JPH05127232A - Flashmatic camera - Google Patents

Flashmatic camera

Info

Publication number
JPH05127232A
JPH05127232A JP3318530A JP31853091A JPH05127232A JP H05127232 A JPH05127232 A JP H05127232A JP 3318530 A JP3318530 A JP 3318530A JP 31853091 A JP31853091 A JP 31853091A JP H05127232 A JPH05127232 A JP H05127232A
Authority
JP
Japan
Prior art keywords
distance
light
flashmatic
range
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3318530A
Other languages
Japanese (ja)
Inventor
Toshihiro Sato
利弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3318530A priority Critical patent/JPH05127232A/en
Publication of JPH05127232A publication Critical patent/JPH05127232A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a flashmatic camera capable of flash-photographing all objects positioned at different ranges with an apprepriate exposure. CONSTITUTION:The flashmatic camera which executes the flash photographing by calculating a stop value for obtaining the apprepriate exposure based on the guide number of a flashing device and the range of the reference object and setting a stop to the calculated stop value is provided with light quantity adjustment means 16a-16c consisting of plural members whose transmissivity can be varied and independently adjust the illuminating light quantity of plural illuminating areas within the object by transmitting the illimunating light of the flashing device and guiding it to a field, a multiple range-finding means 24 independently executing the range-finding of the objects respectively positioning in the plural illuminating areas and transmissivity control means 21 and 22 which control the transmissivity of the respective adjustment means 16a-16c based on the range of the reference object and the respective range- finding outputs of the range-finding means 24 before the flash photographing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フラッシュマチック方
式にて閃光撮影を行うカメラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a camera for flash photography by a flashmatic system.

【0002】[0002]

【従来の技術】上記フラッシュマチック方式とは、一定
の発光量で電子閃光装置を発光させ、絞り値を制御する
ことによりフィルム面に導かれる光量を調節して適正露
出を得るものである。すなわちフラッシュマチックカメ
ラでは、電子閃光装置のガイドナンバ−と基準被写体距
離(例えば撮影距離)とフィルム感度とから所定の演算
式により絞り値を演算し、演算された絞り値に絞りを設
定するとともに、電子閃光装置をフル発光させて撮影を
行う。これにより基準被写体距離に位置する被写体が適
性露出で撮影される。
2. Description of the Related Art The flashmatic system is one in which an electronic flash device is caused to emit light at a constant light emission amount and the aperture value is controlled to adjust the light amount guided to the film surface to obtain proper exposure. That is, in a flashmatic camera, an aperture value is calculated from a guide number of an electronic flash device, a reference subject distance (for example, shooting distance), and film sensitivity by a predetermined calculation formula, and the aperture is set to the calculated aperture value. The electronic flash device is fully illuminated to take a picture. As a result, the subject located at the reference subject distance is photographed with proper exposure.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな方式では、被写界の各部分に導かれる光量が全て等
しいため、複数の被写体が異なる距離に存在する場合に
全ての被写体を適正露出で閃光撮影することはできな
い。つまり上記基準被写体距離に位置する被写体に対し
ては適正露出が得られるが、これより近い距離に位置す
る被写体は露出オーバーとなり、逆に遠い距離に位置す
る被写体は露出アンダーとなってしまう。
However, in such a system, since the amount of light guided to each part of the object field is the same, all the subjects can be properly exposed when a plurality of subjects exist at different distances. Flash photography is not possible. That is, although proper exposure can be obtained for a subject located at the reference subject distance, a subject located at a shorter distance than this is overexposed and a subject located at a longer distance is underexposed.

【0004】本発明の目的は、異なる距離に位置する被
写体の全てを適正露出で閃光撮影することが可能なフラ
ッシュマチックカメラを提供することにある。
An object of the present invention is to provide a flashmatic camera capable of taking flash images of all subjects located at different distances with proper exposure.

【0005】[0005]

【課題を解決するための手段】本発明は、閃光装置のガ
イドナンバ−と基準被写体距離とから適正露出を得るた
めの絞り値を演算し、演算された絞り値に絞りを設定し
て閃光撮影を行うフラッシュマチックカメラに適用され
る。そして、光透過率が可変な複数の部材から成り、閃
光装置の照明光をそれぞれ透過して被写界に導くことに
より、被写界内の複数の照明領域の照明光量を独立に調
節する光量調節手段と、複数の照明領域にそれぞれ位置
する被写体を独立に測距するマルチ測距手段と、閃光撮
影に先立ち、上記基準被写体距離とマルチ測距手段の各
測距出力とに基づいて各光量調節手段の透過率を制御す
る透過率制御手段とを具備し、これにより上記問題点を
解決する。
SUMMARY OF THE INVENTION According to the present invention, an aperture value for obtaining a proper exposure is calculated from a guide number of a flash device and a reference subject distance, and the aperture is set to the calculated aperture value for flash photography. Applies to flashmatic cameras that do. Then, the light amount is made up of a plurality of members having variable light transmittances, and the illumination light amount of each of the plurality of illumination regions in the object field is independently adjusted by transmitting the illumination light of the flash device to the object field. Adjusting means, multi-distance measuring means for independently measuring distances to objects located respectively in a plurality of illumination areas, and prior to flash photography, each light quantity based on the reference object distance and each distance-measuring output of the multi-distance measuring means. And a transmittance control means for controlling the transmittance of the adjusting means, thereby solving the above problems.

【0006】[0006]

【作用】マルチ測距手段は、各照明領域にそれぞれ位置
する被写体を独立に測距する。透過率制御手段は、閃光
撮影に先立ち、上記絞り値演算に用いられる基準被写体
距離と、上記マルチ測距手段の各測距出力とに基づいて
各光量調節手段の透過率を制御する。この状態で閃光撮
影が行われると、閃光装置の照明光が光量調節手段(透
過率が制御されている)を透過して被写界の各照明領域
を照明する。このとき光量調節手段の透過率に応じて各
照明領域の照明光量が調節されるので、異なる距離に位
置する被写体の全てを適正露出で閃光撮影することが可
能となる。
The multi-distance measuring means independently measures the distance to the subject located in each illumination area. The transmissivity control means controls the transmissivity of each light amount adjusting means based on the reference object distance used for the aperture value calculation and each distance measurement output of the multi distance measuring means before the flash photography. When flash photography is performed in this state, the illumination light of the flash device passes through the light amount adjusting means (the transmittance of which is controlled) and illuminates each illumination area of the object scene. At this time, since the illumination light amount of each illumination area is adjusted according to the transmittance of the light amount adjusting means, it becomes possible to perform flash photography with proper exposure for all subjects located at different distances.

【0007】[0007]

【実施例】図1〜図6により本発明の一実施例を説明す
る。図2は本発明に係るフラッシュマチックカメラを前
方から見た斜視図である。カメラ本体11の前面には、
撮影レンズ12を有するレンズ鏡筒13が設けられると
ともに、ファインダ対物レンズ14、アクティブオ−ト
フォ−カス用の測距窓15a,15bおよび電子閃光装
置の発光窓16が設けられている。またカメラ本体11
の上面には、レリーズ釦17、液晶表示装置18、発光
モード切換釦19が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a perspective view of the flashmatic camera according to the present invention viewed from the front. On the front of the camera body 11,
A lens barrel 13 having a taking lens 12 is provided, a viewfinder objective lens 14, distance measuring windows 15a and 15b for active autofocus, and a light emitting window 16 of an electronic flash device are provided. Also, the camera body 11
A release button 17, a liquid crystal display device 18, and a light emission mode switching button 19 are provided on the upper surface of the.

【0008】本実施例の電子閃光装置は、カメラ横方向
に並設された3つの発光部(不図示)を有し、各発光部
のガイドナンバ−は等しく一定である。上記発光窓16
は、これら3つの発光部の前面にそれぞれ位置する3つ
の領域16a〜16cに分割され、その各々はエレクト
ロクロミック素子(以下、EC素子)から構成されてい
る。各発光部からの照射光は、EC素子16a〜16c
をそれぞれ透過して図3に示す被写界50の左領域50
a、中央領域50b、右領域50cの被写体をそれぞれ
照明するようになっている。EC素子16a〜16cは
電圧が印加されると黒色化するもので、その黒色化の度
合いは印加される電圧に応じて異なる。そして、黒色化
の度合いが高いほど上記照射光の透過率が低くなる。図
4はEC素子16a〜16cへの印加電圧とその透過率
との関係を示しており、この図から分かるように印加電
圧が零のときは透過率が100%で、印加電圧が高くな
るほど黒色化の度合いが高くなって透過率が減少するよ
うになっている。
The electronic flash device of the present embodiment has three light emitting portions (not shown) arranged side by side in the lateral direction of the camera, and the guide numbers of the respective light emitting portions are equal and constant. The light emitting window 16
Is divided into three regions 16a to 16c respectively located on the front surfaces of these three light emitting portions, each of which is composed of an electrochromic element (hereinafter, an EC element). The light emitted from each light emitting unit is the EC elements 16a to 16c.
And the left region 50 of the field 50 shown in FIG.
a, the central area 50b, and the right area 50c are illuminated. The EC elements 16a to 16c are blackened when a voltage is applied, and the degree of blackening varies depending on the applied voltage. The higher the degree of blackening, the lower the transmittance of the irradiation light. FIG. 4 shows the relationship between the applied voltage to the EC elements 16a to 16c and the transmissivity thereof. As can be seen from this figure, the transmissivity is 100% when the applied voltage is zero, and the higher the applied voltage, the blacker the image becomes. The degree of conversion becomes higher and the transmittance decreases.

【0009】図1は上記カメラの制御系のブロック図で
ある。CPU,ROM,RAMなどから構成される制御
回路21には、上記EC素子16a〜16cに電圧を印
加して駆動するEC駆動回路22、電子閃光装置の発光
制御回路23、アクティブオ−トフォ−カス式の測距回
路24、フィルム情報検出回路25、露出制御回路26
が接続されている。測距回路24には、図5に示すよう
な投光部31と受光部32とから成る3組の測距部30
(1組のみ図示)が接続されている。各投光部31から
は赤外光がビーム状に照射され、図3の測距エリア51
a,51b,51c内に存在する被写体O1,02,O
3からの反射光が各受光素子32により受光され、その
受光位置により被写体O1〜O3までの距離(被写体距
離)D1,D2,D3がそれぞれ検出される。ここで、
測距エリア51a〜51cは、それぞれ上記電子閃光装
置の照明領域50a〜50c内に設けられている。
FIG. 1 is a block diagram of a control system of the camera. The control circuit 21 including a CPU, ROM, RAM, etc. includes an EC drive circuit 22 for applying a voltage to the EC elements 16a to 16c to drive it, a light emission control circuit 23 for an electronic flash device, and an active autofocus. Type distance measuring circuit 24, film information detection circuit 25, exposure control circuit 26
Are connected. The distance measuring circuit 24 includes three sets of distance measuring units 30 each including a light emitting unit 31 and a light receiving unit 32 as shown in FIG.
(Only one set is shown) are connected. Infrared light is emitted in a beam form from each light projecting unit 31, and the distance measuring area 51 in FIG.
objects O1, 02, O existing in a, 51b, 51c
The reflected light from 3 is received by each light receiving element 32, and the distances (object distances) D1, D2, D3 from the objects O1 to O3 are respectively detected by the light receiving positions. here,
The distance measuring areas 51a to 51c are provided in the illumination areas 50a to 50c of the electronic flash device, respectively.

【0010】またフィルム情報検出回路25は、フィル
ムカ−トリッジに設けられたDXコードからフィルム感
度や撮影枚数などを読み取って制御回路21に入力す
る。さらに露出制御回路26は、制御回路21からの指
令に応答して不図示の絞りやシャッタを駆動して撮影を
行う。
The film information detecting circuit 25 reads the film sensitivity and the number of photographed images from the DX code provided on the film cartridge and inputs them to the control circuit 21. Further, the exposure control circuit 26 responds to a command from the control circuit 21 to drive an aperture or a shutter (not shown) to perform photographing.

【0011】制御回路21にはまた、上記レリーズ釦1
7の半押し操作でオンする半押しスイッチSW1と、レ
リーズ釦17の全押し操作でオンする全押しスイッチS
W2と、発光モード切換釦19の操作ごとにオン・オフ
する発光モード切換スイッチSW3とが接続されてい
る。本実施例では、このスイッチSW3がオンされてい
るときには閃光発光を行う発光モードが、オフされてい
るときには閃光発光を行わない発光禁止モードが設定さ
れるものとする。
The control circuit 21 also includes the release button 1 described above.
Half-push switch SW1 which is turned on by half-push operation of 7, and full-push switch S which is turned on by full-push operation of release button 17.
W2 and a light emission mode selection switch SW3 that is turned on and off each time the light emission mode selection button 19 is operated are connected. In the present embodiment, it is assumed that when the switch SW3 is turned on, a light emission mode in which flash light emission is performed is set, and when the switch SW3 is turned off, a light emission prohibition mode in which flash light emission is not performed is set.

【0012】次に、図6のフローチャートにより制御回
路21による閃光撮影動作の制御手順を説明する。半押
しスイッチSW1がオンするとこのプログラムが起動さ
れ、まずステップS1で上記発光モード切換スイッチS
W3のオン・オフ状態により閃光撮影か否かを判定す
る。閃光撮影でない場合にはステップS12で電子閃光
装置を用いないAE撮影を行い(詳細説明は省略す
る)、閃光撮影の場合にはステップS2に進む。ステッ
プS2では、フィルム情報検出回路25にて検出された
フィルム感度SVを読み出し、ステップS3では予め制
御回路21内に格納された電子閃光装置のガイドナンバ
−GN(ISO100)を読み出す。
Next, the control procedure of the flash photographing operation by the control circuit 21 will be described with reference to the flowchart of FIG. This program is started when the half-push switch SW1 is turned on. First, in step S1, the light emission mode switch S
Whether or not flash photography is performed is determined by the on / off state of W3. If it is not flash photography, AE photography without using the electronic flash device is performed in step S12 (detailed description is omitted), and if it is flash photography, the process proceeds to step S2. In step S2, the film sensitivity SV detected by the film information detection circuit 25 is read out, and in step S3, the guide number GN (ISO100) of the electronic flash device stored in advance in the control circuit 21 is read out.

【0013】次いでステップS4では測距回路24を介
して測距を行い、得られた3つの被写体距離D1〜D3
を入力する。ステップS5では被写体距離D1〜D3か
ら基準被写体距離Dを次式により演算する。 D=1.4×Min(D1〜D3) (ただし、Min(D1〜D3)はD1〜D3の最小
値) 例えば図5の例では、Min(D1〜D3)=D1であ
るので、D=1.4×D1となる。次にステップS6で
は、ガイドナンバ−GN,フィルム感度SVおよび基準
被写体距離Dから時式により、絞り値AVを演算する。
Next, in step S4, distance measurement is performed through the distance measurement circuit 24, and the three obtained object distances D1 to D3 are obtained.
Enter. In step S5, the reference subject distance D is calculated from the subject distances D1 to D3 by the following equation. D = 1.4 × Min (D1 to D3) (where Min (D1 to D3) is the minimum value of D1 to D3) For example, in the example of FIG. 5, Min (D1 to D3) = D1, so D = It becomes 1.4 × D1. Next, in step S6, the aperture value AV is calculated from the guide number GN, the film sensitivity SV and the reference subject distance D by a time equation.

【数1】 この絞り値AVは、上記EC素子の透過率が100%の
ときに基準被写体距離Dに位置する被写体が適正露出で
撮影される値である。なお、AV,SVはAPEX方式
による値であり、ISO100のときSV=5である。
[Equation 1] The aperture value AV is a value at which the subject located at the reference subject distance D is photographed with proper exposure when the transmittance of the EC element is 100%. AV and SV are values according to the APEX method, and SV = 5 when ISO100.

【0014】次いでステップS7では、各EC素子16
a〜16cの透過率T1〜T3をそれぞれ次のようにし
て求める。 Di(i=1〜3)≧Dのとき; Ti=100(%) Di<Dのとき; Ti=(Di/D)2×100(%) ・・・(1) これによれば、各被写体距離Diが基準被写体距離Dよ
り近い場合には、その被写体距離Diと基準被写体距離
Dとに基づいて上式により透過率Tiが演算される。こ
の透過率Tiは、被写体距離Diが近いほど小さくな
る。例えば図5の例では、D1〜D3がいずれもD未満
であるから、T1〜T3はいずれも上記(1)式から演
算されることになる。次いでステップS8では、上記演
算された透過率TiとなるようにEC素子16a〜16
cに電圧を印加する。
Next, in step S7, each EC element 16
The transmittances T1 to T3 of a to 16c are obtained as follows. When Di (i = 1 to 3) ≧ D; Ti = 100 (%) When Di <D; Ti = (Di / D) 2 × 100 (%) (1) According to this, When the subject distance Di is shorter than the reference subject distance D, the transmittance Ti is calculated by the above equation based on the subject distance Di and the reference subject distance D. The transmittance Ti becomes smaller as the subject distance Di becomes shorter. For example, in the example of FIG. 5, since D1 to D3 are all less than D, T1 to T3 are all calculated from the above equation (1). Next, at step S8, the EC elements 16a to 16a are adjusted so that the calculated transmittance Ti is obtained.
Apply voltage to c.

【0015】その後、ステップS9で全押しスイッチS
W2のオフが判定されるとステップS10に進み、ステ
ップS10で半押しスイッチSW1のオンが判定される
とステップS9に戻り、オフが判定されると処理を終了
させる。ステップS9で全押しスイッチSW2のオンが
判定されるとステップS11で閃光撮影を行う。すなわ
ち、露出制御回路26を介して不図示の絞りを上記演算
された絞り値AVとなるように駆動するとともにシャッ
タを開き、シャッタが全開すると発光制御回路23を介
して電子閃光装置の3つの発光部を同時にフル発光させ
る。その後、所定のシャッタ秒時が経過するとシャッタ
を閉じる。
Then, in step S9, the full-press switch S is pressed.
When it is determined that W2 is off, the process proceeds to step S10, when it is determined that half-push switch SW1 is on in step S10, the process returns to step S9, and when it is determined that it is off, the process ends. When it is determined in step S9 that the full-press switch SW2 is turned on, flash photography is performed in step S11. That is, an unillustrated aperture is driven via the exposure control circuit 26 so as to have the aperture value AV calculated above, and the shutter is opened. When the shutter is fully opened, the three emission lights of the electronic flash device are emitted via the emission control circuit 23. The parts are fully illuminated at the same time. After that, when a predetermined shutter time has elapsed, the shutter is closed.

【0016】以上の手順によれば、閃光撮影指令時にレ
リーズ釦17が半押し操作されると、上記3つの測距エ
リア51a〜51cに対して測距が行われ、被写体距離
D1〜D3が検出されるとともに、これらの被写体距離
D1〜D3から基準被写体距離Dが求められる。そし
て、この基準被写体距離Dと電子閃光装置のガイドナン
バ−GNとフィルム感度SVとから絞り値AVが演算さ
れる。一方、基準被写体距離Dと被写体距離D1〜D3
とから各EC素子16a〜16cの透過率T1〜T3が
求められ、この透過率となるようにEC素子16a〜1
6cが制御される。
According to the above procedure, when the release button 17 is pressed halfway during a flash photography command, distance measurement is performed on the three distance measurement areas 51a to 51c, and object distances D1 to D3 are detected. At the same time, the reference subject distance D is obtained from these subject distances D1 to D3. Then, the aperture value AV is calculated from the reference subject distance D, the guide number GN of the electronic flash device, and the film sensitivity SV. On the other hand, the reference subject distance D and the subject distances D1 to D3
The transmittances T1 to T3 of the respective EC elements 16a to 16c are obtained from the above, and the EC elements 16a to 1 are adjusted so as to have the transmittances.
6c is controlled.

【0017】その後、レリーズ釦17が全押し操作され
ると閃光撮影が行われる。このとき各発光部からの照明
光は、透過率が制御されたEC素子16a〜16cを透
過して被写界の各照明領域50a〜50cの被写体に導
かれるから、各照明領域50a〜50cの照明光量はE
C素子16a〜16cの透過率T1〜T3に応じて調節
されることになる。ここで透過率T1〜T3は、上述し
たように各照明領域50a〜50cに位置する被写体の
被写体距離D1〜D3が近いほどど小さいので、近くに
いる被写体ほど導かれる照明光量は少なくなる。具体的
には、図5に示すようにD1<D3<D2(ただし、D
1,D3,D2<D)の場合には、T1<T3<T2と
なり、各被写体O1,O2,O3に導かれる光量は、O
1,O3,O2の順に少なくなる。このように被写体距
離に応じて各被写体の照明光量が調節されるので、全て
の被写体O1,O3,O2を全て適正露出で閃光撮影す
ることが可能となる。
After that, when the release button 17 is fully pressed, flash photography is performed. At this time, the illumination light from each light emitting unit passes through the EC elements 16a to 16c whose transmittance is controlled and is guided to the subject in each of the illumination regions 50a to 50c in the field, so that the illumination regions 50a to 50c The amount of illumination light is E
It is adjusted according to the transmittances T1 to T3 of the C elements 16a to 16c. Here, the transmittances T1 to T3 are smaller as the subject distances D1 to D3 of the subjects located in the respective illumination regions 50a to 50c are smaller as described above, so that the closer the subjects are, the smaller the amount of illumination light guided. Specifically, as shown in FIG. 5, D1 <D3 <D2 (where D1
1, D3, D2 <D), T1 <T3 <T2, and the amount of light guided to each of the subjects O1, O2, O3 is O.
1, O3, O2 decrease in order. Since the illumination light amount of each subject is adjusted according to the subject distance in this way, it is possible to perform flash photography of all the subjects O1, O3, O2 with proper exposure.

【0018】以上の実施例の構成において、EC素子1
6a〜16cが光量調節手段を、測距回路24がマルチ
測距手段を、制御回路21およびEC駆動回路22が透
過率制御手段をそれぞれ構成する。
In the configuration of the above embodiment, the EC device 1
6a to 16c constitute a light amount adjusting means, the distance measuring circuit 24 constitutes a multi distance measuring means, and the control circuit 21 and the EC driving circuit 22 constitute a transmittance controlling means.

【0019】なお、透過率を求める式は上述のものに限
定されず、被写体距離Diが近いほど透過率が小さくな
るような式であれば他の式でもよい。また基準被写体距
離Dを求める式も実施例に限定されない。さらに以上で
は、照明領域を3つに分割した例を示したが、4つ以上
の領域に分割してもよい。この場合には各領域に対応さ
せて4つ以上のEC素子を設けるとともに、測距エリア
も4つ以上設ける必要がある。さらにまた光量調節手段
はEC素子に限定されず、これに変えて液晶素子やその
他の素子を用いてもよい。
The formula for obtaining the transmittance is not limited to the above formula, and any other formula may be used as long as the transmittance becomes smaller as the subject distance Di becomes shorter. Also, the formula for obtaining the reference subject distance D is not limited to the embodiment. Furthermore, in the above, the example in which the illumination area is divided into three has been shown, but the illumination area may be divided into four or more areas. In this case, it is necessary to provide four or more EC elements corresponding to each area and also provide four or more distance measurement areas. Furthermore, the light amount adjusting means is not limited to the EC element, and a liquid crystal element or another element may be used instead of the EC element.

【0020】またアクティブオ−トフォ−カス方式の測
距手段を用いる例を示したが、各被写体距離を検出可能
なものであれば、例えばパッシブ方式やその他の測距方
式でもよい。さらに3つの各照明領域を照明する3つの
発光部を有する電子閃光装置を用いたが、被写界全体を
照明する1つの発光部を有する電子閃光装置を用いても
よく、この場合でも光量調節手段により被写界内の複数
の照明領域の照明光量を独立に調節することができる。
Although an example using the active autofocus distance measuring means has been shown, a passive method or another distance measuring method may be used as long as each object distance can be detected. Further, although the electronic flash device having three light emitting portions for illuminating each of the three illumination regions is used, an electronic flash device having one light emitting portion for illuminating the entire field may be used, and in this case, the light amount adjustment is also performed. By means of the means, it is possible to independently adjust the amount of illumination light of a plurality of illumination areas in the object scene.

【0021】[0021]

【発明の効果】本発明によれば、フラッシュマチックカ
メラにおいて、マルチ測距により得られる複数の被写体
距離と基準被写体距離とに基づいて被写界内の各照明領
域を照明する照明光量を独立に調節するようにしたの
で、異なる距離に位置する複数の被写体の全てを適正露
出で閃光撮影することが可能となる。
According to the present invention, in a flashmatic camera, the amount of illumination light for illuminating each illumination area in the object scene is independently determined based on a plurality of subject distances obtained by multi-distance measurement and a reference subject distance. Since the adjustment is made, it becomes possible to perform flash photography with proper exposure for all of a plurality of subjects located at different distances.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るフラッシュマチックカ
メラの制御系の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a control system of a flashmatic camera according to an embodiment of the present invention.

【図2】上記フラッシュマチックカメラを前方から見た
斜視図である。
FIG. 2 is a perspective view of the flashmatic camera as seen from the front.

【図3】被写界の各照明領域と測距エリアを示す図であ
る。
FIG. 3 is a diagram showing each illumination area and a distance measuring area in the object scene.

【図4】印加電圧とEC素子の透過率との関係を示す図
である。
FIG. 4 is a diagram showing a relationship between an applied voltage and a transmittance of an EC element.

【図5】マルチ測距方式を説明する図である。FIG. 5 is a diagram illustrating a multi-distance measurement method.

【図6】閃光撮影制御の処理手順を示すフローチャート
である。
FIG. 6 is a flowchart showing a processing procedure for flash photography control.

【符号の説明】[Explanation of symbols]

11 カメラ本体 16 発光窓 16a〜16c EC素子 17レリーズ釦 19 発光モード切換釦 21 制御回路 22 EC駆動回路 23 発光制御回路 24 測距回路 25 フィルム情報検出回路 26 露出制御回路 30 測距部 50 被写界 50a〜50c 照明領域 51a〜51c 測距エリア D 基準被写体距離 D1〜D3 被写体距離 O1〜O3 被写体 11 camera body 16 light emission windows 16a to 16c EC element 17 release button 19 light emission mode switching button 21 control circuit 22 EC drive circuit 23 light emission control circuit 24 distance measuring circuit 25 film information detection circuit 26 exposure control circuit 30 distance measuring section 50 subject Field 50a to 50c Illumination area 51a to 51c Distance measuring area D Reference subject distance D1 to D3 Subject distance O1 to O3 Subject

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 閃光装置のガイドナンバ−と基準被写体
距離とから適正露出を得るための絞り値を演算し、該演
算された絞り値に絞りを設定して閃光撮影を行うフラッ
シュマチックカメラにおいて、 光透過率が可変な複数の部材から成り、前記閃光装置の
照明光をそれぞれ透過して被写界に導くことにより、被
写界内の複数の照明領域の照明光量を独立に調節する光
量調節手段と、 前記複数の照明領域にそれぞれ位置する被写体を独立に
測距するマルチ測距手段と、 閃光撮影に先立ち、前記基準被写体距離と前記マルチ測
距手段の各測距出力とに基づいて前記各光量調節手段の
透過率を制御する透過率制御手段とを具備することを特
徴とするフラッシュマチックカメラ。
1. A flashmatic camera which calculates a diaphragm value for obtaining a proper exposure from a guide number of a flash device and a reference subject distance, and sets a diaphragm to the calculated diaphragm value to perform flash photography. A light amount adjustment, which is composed of a plurality of members having variable light transmittances, transmits the illumination light of the flash device and guides the illumination light to the object field, thereby independently adjusting the amount of illumination light of the plurality of illumination areas in the object field. Means, a multi-distance measuring means for independently distance-measuring objects respectively located in the plurality of illumination regions, and prior to flash photography, based on the reference object distance and each distance-measuring output of the multi-distance measuring means, A flashmatic camera, comprising: a transmittance control means for controlling the transmittance of each light quantity adjusting means.
JP3318530A 1991-11-06 1991-11-06 Flashmatic camera Pending JPH05127232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3318530A JPH05127232A (en) 1991-11-06 1991-11-06 Flashmatic camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3318530A JPH05127232A (en) 1991-11-06 1991-11-06 Flashmatic camera

Publications (1)

Publication Number Publication Date
JPH05127232A true JPH05127232A (en) 1993-05-25

Family

ID=18100147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3318530A Pending JPH05127232A (en) 1991-11-06 1991-11-06 Flashmatic camera

Country Status (1)

Country Link
JP (1) JPH05127232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195848A (en) * 2004-01-07 2005-07-21 Nikon Corp Camera
JP2009105807A (en) * 2007-10-25 2009-05-14 Olympus Corp Imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195848A (en) * 2004-01-07 2005-07-21 Nikon Corp Camera
JP2009105807A (en) * 2007-10-25 2009-05-14 Olympus Corp Imaging apparatus

Similar Documents

Publication Publication Date Title
JP2934712B2 (en) Camera backlight detection device
JP3077791B2 (en) Camera with built-in strobe
JPH08328069A (en) Camera with built-in stroboscope
JP3032829B2 (en) Camera with zoom lens
US5155519A (en) Camera having a synchronized-shutter-time control device for flash photography
JPH05127232A (en) Flashmatic camera
JP3188742B2 (en) camera
JP4315708B2 (en) camera
JPH095843A (en) Camera
JPH09113953A (en) Apparatus and method for measurement of luminance of camera with variable photometric region
JP2569444B2 (en) Red-eye prevention control device
JP3013400B2 (en) TTL automatic light control camera
JP3831422B2 (en) Camera with dimmer
JP4313868B2 (en) Auto focus camera
JP2839002B2 (en) camera
JP3098048B2 (en) Camera system for flash photography
JP2864551B2 (en) Auto focus camera
JP3098047B2 (en) Camera system for flash photography
JP2604913B2 (en) Camera with built-in strobe
JP3461220B2 (en) Automatic control camera
JP2980345B2 (en) camera
JP2770465B2 (en) Auto focus camera
JPH08278526A (en) Camera with built-in stroboscope
JPH04331934A (en) Camera provided with flash dimming device
JPS63151932A (en) Automatic backlight correcting device for camera