitted from the light emitting point O to other than ∠AOB is taken into the inside of the condenser 7a and reflected. While repeating the above, it reaches the photocathode of the photoelectric converter 3a or 3b without returning to the surface of the stimulable phosphor plate 31.

【0029】図7は説明を簡単化するために,2次元平
面で説明したが,紙面に対してある角度で放出された輝
尽発光光であっても,図8に示すように側壁面42が入射
口75から光電変換器3a又は3bに向かって広がって行く構
造をしているので,光電変換器3a又は3bの光電面に到達
し,反射を繰り返す内に蓄積性蛍光体板31の表面に戻る
ことはない。
Although FIG. 7 has been described with a two-dimensional plane for simplification of the description, even if the stimulated emission light is emitted at a certain angle with respect to the paper surface, as shown in FIG. Has a structure that spreads from the entrance 75 toward the photoelectric converter 3a or 3b, and thus reaches the photoelectric surface of the photoelectric converter 3a or 3b, and the surface of the stimulable phosphor plate 31 is reached while repeating reflection. Never return to.

【0030】図8は,本発明の第2の実施例の集光器及
び光電変換器の構成図であって,その平面図及び側面図
を表す。図8(a) から分かるように,本発明による集光
器7aは,厚み方向においても幅方向においても,入射口
75から出射口76に向かうに従って広がっている形状なの
で,入射口75から一旦取り込まれた輝尽発光光は,集光
器7aの内面で全反射を繰り返しその入射角度によらず,
全て光電変換器3aの光電面に到達する。また,集光器7a
の内部は空気であるため,入射口75には光学的界面は存
在せず集光器7aの伝達媒体の屈折率による集光立体角の
制約を受けない。また, 図8(b) に示したように, 複数
の光電変換器3aの代わりに大面積の光電面を有する一個
の光電変換器3bを用いてもよい。
FIG. 8 is a constitutional view of a condenser and a photoelectric converter according to a second embodiment of the present invention, showing a plan view and a side view thereof. As can be seen from FIG. 8 (a), the concentrator 7a according to the present invention has an entrance opening in both the thickness direction and the width direction.
Since it has a shape that widens from 75 to the exit 76, the stimulated emission light once taken in from the entrance 75 repeats total reflection on the inner surface of the condenser 7a, regardless of the incident angle.
All reach the photoelectric surface of the photoelectric converter 3a. Also, collector 7a
Since the inside of the air is air, there is no optical interface at the entrance 75, and there is no restriction on the light collection solid angle due to the refractive index of the transmission medium of the light collector 7a. Further, as shown in FIG. 8B, one photoelectric converter 3b having a large-area photoelectric surface may be used instead of the plurality of photoelectric converters 3a.

【0031】図9は,本発明の実施例を示す放射線画像
読取装置のシステム構成図であって,本発明の第2の実
施例の集光器7a及び光電変換器3aを使用した放射線画像
読取装置を示す。
FIG. 9 is a system configuration diagram of a radiation image reading apparatus showing an embodiment of the present invention, in which a radiation image reading using the condenser 7a and the photoelectric converter 3a of the second embodiment of the present invention. Shows the device.

【0032】励起光光源34として波長780nmの半導
体レーザを用い,ガルバノメータで構成されたスキャナ
ー35によりレーザビームを,集光器7aのスリット77を通
り輝尽蛍光体板31上を主走査方向に走査する。また,精
密微動台37によって主走査方向と直交する方向に蓄積性
蛍光体板31を移動させることにより,励起光を蓄積性蛍
光体板31の全面に走査することができる。レーザビーム
の1走査により発生した輝尽発光光は,の集光器7aで集
光され光電変換器3aに導かれる。集光器7aと光電変換器
3aの間には励起光レーザの波長の光は透過せず,輝尽発
光光の波長の光を透過させるフィルタ(図示せず)を設
置する。このフィルタにより選択的に取り出された輝尽
発光光は,4個の光電変換器3aで同時に電気信号に変換
され,信号加算器53によって,4個の光電変換器3aから
の出力信号が加算される。加算された信号は,初段増幅
器50によりA/D変換器51に最適な信号レベルに増幅さ
れ,画像メモリ52に蓄えられ,後に画像処理を施し,C
RT(図示せず)上や,ハードコピーとして出力され
る。
A semiconductor laser having a wavelength of 780 nm is used as the excitation light source 34, and the laser beam is scanned by the scanner 35 composed of a galvanometer on the photostimulable phosphor plate 31 in the main scanning direction through the slit 77 of the condenser 7a. To do. Further, by moving the stimulable phosphor plate 31 in the direction perpendicular to the main scanning direction by the precision fine movement table 37, it is possible to scan the entire surface of the stimulable phosphor plate 31 with the excitation light. The stimulated emission light generated by one scanning of the laser beam is condensed by the condenser 7a and guided to the photoelectric converter 3a. Light collector 7a and photoelectric converter
A filter (not shown) that does not transmit light having the wavelength of the excitation light laser but transmits light having the wavelength of stimulated emission light is provided between 3a. The stimulated emission light selectively extracted by this filter is simultaneously converted into an electric signal by the four photoelectric converters 3a, and the output signals from the four photoelectric converters 3a are added by the signal adder 53. It The added signal is amplified by the first-stage amplifier 50 to an optimum signal level for the A / D converter 51, stored in the image memory 52, and subjected to image processing later, C
It is output on RT (not shown) or as a hard copy.

【0033】本実施例では集光器の壁面を金属板を用い
て形成する場合について述べたが,金属板以外でも同等
の効果が得られるもの,例えば, ガラス板, アクリル等
の樹脂の板などの表面に, メッキ, 真空蒸着, スパッタ
リング, イオンプレーティング等の薄膜形成技術を用い
て, 反射面を形成したものであっても良い。また, 金属
板, ガラス板, アクリル等の樹脂の板の表面に上記反射
薄膜を形成する際に,ZnS, Na3AlF6等の誘電体または/
および金属薄膜を多層重ねて所謂ダイクロイックミラー
を形成することで, 輝尽蛍光の波長の反射率を大きく,
かつレーザ光の反射率を小さくすることができる。
In the present embodiment, the case where the wall surface of the condenser is formed by using the metal plate has been described, but the same effect can be obtained by using other than the metal plate, for example, a glass plate, a plate of resin such as acrylic, etc. A reflective surface may be formed on the surface of the substrate by using a thin film forming technique such as plating, vacuum deposition, sputtering, or ion plating. When forming the reflective thin film on the surface of a metal plate, a glass plate, or a resin plate such as acrylic resin, a dielectric such as ZnS or Na 3 AlF 6 or
And by forming a so-called dichroic mirror by stacking multiple metal thin films, the reflectance at the wavelength of stimulated fluorescence is increased,
In addition, the reflectance of laser light can be reduced.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば, 集
光器は集光立体角が大きく,かつ伝達効率が高いので,
輝尽発光光を効率よく光電変換器に導くことができ,S
/Nのよい画像を得ることができる。また,伝達媒体が
空気であること,一点からの輝尽発光光を複数の(大面
積の)光電面で受光することにより,媒体や光電面のば
らつきが原因で生じる場所による集光効率のばらつきを
無くすことができ,均一な画像が得られる。また,集光
効率を向上させるために必要であったミラーを不要とす
ることにより,装置の安価,小型化を図ることが可能と
なると共に,ミラーの調整に要する時間が不要となり。
As described above, according to the present invention, since the concentrator has a large condensing solid angle and high transmission efficiency,
The stimulated emission light can be efficiently guided to the photoelectric converter, and S
An image with a good / N can be obtained. Further, since the transmission medium is air, and the stimulated emission light from one point is received by a plurality of (large area) photocathodes, the variation of the light collection efficiency due to the location caused by the variation of the medium and the photocathodes. Can be eliminated and a uniform image can be obtained. In addition, by eliminating the mirror that was required to improve the light collection efficiency, it is possible to reduce the cost and size of the device and eliminate the time required to adjust the mirror.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理ブロック図FIG. 1 is a block diagram of the principle of the present invention.

【図2】 本発明の第1の実施例の集光器の構造図FIG. 2 is a structural diagram of a concentrator according to the first embodiment of the present invention.

【図3】 本発明の第1の実施例の集光器及び光電変換
器の構成図
FIG. 3 is a configuration diagram of a condenser and a photoelectric converter according to a first embodiment of the present invention.

【図4】 本発明の第1の実施例の集光器の作用を説明
する図
FIG. 4 is a diagram for explaining the operation of the light collector according to the first embodiment of the present invention.

【図5】 本発明の第2の実施例の集光器の作用を説明
する図
FIG. 5 is a diagram for explaining the operation of the light collector according to the second embodiment of the present invention.

【図6】 本発明の第2の実施例の集光器の構造図FIG. 6 is a structural diagram of a concentrator according to a second embodiment of the present invention.

【図7】 本発明の第2の実施例の集光器の断面図FIG. 7 is a sectional view of a concentrator according to a second embodiment of the present invention.

【図8】 本発明の第2の実施例の集光器及び光電変換
器の構成図
FIG. 8 is a configuration diagram of a condenser and a photoelectric converter according to a second embodiment of the present invention.

【図9】 本発明の実施例を示す放射線画像読取装置の
システム構成図
FIG. 9 is a system configuration diagram of a radiation image reading apparatus showing an embodiment of the present invention.

【図10】 従来例を示す放射線画像読取装置の構成図FIG. 10 is a configuration diagram of a radiation image reading apparatus showing a conventional example.

【図11】 従来例の集光器を示す図FIG. 11 is a diagram showing a conventional concentrator.

【符号の説明】[Explanation of symbols]

3 光電子増倍管 4 集光手段 31 蓄積性蛍光体板 34 励起光光源 35 スキャナ 36 fθレンズ 37 精密微動台 38,4a,7a 集光器 39 光電変換器 41,71 上壁面 42,72 側壁面 43,73 下壁面 45,75 入射口 46,76 出射口 50 初段増幅器 51 A/D変換器 52 画像メモリ 53 電流加算器 61 ミラー 74 反射板 77 スリット 3 Photomultiplier tube 4 Condensing means 31 Accumulative phosphor plate 34 Excitation light source 35 Scanner 36 fθ lens 37 Precision movement table 38, 4a, 7a Concentrator 39 Photoelectric converter 41, 71 Upper wall surface 42, 72 Side wall surface 43,73 Lower wall 45,75 Entrance 46,76 Exit 50 First stage amplifier 51 A / D converter 52 Image memory 53 Current adder 61 Mirror 74 Reflector 77 Slit

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月9日[Submission date] November 9, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,放射線画像情報を蓄積
した蛍光体板またはシートに励起光ビームを走査するこ
とにより,放射線画像情報に対応した輝尽発光光を発生
させ,この輝尽発光光を光電変換して,放射線画像情報
を電気信号として読み出す放射線画像情報読取装置に関
する。特に,輝尽発光光を効率よく,しかも均一な集光
効率で集光し,光電変換する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generates stimulated emission light corresponding to radiation image information by scanning an excitation light beam on a phosphor plate or sheet that stores radiation image information, and this stimulated emission light is generated. The present invention relates to a radiation image information reading device that photoelectrically converts light and reads radiation image information as an electric signal. In particular, the present invention relates to a method of efficiently stimulating stimulated emission light and condensing it with a uniform condensing efficiency to perform photoelectric conversion.

【0002】X線画像のような放射線画像は病気診断用
などに広く用いられている。X線画像を得るための手段
としては,被写体を透過したX線を蛍光体層(蛍光スク
リ−ン)に照射し,これにより可視光を生じさせてこの
可視光を銀塩を使用したフィルムに照射して現像した,
いわゆる放射線写真が従来より利用されている。
Radiation images such as X-ray images are widely used for disease diagnosis and the like. As a means for obtaining an X-ray image, X-rays that have passed through the subject are irradiated to the phosphor layer (fluorescent screen), thereby generating visible light, and this visible light is converted into a film using silver salt. Irradiated and developed,
So-called radiography has been conventionally used.

【0003】一方,高感度,高解像度のX線撮像システ
ムとして,従来の銀塩感光剤をシート状に塗布したフィ
ルムに間接あるいは直接に放射線の二次元像を記録する
方法に代わり,蓄積性蛍光体を使用する方法が利用され
始めていのる。このような方式に関しては,基本的な方
式として,米国特許第3,859,527に詳しく述べ
られている。
On the other hand, as a high-sensitivity and high-resolution X-ray imaging system, instead of the conventional method of recording a two-dimensional image of radiation indirectly or directly on a film coated with a silver salt photosensitizer, a stimulable fluorescence is used. The method of using the body is beginning to be used. Such a method is described in detail in US Pat. No. 3,859,527 as a basic method.

【0004】このシステムに使用される蛍光体は,X線
などの放射線のエネルギを受けると,その蛍光体結晶中
にエネルギを蓄積する所謂蓄積性蛍光体と呼ばれるもの
で,この蓄積状態は比較的安定であり,しばらくあるい
は長時間にわたって保持される。この状態にある蛍光体
に,励起光として働く第1の光を照射すると,蓄積され
ているエネルギーに対応した強度の輝尽発光光が第二の
光として放出される。この時,第一の光は,可視光に限
らず,赤外線から紫外線の範囲の広い波長の光が使われ
る。ただし,その選択は使われる蛍光体材料によって異
なる。第二の光も赤外線のものから紫外線のものまで各
種ある。その違いも,使用する蛍光体材料に依存する。
The phosphor used in this system is a so-called accumulative phosphor that accumulates energy in the phosphor crystal when it receives the energy of radiation such as X-rays. It is stable and retained for a while or for a long time. When the phosphor in this state is irradiated with the first light that acts as the excitation light, the stimulated emission light having the intensity corresponding to the stored energy is emitted as the second light. At this time, the first light is not limited to visible light, and light having a wide wavelength range from infrared to ultraviolet is used. However, the choice depends on the phosphor material used. The second light also has various types from infrared rays to ultraviolet rays. The difference also depends on the phosphor material used.

【0005】この蓄積性蛍光体の特性を利用し,人体な
どの被写体を透過した放射線を上記蓄積性蛍光体に照射
記録し,放射線画像情報を得るX線撮像システムが実用
化されている。具体的には,被写体のX線情報を蓄積記
録した蓄積性蛍光体板またはシートに,レーザ光等の励
起光を走査することにより,輝尽発光光を発生させ,こ
の光を集光・受光し,光電変換器で電気信号に変換する
ことにより,蓄積された放射線の強度に比例した電気信
号を得る。その後,この電気信号に画像処理を施し,銀
塩フィルム上にプリントしたり,陰極線管CRTなどに
表示することにより,可視化された放射線画像を得る。
An X-ray imaging system for obtaining radiation image information by utilizing the characteristics of the stimulable phosphor to irradiate and record radiation transmitted through an object such as a human body on the stimulable phosphor has been put into practical use. Specifically, a stimulable phosphor plate or sheet that stores and records X-ray information of a subject is scanned with excitation light such as laser light to generate stimulated emission light, and this light is collected and received. Then, an electric signal proportional to the intensity of the accumulated radiation is obtained by converting it into an electric signal by a photoelectric converter. Thereafter, this electric signal is subjected to image processing and printed on a silver salt film or displayed on a cathode ray tube CRT or the like to obtain a visualized radiation image.

【0006】従って,このようなシステムにおいてS/
Nの良い画像を得るためには,発生した輝尽発光光を効
率よく,かつ均一に集光して光電変換器に導く集光器が
重要となる。発生した輝尽発光光は指向性をもたず全空
間に発散して行くため,集光器としては可能な限り広い
立体角で集光でき,集光器内部での減衰や戻り光等の損
失が少ない放射線画像読取装置が望まれている。
Therefore, in such a system, S /
In order to obtain an image with good N, it is important to use a condenser that efficiently and uniformly collects the generated stimulated emission light and guides it to the photoelectric converter. Since the generated stimulated emission light has no directivity and diverges into the entire space, it can be collected with a solid angle as wide as possible as a condenser, and there is no attenuation or return light inside the condenser. There is a demand for a radiographic image reading apparatus with low loss.

【0007】[0007]

【従来の技術】図10は,従来例を示す放射線画像読取装
置の構成図である。励起光光源34から出たレーザビーム
を,ガルバノメータ等で構成されるスキャナ35により主
走査方向(図の紙面上で横方向)に走査する。また,精
密微動台37によって主走査方向と直交する方向に蓄積性
蛍光板31を移動させることにより,励起光を蓄積性蛍光
板31の全面に走査することができる。レーザビームの1
走査により発生した輝尽発光光は,オプティカルファイ
バを多数束ねた集光器38で集光され, 光電変換器39に導
かれる。このとき,集光器38と光電変換器39の間には,
励起光レーザの波長の光は透過せず,輝尽発光光の波長
の光を透過させるフィルタ(図示せず)が設置される。
このフィルタにより選択的に取り出された輝尽発光光
は,光電変換器39で電気信号に変換され,初段増幅器50
によってA/D変換器51に最適な信号レベルに増幅され
る。A/D変換器51によりアナログ信号からデジタル信
号化された画像データは,画像メモリ52に蓄えられ,後
に画像処理を施し,CRT(図示せず)上や,ハードコ
ピーとして出力される。
2. Description of the Related Art FIG. 10 is a block diagram of a radiation image reading apparatus showing a conventional example. The laser beam emitted from the excitation light source 34 is scanned in the main scanning direction (horizontal direction on the paper surface of the figure) by the scanner 35 composed of a galvanometer or the like. Further, by moving the stimulable fluorescent plate 31 in a direction orthogonal to the main scanning direction by the precision fine movement table 37, it is possible to scan the entire surface of the stimulable fluorescent plate 31 with the excitation light. Laser beam 1
The stimulated emission light generated by scanning is condensed by a condenser 38 in which a large number of optical fibers are bundled, and is guided to a photoelectric converter 39. At this time, between the condenser 38 and the photoelectric converter 39,
A filter (not shown) that does not transmit light having the wavelength of the excitation light laser but transmits light having the wavelength of stimulated emission light is installed.
The stimulated emission light selectively extracted by this filter is converted into an electric signal by the photoelectric converter 39, and the first stage amplifier 50
Is amplified to a signal level optimum for the A / D converter 51. The image data converted from an analog signal to a digital signal by the A / D converter 51 is stored in the image memory 52, subjected to image processing later, and output on a CRT (not shown) or as a hard copy.

【0008】図11は従来例の集光器を示す図である。従
来,輝尽発光光を集光し,光電変換器39に導く手段とし
て,図11(a) に示すような,プラスティックファイバま
たはグラスファイバを多数束ねた所謂バンドル型集光器
や,特公昭56─11396,特公昭56─11397
に記載されている図11(b) に示すような,アクリル等の
プラスティック板を折り曲げた所謂導光性シート型集光
器が使用されていた。
FIG. 11 is a diagram showing a conventional collector. Conventionally, as means for collecting the stimulated emission light and guiding it to the photoelectric converter 39, a so-called bundle-type light collector in which a large number of plastic fibers or glass fibers are bundled, as shown in FIG. ─ 11396, Japanese Examined Patent Publication 56 ─ 11397
A so-called light guide sheet type concentrator, in which a plastic plate made of acrylic or the like is bent, was used as shown in Fig. 11 (b) of Fig.

【0009】これらの集光器38は,走査線上で直線状に
発生した輝尽発光光を円形の光電面を持つ一個の光電変
換器39に導くための形状を有している。
These condensers 38 have a shape for guiding the stimulated emission light linearly generated on the scanning line to one photoelectric converter 39 having a circular photoelectric surface.

【0010】[0010]

【発明が解決しようとする課題】このような従来の集光
器38の第一の問題点は,輝尽発光光の集光効率が低いこ
とである。従来のバンドル型集光器では,集光できる立
体角は使用するプラスティックファイバまたはグラスフ
ァイバの開口数で決まる。一般的にプラスティックファ
イバや多成分系グラスファイバは,石英ファイバに比較
して大きな開口数のものが得られるが,一方,輝尽発光
光の波長の光に対する減衰率が大きく,全体としての集
光効率を向上させることは望めなかった。また,導光性
シート型集光器では,バンドル型集光器に比較して,集
光できる立体角は大きいが,輝尽発光光を伝達する媒体
はアクリルであるため,蓄積性蛍光体板31から発生した
輝尽発光光は,空気中を伝播し集光器38に入射する際,
空気とアクリルの屈折率の差による反射損失が生じた
り,伝播中に減衰してしまい理想的な集光効率を達成す
ることができなかった。
The first problem with such a conventional condenser 38 is that it has a low efficiency of collecting stimulated emission light. In conventional bundle-type concentrators, the solid angle that can be collected is determined by the numerical aperture of the plastic fiber or glass fiber used. Generally, plastic fibers and multi-component glass fibers have a larger numerical aperture than quartz fibers, but on the other hand, they have a large attenuation rate for the light of the wavelength of stimulated emission light, and the total light collection is I couldn't hope to improve efficiency. In addition, the light guide sheet type light collector has a larger solid angle than the bundle type light collector, but since acryl is the medium for transmitting the stimulated emission light, the stimulable phosphor plate is used. When the stimulated emission light generated from 31 propagates in the air and enters the condenser 38,
It was not possible to achieve the ideal light collection efficiency because reflection loss occurred due to the difference in the refractive index between air and acrylic, or it was attenuated during propagation.

【0011】次に,従来の集光器38の第二の問題点は,
集光効率のバラツキが大きいことである。バンドル型集
光器では,多数本のファイバの配列および透過率のバラ
ツキが原因で,また導光性シート型集光器では,アクリ
ルを折り曲げる時のストレスやアクリル板内部および表
面の欠陥などが原因で場所による集光効率のバラツキが
大きいという問題点があった。
Next, the second problem of the conventional condenser 38 is as follows.
This means that there are large variations in the light collection efficiency. In the bundle type concentrator, it is caused by the arrangement of many fibers and the dispersion of the transmittance. In the light guide sheet type concentrator, it is caused by the stress when the acrylic is bent and the defects inside and on the acrylic plate. However, there is a problem that the light collection efficiency varies greatly depending on the location.

【0012】次に,従来の集光器38の第三の問題点は,
集光ミラーが必要なことである。輝尽発光光は励起光が
照射された点を中心に,蓄積性蛍光体板31の上下の方向
を含む全空間に放射される。蓄積性蛍光体板31の下面
(裏側)へ向かう輝尽発光光については,蓄積性蛍光体
板31の裏面に設けられた反射膜等で表側へ反射させて有
効利用する方法が考案されているが,本発明の主旨では
ないので,詳述しない。表面に放射された輝尽発光光の
みに,注目すると,上記の従来の集光器38は,走査線の
片側のみに設けるのが通常であるので集光器38の設置さ
れていない片側に放射された輝尽発光光を集光すること
ができない。この問題を解決するために,従来は,走査
線に対して,集光器38と相対する位置にミラー61(図4
参照)を設置し,ミラー61で反射された輝尽発光光を集
光器38に向かわせることで,集光効率を向上させてい
た。しかし,全ての角度で放射された輝尽発光光を集光
器38に向かわせるためのミラーは,高い加工精度が要求
されるので高価になり,コスト上昇を招くと共に,位置
調整等に時間を必要とするという問題点があった。
Next, the third problem of the conventional condenser 38 is as follows.
That is, a collecting mirror is required. The stimulated emission light is emitted to the entire space including the up and down direction of the stimulable phosphor plate 31, centering on the point irradiated with the excitation light. Regarding the stimulated emission light traveling to the lower surface (back side) of the stimulable phosphor plate 31, a method has been devised in which it is effectively used by reflecting it to the front side with a reflective film or the like provided on the back surface of the stimulable phosphor plate 31. However, since it is not the gist of the present invention, it will not be described in detail. Focusing only on the stimulated emission light radiated on the surface, since the above-mentioned conventional condenser 38 is usually provided only on one side of the scanning line, it is radiated on one side where the condenser 38 is not installed. The stimulated emission light thus generated cannot be collected. In order to solve this problem, conventionally, the mirror 61 (see FIG.
(Refer to FIG. 4), and the stimulated emission light reflected by the mirror 61 is directed to the condenser 38 to improve the light collection efficiency. However, the mirror for directing the stimulated emission light emitted at all angles to the condenser 38 is expensive because high processing accuracy is required, which leads to cost increase and time adjustment for position adjustment. There was a problem that it was necessary.

【0013】本発明は,集光器の集光効率が高く,集光
器の場所による集光効率のバラツキが小さく,かつ,集
光器が小型で安価な放射線画像読取装置を提供すること
を目的とする。
The present invention provides a radiation image reading apparatus which has a high light-collecting efficiency of the light collector, a small variation in light-collecting efficiency depending on the location of the light collector, and a small light collector. To aim.

【0014】[0014]

【課題を解決するための手段】図1は,本発明の原理ブ
ロック図である。図において,31は,放射された放射線
エネルギーを吸収して潜像として蓄積し,励起光を照射
されることによって輝尽発光光を放出する蓄積性蛍光体
板,3は,輝尽発光光を電気信号に変換する光電子増倍
管,4は,内面が鏡面の壁によって囲まれた中空で,か
つ,光電子増倍管3の光電面の面積が,輝尽発光光が入
射する部分の開口の面積以上である構成を有し,輝尽発
光光を集光して光電子増倍管3へ導く集光手段である。
FIG. 1 is a block diagram showing the principle of the present invention. In the figure, 31 is a stimulable phosphor plate that absorbs the emitted radiation energy and accumulates it as a latent image, and emits stimulated emission light when irradiated with excitation light. 3 shows the stimulated emission light. The photomultiplier tube 4 for converting into an electric signal is hollow, the inner surface of which is surrounded by a mirror-like wall, and the photocathode area of the photomultiplier tube 3 is the opening of the portion where the photostimulated luminescent light enters. It is a condensing means having a structure of not less than the area and condensing the stimulated emission light to guide it to the photomultiplier tube 3.

【0015】[0015]

【作用】放射線エネルギーを吸収し,潜像として蓄積し
た蓄積性蛍光体板31に,励起光を照射することによって
放出される輝尽発光光を電気信号に変換し,画像情報を
得る放射線画像読取装置において,集光手段4は内面が
鏡面の壁によって囲まれた中空で,かつ,光電子増倍管
3の光電面の面積が,輝尽発光光が入射する部分の開口
の面積以上である構成を有して,輝尽発光光を集光して
光電子増倍管3へ導き,光電子増倍管3は輝尽発光光を
電気信号に変換する。従って,輝尽発光光は集光手段4
内を空気を媒体として伝達するので,集光手段4の入射
面における光学的界面を無くなる。また,集光手段4の
壁面の内面を角度によらず一定の反射率を有する鏡面と
するので,入射した輝尽発光光が集光手段4の外へ放出
されない。さらに,壁面が入射口から光電子増倍管3へ
向かうに従って次第に広がってゆく構造とするので,入
射した輝尽発光光が反射を繰り返すうちに入射口に戻
り,光電子増倍管3に到達しない事態が生じない。
[Function] A radiation image reading device that absorbs radiation energy and converts the stimulated emission light emitted by irradiating the stimulable phosphor plate 31 accumulated as a latent image with excitation light into an electric signal to obtain image information In the device, the condensing means 4 is hollow, the inner surface of which is surrounded by walls of mirror surfaces, and the area of the photocathode of the photomultiplier tube 3 is equal to or larger than the area of the opening where the stimulated emission light is incident. And collects the stimulated emission light and guides it to the photomultiplier tube 3, and the photomultiplier tube 3 converts the stimulated emission light into an electric signal. Therefore, the stimulated emission light is collected by the light collecting means 4.
Since air is transmitted through the inside as a medium, the optical interface on the incident surface of the light collecting means 4 is eliminated. Further, since the inner surface of the wall surface of the light collecting means 4 is a mirror surface having a constant reflectance regardless of the angle, incident stimulated emission light is not emitted to the outside of the light collecting means 4. Furthermore, since the wall surface has a structure that gradually expands from the entrance to the photomultiplier tube 3, the incident photostimulable light returns to the entrance while repeating reflection, and does not reach the photomultiplier tube 3. Does not occur.

【0016】[0016]

【実施例】図2は,本発明の第1の実施例の集光器の構
造図であって,図2(a) は斜視図を, 図2(b) は分解図
を示す。図3は,本発明の第1の実施例の集光器及び光
電変換器の構成図であって,その平面図及び側面図を表
す。図2については,本出願人は,特願平2─4079
35号(平成2年12月27日出願)として出願したも
のである。
2A and 2B are structural views of a condenser according to a first embodiment of the present invention. FIG. 2A is a perspective view and FIG. 2B is an exploded view. FIG. 3 is a configuration diagram of a condenser and a photoelectric converter according to the first embodiment of the present invention, showing a plan view and a side view thereof. Regarding FIG. 2, the present applicant filed Japanese Patent Application No. 2-4079.
It was filed as No. 35 (filed on December 27, 1990).

【0017】本発明の集光器は上記従来の集光器38の3
つの問題点を解決すべく発明されたもので,基本となる
形は図2,図3に示すように,集光器4aの上壁面41,側
壁面42及び下壁面43は内面が鏡面処理された金属,ガラ
ス,樹脂等の板で構成されており,壁面が入射口45から
光電変換器3a又は3bへ向かうに従って,次第に広がって
ゆく構造をしている。即ち,集光器4aの入射口45より出
射口46の面積の方が大きく,かつ,入射口45の走査方向
の長さ及び走査方向に直交する方向の長さより,出射口
46の走査方向の長さ及び走査方向に直交する方向の長さ
の方が長い。従って,出射口46に密接して配置される光
電変換器3a又は3bは光電面の面積が出射口46の面積以上
の単一の光電変換器3bか,または光電面の面積の合計が
出射口46の面積以上の複数の光電変換器3aで構成され
る。
The concentrator of the present invention is the same as the conventional concentrator 38 described above.
It was invented to solve one of the problems, and the basic shape is, as shown in FIG. 2 and FIG. 3, the inner surface of the upper wall surface 41, the side wall surface 42 and the lower wall surface 43 of the condenser 4a is mirror-finished. It is composed of a plate of metal, glass, resin, or the like, and has a structure in which the wall surface gradually expands from the entrance 45 toward the photoelectric converter 3a or 3b. That is, the area of the exit port 46 is larger than the area of the entrance port 45 of the condenser 4a, and the exit port is determined by the length of the entrance port 45 in the scanning direction and the length in the direction orthogonal to the scanning direction.
The length of 46 in the scanning direction and the length in the direction orthogonal to the scanning direction are longer. Therefore, the photoelectric converter 3a or 3b arranged closely to the emission port 46 is a single photoelectric converter 3b having a photoelectric surface area larger than that of the emission port 46, or the total area of the photoelectric surfaces is the emission port. It is composed of a plurality of photoelectric converters 3a having an area of 46 or more.

【0018】集光器4aの内部の輝尽発光光を伝達する媒
体を空気にすることによって,集光器4aの入射面におけ
る光学的界面を無くし,入射角が大きくなっても輝尽発
光光が集光器4aの内部に入射するようにした。また,入
射した輝尽発光光が集光器4aの外へ放出されないよう
に, 集光器4aの壁面の内面を,角度によらず一定の反射
率を有する鏡面とし,また入射した輝尽発光光が,反射
を繰り返すうちに入射口41に戻り,光電変換器3a又は3b
に到達しない事態が生じないように,壁面が入射口45か
ら光電変換器3a又は3bへ向かうに従って,次第に広がっ
てゆく構造とした。このように集光器4aを構成にするこ
とで,従来の第一の問題点である集光効率を改善するこ
とができた。
By using air as the medium for transmitting the stimulated emission light inside the condenser 4a, the optical interface on the incident surface of the condenser 4a is eliminated, and the stimulated emission light is increased even if the incident angle becomes large. Are made to enter the inside of the light collector 4a. In order to prevent the incident stimulated emission light from being emitted to the outside of the condenser 4a, the inner surface of the wall surface of the condenser 4a is made a mirror surface having a constant reflectance regardless of the angle, and the incident stimulated emission light is also used. While the light is repeatedly reflected, it returns to the entrance 41, and the photoelectric converter 3a or 3b
In order to prevent the situation where the wall surface is not reached, the structure is such that the wall surface gradually expands from the entrance 45 toward the photoelectric converter 3a or 3b. By configuring the condenser 4a in this way, it was possible to improve the conventional first problem of the condensing efficiency.

【0019】また,本発明の集光器4aでは伝達媒体が空
気であるため,従来例の第二の問題点である伝達媒体内
の欠陥や不均一性に起因する集光効率のバラツキは発生
しない。
Further, in the concentrator 4a of the present invention, since the transmission medium is air, the second problem of the conventional example is that there is a variation in the condensing efficiency due to defects and nonuniformity in the transmission medium. do not do.

【0020】図4は,本発明の第1の実施例の集光器の
作用を説明する図である。集光器4aの設置されていない
片側に放射された輝尽発光光は,走査線に対して集光器
4aと相対する位置に設置されたミラー61で反射させて,
集光器4aに向かわせることによって集光効率を向上させ
る。
FIG. 4 is a diagram for explaining the operation of the condenser of the first embodiment of the present invention. The stimulated emission light radiated on one side where the condenser 4a is not installed is the condenser for the scanning line.
It is reflected by a mirror 61 installed at a position opposite to 4a,
The light collection efficiency is improved by directing it toward the light collector 4a.

【0021】さらに,本発明の第2の実施例の集光器7a
によれば,集光効率を向上させると共に,図4のミラー
61を不要とすることが可能となる。図5は,本発明の第
2の実施例の集光器の作用を説明する図である。
Further, the condenser 7a according to the second embodiment of the present invention.
According to the mirror of FIG.
It becomes possible to eliminate 61. FIG. 5 is a diagram for explaining the operation of the condenser of the second embodiment of the present invention.

【0022】図5において反射板74は,図4のミラー61
と同様な働きをして集光効率を改善する。図6は,本発
明の第2の実施例の集光器の構造図であって,図6(a)
は斜視図を, 図6(b) は分解図を示す。
In FIG. 5, the reflector 74 is the mirror 61 of FIG.
It has the same function as and improves the light collection efficiency. FIG. 6 is a structural diagram of a condenser according to a second embodiment of the present invention, which is shown in FIG.
Shows a perspective view and FIG. 6 (b) shows an exploded view.

【0023】図6(b) において集光器7aは,その一部に
励起光を通すためのスリット77を設け,さらに,図4で
ミラー61が設置されていた位置にも,壁面41〜43と同じ
材質で構成された反射板74を設ける。
In FIG. 6 (b), the condenser 7a is provided with a slit 77 for passing the excitation light in a part thereof, and further, at the position where the mirror 61 is installed in FIG. A reflecting plate 74 made of the same material as is provided.

【0024】集光器7aは図6(b) に示すように,内面が
鏡面処理された金属板を5枚を組み合わせたものであ
り,輝尽発光光の入射口75は長辺の長さが約360m
m,短辺は1〜30mmの長方形である。出射口76は長
辺,短辺ともに入射口よりも大きく,それぞれ400m
m,80mmである。光電変換器3aは光電面が100×
80mmの長方形のものを走査線方向に4個配列する。
図6では光電変換器3aを4個配列した場合を示してある
が,入射口75の大きさに応じて,配列する個数を変えれ
ば色々な大きさの輝尽蛍光板に対応できる。
As shown in FIG. 6 (b), the condenser 7a is a combination of five metal plates whose inner surfaces are mirror-finished, and the entrance 75 for stimulated emission light has a long side length. Is about 360 m
m, the short side is a rectangle of 1 to 30 mm. The exit port 76 is larger than the entrance port on both the long and short sides and is 400 m
m, 80 mm. The photoelectric converter 3a has a photoelectric surface of 100 ×
Four 80 mm rectangles are arranged in the scanning line direction.
Although FIG. 6 shows a case where four photoelectric converters 3a are arranged, the number of arranged photoelectric converters 3a can be changed according to the size of the entrance 75 to accommodate various sizes of photostimulable fluorescent plates.

【0025】また,上壁面71にレーザ光が通るための約
300μm×360mmの大きさのスリット77が開けて
ある。金属板で構成された各壁面71〜73は図7で示した
角度を満足するように構成されている。
Further, a slit 77 having a size of about 300 μm × 360 mm is formed on the upper wall surface 71 so that the laser light can pass therethrough. Each of the wall surfaces 71-73 made of a metal plate is configured so as to satisfy the angle shown in FIG.

【0026】図7は,本発明の第2の実施例の集光器の
断面図である。図7において,反射板74が蓄積性蛍光体
板31の表面となす角度∠ABOをθ2,上壁面71と走査
線となす角度∠CAOをθ1,上壁面71と蓄積性蛍光体
板31の表面のなす角度∠CGBをθ3,下壁面73と蓄積
性蛍光体板31の表面のなす角度∠FEDをθ4とすれ
ば,θ2≧90°とすることで,発光点Oから∠AOB
に放出された輝尽発光光は,反射板74で反射され,全て
集光器7aの内部に取り込まれて, 蓄積性蛍光体板31の表
面に戻ることはない。
FIG. 7 is a sectional view of a condenser according to the second embodiment of the present invention. In FIG. 7, the angle ∠ABO formed by the reflection plate 74 and the surface of the stimulable phosphor plate 31 is θ2, the angle ∠CAO formed by the upper wall surface 71 and the scanning line is θ1, and the upper wall surface 71 and the surface of the stimulable phosphor plate 31. If the angle ∠CGB formed by θ3 and the angle between the lower wall surface 73 and the surface of the stimulable phosphor plate 31 ∠FED are θ4, then θ2 ≧ 90 ° and ∠AOB from the light emission point O
The stimulated emission light emitted to is reflected by the reflector 74, is entirely taken into the inside of the condenser 7a, and does not return to the surface of the stimulable phosphor plate 31.

【0027】また,θ1≧90°,かつ,θ4≦θ3と
することで,発光点Oから∠AOB以外にに放出された
輝尽発光光は,全て集光器7aの内部に取り込まれ,反射
を繰り返す内に蓄積性蛍光体板31の表面に戻ることな
く,光電変換器3a又は3bの光電面に到達する。
By setting θ1 ≧ 90 ° and θ4 ≦ θ3, all the stimulated emission light emitted from the light emitting point O to other than ∠AOB is taken into the inside of the condenser 7a and reflected. While repeating the above, it reaches the photocathode of the photoelectric converter 3a or 3b without returning to the surface of the stimulable phosphor plate 31.

【0028】図7は説明を簡単化するために,2次元平
面で説明したが,紙面に対してある角度で放出された輝
尽発光光であっても,図8に示すように側壁面42が入射
口75から光電変換器3a又は3bに向かって広がって行く構
造をしているので,光電変換器3a又は3bの光電面に到達
し,反射を繰り返す内に蓄積性蛍光体板31の表面に戻る
ことはない。
Although FIG. 7 has been described with a two-dimensional plane for simplification of explanation, even if the photostimulated luminescence light emitted at a certain angle with respect to the paper surface, as shown in FIG. Has a structure that spreads from the entrance 75 toward the photoelectric converter 3a or 3b, and thus reaches the photoelectric surface of the photoelectric converter 3a or 3b, and the surface of the stimulable phosphor plate 31 is reached while repeating reflection. Never return to.

【0029】図8は,本発明の第2の実施例の集光器及
び光電変換器の構成図であって,その平面図及び側面図
を表す。図8(a) から分かるように,本発明による集光
器7aは,厚み方向においても幅方向においても,入射口
75から出射口76に向かうに従って広がっている形状なの
で,入射口75から一旦取り込まれた輝尽発光光は,集光
器7aの内面で全反射を繰り返しその入射角度によらず,
全て光電変換器3aの光電面に到達する。また,集光器7a
の内部は空気であるため,入射口75には光学的界面は存
在せず集光器7aの伝達媒体の屈折率による集光立体角の
制約を受けない。また, 図8(b) に示したように, 複数
の光電変換器3aの代わりに大面積の光電面を有する一個
の光電変換器3bを用いてもよい。
FIG. 8 is a constitutional view of a condenser and a photoelectric converter according to a second embodiment of the present invention, showing a plan view and a side view thereof. As can be seen from FIG. 8 (a), the concentrator 7a according to the present invention has an entrance opening in both the thickness direction and the width direction.
Since it has a shape that widens from 75 to the exit 76, the stimulated emission light once taken in from the entrance 75 repeats total reflection on the inner surface of the condenser 7a, regardless of the incident angle.
All reach the photoelectric surface of the photoelectric converter 3a. Also, collector 7a
Since the inside of the air is air, there is no optical interface at the entrance 75, and there is no restriction on the light collection solid angle due to the refractive index of the transmission medium of the light collector 7a. Further, as shown in FIG. 8B, one photoelectric converter 3b having a large-area photoelectric surface may be used instead of the plurality of photoelectric converters 3a.

【0030】図9は,本発明の実施例を示す放射線画像
読取装置のシステム構成図であって,本発明の第2の実
施例の集光器7a及び光電変換器3aを使用した放射線画像
読取装置を示す。
FIG. 9 is a system configuration diagram of a radiation image reading apparatus showing an embodiment of the present invention. A radiation image reading using the condenser 7a and the photoelectric converter 3a of the second embodiment of the present invention. Shows the device.

【0031】励起光光源34として波長780nmの半導
体レーザを用い,ガルバノメータで構成されたスキャナ
ー35によりレーザビームを,集光器7aのスリット77を通
り輝尽蛍光体板31上を主走査方向に走査する。また,精
密微動台37によって主走査方向と直交する方向に蓄積性
蛍光体板31を移動させることにより,励起光を蓄積性蛍
光体板31の全面に走査することができる。レーザビーム
の1走査により発生した輝尽発光光は,の集光器7aで集
光され光電変換器3aに導かれる。集光器7aと光電変換器
3aの間には励起光レーザの波長の光は透過せず,輝尽発
光光の波長の光を透過させるフィルタ(図示せず)を設
置する。このフィルタにより選択的に取り出された輝尽
発光光は,4個の光電変換器3aで同時に電気信号に変換
され,信号加算器53によって,4個の光電変換器3aから
の出力信号が加算される。加算された信号は,初段増幅
器50によりA/D変換器51に最適な信号レベルに増幅さ
れ,画像メモリ52に蓄えられ,後に画像処理を施し,C
RT(図示せず)上や,ハードコピーとして出力され
る。
A semiconductor laser having a wavelength of 780 nm is used as the excitation light source 34, and the laser beam is scanned by the scanner 35 composed of a galvanometer on the photostimulable phosphor plate 31 in the main scanning direction through the slit 77 of the condenser 7a. To do. Further, by moving the stimulable phosphor plate 31 in the direction perpendicular to the main scanning direction by the precision fine movement table 37, it is possible to scan the entire surface of the stimulable phosphor plate 31 with the excitation light. The stimulated emission light generated by one scanning of the laser beam is condensed by the condenser 7a and guided to the photoelectric converter 3a. Light collector 7a and photoelectric converter
A filter (not shown) that does not transmit light having the wavelength of the excitation light laser but transmits light having the wavelength of stimulated emission light is provided between 3a. The stimulated emission light selectively extracted by this filter is simultaneously converted into an electric signal by the four photoelectric converters 3a, and the output signals from the four photoelectric converters 3a are added by the signal adder 53. It The added signal is amplified by the first-stage amplifier 50 to an optimum signal level for the A / D converter 51, stored in the image memory 52, and subjected to image processing later, C
It is output on RT (not shown) or as a hard copy.

【0032】本実施例では集光器の壁面を金属板を用い
て形成する場合について述べたが,金属板以外でも同等
の効果が得られるもの,例えば, ガラス板, アクリル等
の樹脂の板などの表面に, メッキ, 真空蒸着, スパッタ
リング, イオンプレーティング等の薄膜形成技術を用い
て, 反射面を形成したものであっても良い。また, 金属
板, ガラス板, アクリル等の樹脂の板の表面に上記反射
薄膜を形成する際に,ZnS, Na3AlF6等の誘電体または/
および金属薄膜を多層重ねて所謂ダイクロイックミラー
を形成することで, 輝尽蛍光の波長の反射率を大きく,
かつレーザ光の反射率を小さくすることができる。
In the present embodiment, the case where the wall surface of the condenser is formed by using the metal plate has been described, but the same effect can be obtained by using other than the metal plate, for example, a glass plate, a plate of resin such as acrylic, etc. A reflective surface may be formed on the surface of the substrate by using a thin film forming technique such as plating, vacuum deposition, sputtering, or ion plating. When forming the reflective thin film on the surface of a metal plate, a glass plate, or a resin plate such as acrylic resin, a dielectric such as ZnS or Na 3 AlF 6 or
And by forming a so-called dichroic mirror by stacking multiple metal thin films, the reflectance at the wavelength of stimulated fluorescence is increased,
In addition, the reflectance of laser light can be reduced.

【0033】[0033]

【発明の効果】以上説明したように本発明によれば, 集
光器は集光立体角が大きく,かつ伝達効率が高いので,
輝尽発光光を効率よく光電変換器に導くことができ,S
/Nのよい画像を得ることができる。また,伝達媒体が
空気であること,一点からの輝尽発光光を複数の(大面
積の)光電面で受光することにより,媒体や光電面のば
らつきが原因で生じる場所による集光効率のばらつきを
無くすことができ,均一な画像が得られる。また,集光
効率を向上させるために必要であったミラーを不要とす
ることにより,装置の安価,小型化を図ることが可能と
なると共に,ミラーの調整に要する時間が不要となる。
As described above, according to the present invention, since the concentrator has a large condensing solid angle and high transmission efficiency,
The stimulated emission light can be efficiently guided to the photoelectric converter, and S
An image with a good / N can be obtained. Further, since the transmission medium is air, and the stimulated emission light from one point is received by a plurality of (large area) photocathodes, the variation of the light collection efficiency due to the location caused by the variation of the medium and the photocathodes. Can be eliminated and a uniform image can be obtained. In addition, since the mirror, which was necessary for improving the light-collecting efficiency, is not required, the device can be inexpensive and downsized, and the time required for adjusting the mirror is not required.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石渡 健二 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 平野 秀幸 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Ishiwata 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Inventor Hideyuki Hirano 1015, Kamedotachu, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 放射された放射線エネルギーを吸収し,
潜像として蓄積した蓄積性蛍光体板(31)に,励起光を照
射することによって放出される輝尽発光光を電気信号に
変換し,画像情報を得る放射線画像読取装置であって,
輝尽発光光を電気信号に変換する光電子増倍管(3) と,
内面が鏡面の壁によって囲まれた中空で,かつ,該光電
子増倍管(3) の光電面の面積が,輝尽発光光が入射する
部分の開口の面積以上である構成を有し,輝尽発光光を
集光して該光電子増倍管(3) へ導く集光手段(4 )とを
設けることを特徴とする放射線画像読取装置。
1. Absorbing emitted radiation energy,
A radiation image reading device for obtaining image information by converting stimulated emission light emitted by irradiating excitation light to a stimulable phosphor plate (31) accumulated as a latent image to obtain image information,
A photomultiplier tube (3) for converting stimulated emission light into an electric signal,
The photocathode of the photomultiplier tube (3) has a hollow inner surface surrounded by a mirror wall, and the photocathode area of the photomultiplier tube (3) is equal to or larger than the area of the opening where the stimulated emission light is incident. A radiation image reading apparatus comprising: a light collecting means (4) for collecting the exhausted light and guiding it to the photomultiplier tube (3).
【請求項2】 放射された放射線エネルギーを吸収し,
潜像として蓄積した蓄積性蛍光体板(31)に,励起光を照
射することによって放出される輝尽発光光を電気信号に
変換し,画像情報を得る放射線画像読取装置であって,
輝尽発光光を電気信号に変換する光電子増倍管(3) と,
内面が鏡面の壁によって囲まれた中空で,その壁面の一
部に励起光を透過させるスリットが形成され,かつ,該
光電子増倍管(3 )の光電面の面積が,輝尽発光光が入
射する部分の開口の面積以上である構成を有し,輝尽発
光光を集光して該光電子増倍管(3) へ導く集光手段(4
)とを設けることを特徴とする放射線画像読取装置。
2. absorbing emitted radiation energy,
A radiation image reading device for obtaining image information by converting stimulated emission light emitted by irradiating excitation light to a stimulable phosphor plate (31) accumulated as a latent image to obtain image information,
A photomultiplier tube (3) for converting stimulated emission light into an electric signal,
The inner surface of the photomultiplier tube (3) is hollow and the photocathode area of the photomultiplier tube (3) is defined as A condensing means (4) having a structure which is larger than the area of the opening of the incident part and condenses the stimulated emission light to the photomultiplier tube (3).
) And a radiation image reading device.
【請求項3】 前記集光手段(4 )は,励起光を透過さ
せるスリットが形成された上壁面と,上壁面に対向する
下壁面と,上壁面及び下壁面の両側に設けられた2つの
側壁面と,上壁面の長辺で接し輝尽発光光を該集光手段
(4 )の内部へ反射させるための反射壁面とで構成さ
れ,該上壁面と前記蓄積性蛍光体板(31)の表面とがなす
角度をθ3,該下壁面と該蓄積性蛍光体板(31)の表面
とがなす角度をθ4,該反射壁面と該蓄積性蛍光体板(3
1)とがなす角度をθ2としたとき, θ4≦θ3,かつ,θ2≧90° なる関係を満足するように構成したことを特徴とする請
求項2の放射線画像読取装置。
3. The light condensing means (4) comprises an upper wall surface having a slit for transmitting excitation light, a lower wall surface facing the upper wall surface, and two pieces provided on both sides of the upper wall surface and the lower wall surface. It is composed of a side wall surface and a reflective wall surface that is in contact with the long side of the upper wall surface and reflects the stimulated emission light to the inside of the light condensing means (4). The upper wall surface and the stimulable phosphor plate (31) The angle formed by the surface of the storage phosphor plate (3) is θ3, the angle formed by the lower wall surface and the surface of the storage phosphor plate (31) is θ4, the reflection wall surface and the storage phosphor plate (3).
The radiation image reading apparatus according to claim 2, characterized in that when the angle formed by 1) and θ2 is θ2, θ4 ≦ θ3 and θ2 ≧ 90 ° are satisfied.
【請求項4】 前記光電子増倍管(3) は,一個の光電面
を有する光電子増倍管であることを特徴とする請求項
1,2及び3の放射線画像読取装置。
4. The radiation image reading apparatus according to claim 1, wherein the photomultiplier tube (3) is a photomultiplier tube having one photocathode.
【請求項5】 前記光電子増倍管(3) は,複数の光電子
増倍管を走査線方向に配列したことを特徴とする請求項
1,2及び3の放射線画像読取装置。
5. The radiation image reading apparatus according to claim 1, wherein the photomultiplier tube (3) has a plurality of photomultiplier tubes arranged in a scanning line direction.
【請求項6】 前記集光手段(4) は,輝尽発光光が入射
する部分の開口の形状が,長辺が走査線の長さ以上,前
記光電子増倍管(3) の光電面の長辺の合計の長さ以下で
あり,かつ短辺の長さが配列された複数の該光電子増倍
管(3) の光電面の短辺の長さ以下である長方形であるこ
とを特徴とする請求項1,2及び3の放射線画像読取装
置。
6. The condensing means (4) is such that the shape of the opening of the portion where the stimulated emission light is incident is such that the long side is longer than the length of the scanning line and the photocathode of the photomultiplier tube (3) is Characterized by being a rectangle whose length is less than or equal to the total length of the long sides and less than or equal to the length of the short sides of the photocathode of the plurality of photomultiplier tubes (3) in which the lengths of the short sides are arranged. The radiation image reading apparatus according to claim 1, 2, or 3.
【請求項7】 前記集光手段(4) は,内面を鏡面処理さ
れた金属板で構成されることを特徴とする請求項1,2
及び3の放射線画像読取装置。
7. The light collecting means (4) is composed of a metal plate whose inner surface is mirror-finished.
And the radiation image reading device of 3.
【請求項8】 前記集光手段(4) は,内面が, レーザ光
の波長の反射率が低く, かつ輝尽発光光の波長の反射率
が高いダイクロイック面であることを特徴とする請求項
1,2及び3の放射線画像読取装置。
8. The condensing means (4) is characterized in that an inner surface thereof is a dichroic surface having a low reflectance for a wavelength of laser light and a high reflectance for a wavelength of stimulated emission light. Radiation image readers 1, 2, and 3.
【請求項9】 前記集光手段(4) と光電子増倍管(3) と
の間に,輝尽発光光の波長は透過し, 励起光の波長は透
過しない光学フィルタを設置したことを特徴とする請求
項1,2及び3の放射線画像読取装置。
9. An optical filter is provided between the condensing means (4) and the photomultiplier tube (3), which transmits the wavelength of stimulated emission light but does not transmit the wavelength of excitation light. The radiation image reading apparatus according to claim 1, 2, or 3.
JP28529091A 1991-10-31 1991-10-31 Radiation image reader Withdrawn JPH05128173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28529091A JPH05128173A (en) 1991-10-31 1991-10-31 Radiation image reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28529091A JPH05128173A (en) 1991-10-31 1991-10-31 Radiation image reader

Publications (1)

Publication Number Publication Date
JPH05128173A true JPH05128173A (en) 1993-05-25

Family

ID=17689609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28529091A Withdrawn JPH05128173A (en) 1991-10-31 1991-10-31 Radiation image reader

Country Status (1)

Country Link
JP (1) JPH05128173A (en)

Similar Documents

Publication Publication Date Title
JPS60111634A (en) Radiation image information reading apparatus
EP1065524A2 (en) Radiation image read out method and apparatus
US4933558A (en) X-ray sensitive area detection device
US5483081A (en) Method for detecting light emitted by two surfaces of a stimulable phosphor sheet
JPS6126053B2 (en)
US4818880A (en) Radiation image read-out apparatus
JPH0519694B2 (en)
JPS6051099B2 (en) Radiation image information reading device
JPH05128173A (en) Radiation image reader
US6621094B2 (en) Radiation image read-out method and apparatus
EP0446348B1 (en) Telecentric scanning for transparent storage phosphors
JPS6052414B2 (en) Radiation image information reading device
EP0493126A2 (en) A radiation data image reader
JP2952453B2 (en) Double-sided condensing phosphor sheet reading method
JP2987668B2 (en) Double-sided condensing phosphor sheet reading method
US20040057095A1 (en) Radiation image read-out apparatus and stimulating light cut filter
JPH07248554A (en) Radiation picture reader
JPH07171143A (en) Radioactive ray image reading device
JPS5867242A (en) Apparatus for reading out radioactive image information
JPS6297469A (en) Radiograph reader
JPH0412970B2 (en)
JPS6210641A (en) Method and device for reading radiation picture
JPH03107941A (en) Radiograph reader
JPH0621819B2 (en) Radiation image information reader
JPS60189737A (en) Reader for radiation image information

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107