JPH05126726A - Analysis optical system for centrifugal separation device - Google Patents

Analysis optical system for centrifugal separation device

Info

Publication number
JPH05126726A
JPH05126726A JP29134791A JP29134791A JPH05126726A JP H05126726 A JPH05126726 A JP H05126726A JP 29134791 A JP29134791 A JP 29134791A JP 29134791 A JP29134791 A JP 29134791A JP H05126726 A JPH05126726 A JP H05126726A
Authority
JP
Japan
Prior art keywords
sample
signal
measurement sample
laser beam
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29134791A
Other languages
Japanese (ja)
Inventor
Keiji Kataoka
慶二 片岡
Sadamiki Tachihara
定幹 立原
Masakuni Koreeda
正國 是枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP29134791A priority Critical patent/JPH05126726A/en
Publication of JPH05126726A publication Critical patent/JPH05126726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Centrifugal Separators (AREA)

Abstract

PURPOSE:To enable an optical phase distribution of a sample to be measured speedily and highly accurately by detecting a phase difference between differential frequency signal components with two frequencies of laser beam which is transmitted through a reference sample and a measurement sample. CONSTITUTION:Zeeman-type He-Ne laser 15 irradiates a laser beam with different frequencies f1 and f2 with a differential frequency being DELTAf. The laser beam is divided 16, one beam is detected 18 through a polarizer 17, and then a detection signal Ir with a period 1/DELTAf is used as a reference signal. On the other hand, the transmitted laser beam 16 passes through a mirror 20, a lens 19, and a vacuum container window 7 and irradiate a reference sample 11 and a measurement sample 10 within a cell 2 of the rotary rotor 1 with a constricted fine spot. The transmission light is detected by a detector 18 through mirrors 4 and 5, a vacuum container window 8, a polarizer 23 etc. A time difference T2-T1 of a signal waveform is measured from a phase relationship of a signal waveform of a reference signal signal 29, a reference sample signal 30, and a measurement sample signal 31 where a signal Ir and detection signals Ib and Is of the samples 11 and 10 are expressed by each specific expression, thus enabling an optical phase distribution of the sample 10 to be calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は試料を回転子に保持し、
回転子を回転させることで発生する遠心力で試料中の質
量の異なる物質を分離する遠心分離装置において、試料
中の物質を回転中に、分析する光学装置、特に測定する
光の波長に吸収の無い試料を分析する光学装置に関する
ものである。
BACKGROUND OF THE INVENTION The present invention holds a sample on a rotor,
In a centrifuge device that separates substances of different mass in a sample by centrifugal force generated by rotating a rotor, an optical device for analyzing a substance in a sample during rotation, particularly absorption of a wavelength of light to be measured. The present invention relates to an optical device for analyzing a nonexistent sample.

【0002】[0002]

【従来技術】従来の遠心分離装置の分析光学系を図2か
ら図5を用いて説明する。図2の1は真空容器12内に
納められた回転子1を示している。回転子1の円周上に
セル2が配置されている。図3に示すようにセル2には
基準試料11と測定試料10が並んで配置されている。
回転子は矢印3で示されるように回転し、セル中の試料
は、回転子径方向(矢印13で示す)の遠心力で試料中
の成分が遠心分離される。試料成分が測定する光に吸収
をもたない場合、試料成分の分析は屈折率分布を測定す
ることで行なう。水銀ランプからの光6は真空容器窓7
を通過し、回転子内のセルを照射する。セルを通過した
光はミラー4、5を反射し、真空容器窓8から、外にと
りだされる。図4は外に取り出された光9から干渉縞を
形成させる方法の概略を示したものである。基準試料1
1および測定試料10を通過した光9はプリズム32に
より14に示す場所で干渉縞を発生させる。図5は試料
の回転子径方向の干渉縞の例を示す。干渉縞の直線群が
歪んでいることがわかる。この歪みを解析することによ
り測定試料が遠心力で分離されたことにより生じる屈折
率分布即ち、光学的位相分布が、基準試料を基準とした
相対的なものとして測定できる。しかし、従来、この干
渉縞を解析するには写真で干渉縞を撮影し、その後干渉
縞を読み取り、解析を行っていた。この方法では一度、
写真を撮影することから多くの時間がかかり、かつ干渉
縞を読み取る精度も干渉縞ピッチの1/10程度に限ら
れる欠点があった。
2. Description of the Related Art An analysis optical system of a conventional centrifuge will be described with reference to FIGS. Reference numeral 1 in FIG. 2 shows a rotor 1 housed in a vacuum container 12. The cells 2 are arranged on the circumference of the rotor 1. As shown in FIG. 3, a reference sample 11 and a measurement sample 10 are arranged side by side in the cell 2.
The rotor rotates as indicated by the arrow 3, and the sample in the cell is subjected to centrifugal separation in the rotor radial direction (indicated by the arrow 13) to separate the components in the sample. When the sample component does not absorb the light to be measured, the sample component is analyzed by measuring the refractive index distribution. The light 6 from the mercury lamp is the vacuum container window 7
To illuminate the cells in the rotor. The light passing through the cell is reflected by the mirrors 4 and 5, and is taken out from the vacuum container window 8. FIG. 4 schematically shows a method of forming interference fringes from the light 9 extracted to the outside. Reference sample 1
The light 9 that has passed through 1 and the measurement sample 10 causes an interference fringe to be generated at a position 14 by the prism 32. FIG. 5 shows an example of interference fringes in the rotor radial direction of the sample. It can be seen that the straight lines of the interference fringes are distorted. By analyzing this distortion, the refractive index distribution generated by the separation of the measurement sample by the centrifugal force, that is, the optical phase distribution can be measured as a relative one with respect to the reference sample. However, conventionally, in order to analyze this interference fringe, the interference fringe is photographed, and then the interference fringe is read and analyzed. This way once
It takes a lot of time since the photograph is taken, and the accuracy of reading the interference fringes is limited to about 1/10 of the interference fringe pitch.

【0003】[0003]

【発明の解決しようとする課題】本発明は上記した欠点
を解決するためになされたもので、試料の光学的位相分
布を高速にかつ高精度でに測定可能とするためのもので
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and is to enable the optical phase distribution of a sample to be measured at high speed and with high accuracy.

【0004】[0004]

【課題を解決するための手段】本発明の装置では、回転
子中に配置された基準試料および測定試料が回転によ
り、順次、2周波(f1,f2とする)を持つレーザ光で
照射されるようにし、基準試料及び測定試料を透過した
光のそれぞれのf1−f2周波数をもつ差周波信号成分を
とりだし、それらの位相差を検出することにより測定試
料の光学的位相分布を検出することを特徴とする。
In the device of the present invention, the reference sample and the measurement sample arranged in the rotor are sequentially irradiated with laser light having two frequencies (f 1 and f 2 ) by rotation. As described above, the difference frequency signal components having the respective f 1 -f 2 frequencies of the light transmitted through the reference sample and the measurement sample are taken out, and the optical phase distribution of the measurement sample is detected by detecting the phase difference between them. It is characterized by doing.

【0005】また、2周波(f1,f2とする)を持つレ
ーザ光のうち、回転子中に配置された基準試料および測
定試料それぞれに周波数f1,f2をもつレーザ光が同時
に、照射し、透過するようにし、透過した光を干渉さ
せ、干渉光のf1−f2周波数をもつ差周波信号成分をと
りだし、レーザ光が回転子を照射する前の信号位相との
位相差を検出する方法においても測定試料の光学的位相
分布を検出することが可能である。
Of the laser beams having two frequencies (f 1 and f 2 ), the laser beams having the frequencies f 1 and f 2 are simultaneously applied to the reference sample and the measurement sample respectively placed in the rotor. Irradiation and transmission are performed, the transmitted light is interfered, and the difference frequency signal component having the f 1 -f 2 frequency of the interference light is extracted, and the phase difference from the signal phase before the laser light is applied to the rotor is determined. The detection method can also detect the optical phase distribution of the measurement sample.

【0006】[0006]

【実施例】本発明の遠心分離用分析光学系を図1に示
す。この光学系ではゼーマン効果を利用したHe−Ne
レーザを用いている。このレーザからは偏光方向が直交
した周波数の異なるレーザ光が出射する。この周波数を
1、f2とし、その差周波f1−f2をΔfとする。Δf
は8MHz程度に設定できる。レーザを出射したレーザ
光はビームスプリッター16でふたつに分割される。そ
のうち一本のビームは偏光子17を通過して光検知器1
8で検知される。レーザ光の偏光方向と偏光子の方向の
関係を図6に示す。レーザ光はx,y方向に偏光してい
る。偏光子の方向はそれらの方向と45゜の方向に設定
される。x方向に偏光している光の振幅は、 Ax=Aexp(2πif1t) (1) y方向に偏光している光の振幅は Ay=Aexp(2πif2t) (2) と表すことができる。偏光子28を通過し、光検知器1
8で検知された信号Irは次式に比例している。
EXAMPLE FIG. 1 shows an analytical optical system for centrifugation according to the present invention. In this optical system, He-Ne utilizing Zeeman effect
It uses a laser. From this laser, laser light beams of different frequencies whose polarization directions are orthogonal to each other are emitted. The frequencies are f 1 and f 2 , and the difference frequency f 1 −f 2 is Δf. Δf
Can be set to about 8 MHz. The laser light emitted from the laser is split into two by the beam splitter 16. One of the beams passes through the polarizer 17 and the photodetector 1
Detected at 8. FIG. 6 shows the relationship between the polarization direction of laser light and the direction of the polarizer. The laser light is polarized in the x and y directions. The orientation of the polarizers is set at 45 ° with respect to them. The amplitude of light polarized in the x direction can be expressed as Ax = Aexp (2πif 1 t) (1) The amplitude of light polarized in the y direction can be expressed as Ay = Aexp (2πif 2 t) (2) . It passes through the polarizer 28 and the photodetector 1
The signal Ir detected at 8 is proportional to the following equation.

【0007】Ir=|Ax/√2+Ay/√2|2 =A2(1+cos(2πΔft))(3) この信号波形は図7の29で示されているような周期1
/Δfの信号で基準信号と名付ける。一方、ビームスプ
リッタを透過したレーザ光は、ミラー20、レンズ1
9、真空容器窓7を通過してセル中の試料に直径0.1
mm程度の微小スポットで絞り込まれる。セル内の基準
試料および測定試料は、回転子1が回転しているため順
次、レーザ光で照射される。透過したレーザ光はミラー
4、5、真空容器窓8、偏光子23、レンズ24を通過
して光検知器18で検知される。また、ミラー20およ
びレンズ19のユニット21は一体となって矢印22に
示すように移動することで試料の回転子径方向の光学的
な特性分布を測定することができる。偏光子23は前述
したものと同様で、図6に示すようにレーザ光の偏光方
向x,yと45゜の角度に設定される。回転子が回転
し、レーザ光が基準試料を透過したときに光検知器18
が検知する信号をIbとすると、 Ib=B2(1+cos(2πΔf(t−T1))) (4) レーザ光が測定試料を透過したときに検知される信号
をIsとすると、 Is=C2(1+cos(2πΔf(t−T2))) (5) と表すことができる。図7に式(3)、式(4)、式
(5)で示した基準信号29、基準試料信号30、測定
試料信号31の信号波形の位相関係を示している。信号
波形の時間差、T2−T1を計測することにより測定試料
の光学的位相分布を算出することができる。例えば、試
料の厚みをd,基準試料の屈折率をn、測定試料の屈折
率をn+Δnとすると基準試料と測定試料を透過したレ
ーザ光の光学的位相差φは次式で表される。
Ir = | Ax / √2 + Ay / √2 | 2 = A 2 (1 + cos (2πΔft)) (3) This signal waveform has a period 1 as shown by 29 in FIG.
The signal of / Δf is named as a reference signal. On the other hand, the laser light transmitted through the beam splitter is reflected by the mirror 20 and the lens 1.
9. Passing through the vacuum vessel window 7, the sample in the cell has a diameter of 0.1.
It is narrowed down by a minute spot of about mm. The reference sample and the measurement sample in the cell are sequentially irradiated with laser light because the rotor 1 is rotating. The transmitted laser light passes through the mirrors 4 and 5, the vacuum container window 8, the polarizer 23, and the lens 24, and is detected by the photodetector 18. Further, the mirror 20 and the unit 21 of the lens 19 move integrally as shown by an arrow 22, so that the optical characteristic distribution of the sample in the rotor radial direction can be measured. The polarizer 23 is the same as that described above, and is set at an angle of 45 ° with the polarization directions x and y of the laser light as shown in FIG. When the rotor rotates and the laser light passes through the reference sample, the photodetector 18
Ib = B 2 (1 + cos (2πΔf (t−T 1 ))), where Isb is the signal detected when the laser light passes through the measurement sample. 2 (1 + cos (2πΔf (t−T 2 ))) (5). FIG. 7 shows the phase relationship of the signal waveforms of the reference signal 29, the reference sample signal 30, and the measurement sample signal 31 shown in Expressions (3), (4), and (5). Time difference of the signal waveform, it is possible to calculate the optical phase distribution of the measurement sample by measuring T 2 -T 1. For example, when the thickness of the sample is d, the refractive index of the reference sample is n, and the refractive index of the measurement sample is n + Δn, the optical phase difference φ between the laser light transmitted through the reference sample and the measurement sample is represented by the following equation.

【0008】 φ=(2π/λ)Δnd (6) 光学的位相差と信号波形とは次の関係がある。Φ = (2π / λ) Δnd (6) The optical phase difference and the signal waveform have the following relationship.

【0009】 φ=2πΔf(T2−T1) (7) 式(6)、式(7)よりΔnは、 Δn=(T2−T1)Δf(λ/d) (8) と算出できる。時間差、T2−T1は1周期1/Δfの1
/100程度は計測できる。時間差をこの精度で測定す
るとし、試料の厚みd=15mm、波長λ=0.632
8μmとすると、Δnは4.2×10~7 の高精度で計測
可能となる。図8は測定試料の回転子径方向の光学特性
を測定した例を示している。図(a)は、時間差の分布
を回転子径方向に測定した例である。時間差は光学的位
相差と式(7)に示されているように比例関係にある。
図(b)は図(a)を微分処理したものである。遠心分
離された測定試料中の成分の変化率の高い領域が強調し
て表示できる。試料は図3に示したような容器内に入っ
ている。この容器の光が透過する領域すなはち容器窓は
石英ガラスが使われている。本発明では試料の光学的位
相を測定するが、同時に容器窓の光学的位相も測定に含
まれてくる問題がある。この問題にたいしては、試料を
回転子にセットし回転子の回転速度が遅く、まだ測定試
料が遠心分離されていない時に、光学的な位相差を初期
状態として測定しておき、回転子の回転速度が上がり、
十分な時間がたって試料が遠心分離するあるいは、した
時に再び光学的位相差を測定しこの測定値から初期状態
の時の測定値を引き去ることをすれば容器窓に影響され
ない試料の測定も可能になる。
Φ = 2πΔf (T 2 −T 1 ) (7) From Equations (6) and (7), Δn can be calculated as Δn = (T 2 −T 1 ) Δf (λ / d) (8) . The time difference, T 2 −T 1, is 1 of 1 cycle 1 / Δf
/ 100 can be measured. If the time difference is measured with this accuracy, the sample thickness d = 15 mm, wavelength λ = 0.632
If it is 8 μm, Δn can be measured with high accuracy of 4.2 × 10 to 7 . FIG. 8 shows an example of measuring the optical characteristics of the measurement sample in the rotor radial direction. FIG. 6A is an example in which the distribution of the time difference is measured in the rotor radial direction. The time difference is proportional to the optical phase difference as shown in the equation (7).
The figure (b) is what differentiated the figure (a). A region in which the rate of change of the components in the centrifugally separated measurement sample is high can be highlighted. The sample is contained in a container as shown in FIG. Quartz glass is used for the light transmitting region of this container, that is, the container window. In the present invention, the optical phase of the sample is measured, but at the same time, the optical phase of the container window is included in the measurement. To solve this problem, when the sample is set on the rotor and the rotation speed of the rotor is slow and the sample to be measured has not been centrifuged yet, the optical phase difference is measured as the initial state and the rotation speed of the rotor is measured. Goes up,
If the sample is centrifuged after a sufficient time, or if the optical phase difference is measured again and the measured value in the initial state is subtracted from this measured value, it is possible to measure the sample that is not affected by the container window. become.

【0010】[0010]

【発明の効果】以上説明したごとく、図1に示した本発
明の遠心分離装置用分析光学系は遠心分離中の測定試料
の光学的位相分布を高精度かつ短時間で測定することを
可能とし、測定試料中の成分を高精度で分析できるよう
になる。
As described above, the analytical optical system for a centrifuge of the present invention shown in FIG. 1 makes it possible to measure the optical phase distribution of a measurement sample during centrifugation with high accuracy and in a short time. , It becomes possible to analyze the components in the measurement sample with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の遠心分離装置用分析光学系を示す模式
図。
FIG. 1 is a schematic diagram showing an analysis optical system for a centrifuge of the present invention.

【図2】従来の遠心分離装置用分析光学系を示す模式
図。
FIG. 2 is a schematic diagram showing a conventional analysis optical system for a centrifuge.

【図3】基準試料と測定試料とからなるセルを示す平面
図。
FIG. 3 is a plan view showing a cell including a reference sample and a measurement sample.

【図4】従来の遠心分離装置用分析光学系の動作を示す
模式図。
FIG. 4 is a schematic diagram showing the operation of a conventional analysis optical system for a centrifuge.

【図5】従来の遠心分離装置用分析光学系の動作を示す
模式図。
FIG. 5 is a schematic diagram showing the operation of a conventional analysis optical system for a centrifuge.

【図6】レーザ光の偏光方向と偏光子の設定角度を示す
グラフ。
FIG. 6 is a graph showing a polarization direction of laser light and a set angle of a polarizer.

【図7】信号波形を示す波形図。FIG. 7 is a waveform diagram showing a signal waveform.

【図8】測定試料の回転子径方向の光学的位相分布を計
測した例を示す波形図。
FIG. 8 is a waveform diagram showing an example of measuring an optical phase distribution of a measurement sample in a rotor radial direction.

【符号の説明】[Explanation of symbols]

1は回転子、2はセル、4と5はミラ−、7と8は真空
容器窓、10は測定試料、11は基準試料、12は真空
容器、15はゼ−マン型He−Neレ−ザ−、16はビ
−ムスプリッタ、17と23は偏光子、19と24はレ
ンズ、20はミラ−、18は光検知器、25は回路装
置、26と27はレ−ザ−光の偏光方向、28は偏光子
の方向、29は基準信号、30は基準試料からの信号、
31は測定試料からの信号、32はプリズムである。
Reference numeral 1 is a rotor, 2 is a cell, 4 and 5 are mirrors, 7 and 8 are vacuum vessel windows, 10 is a measurement sample, 11 is a reference sample, 12 is a vacuum vessel, and 15 is a Zemann type He-Ne laser. The beam splitter 16, 16 a beam splitter, 17 and 23 a polarizer, 19 and 24 a lens, 20 a mirror, 18 a photodetector, 25 a circuit device, and 26 and 27 a laser light polarization Direction, 28 is the direction of the polarizer, 29 is the reference signal, 30 is the signal from the reference sample,
Reference numeral 31 is a signal from the measurement sample, and 32 is a prism.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転子中に保持した試料に光を透過さ
せ、試料中に生じた光学的位相分布を検出する光学装置
において、回転子中に配置された基準試料および測定試
料が回転により順次、2周波を持つレーザ光で照射され
るようにし、基準試料及び測定試料を透過した光の、そ
れぞれの2周波をもつ差周波信号成分をとりだし、それ
らの位相差を検出することにより測定試料の光学的位相
分布を検出する遠心分離装置用分析光学系。
1. In an optical device for transmitting light to a sample held in a rotor to detect an optical phase distribution generated in the sample, a reference sample and a measurement sample arranged in the rotor are sequentially rotated by rotation. It is irradiated with laser light having two frequencies, and the difference frequency signal components having two frequencies of the light transmitted through the reference sample and the measurement sample are extracted, and the phase difference between them is detected to detect the measurement sample. Analytical optical system for centrifuge that detects optical phase distribution.
JP29134791A 1991-11-07 1991-11-07 Analysis optical system for centrifugal separation device Pending JPH05126726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29134791A JPH05126726A (en) 1991-11-07 1991-11-07 Analysis optical system for centrifugal separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29134791A JPH05126726A (en) 1991-11-07 1991-11-07 Analysis optical system for centrifugal separation device

Publications (1)

Publication Number Publication Date
JPH05126726A true JPH05126726A (en) 1993-05-21

Family

ID=17767751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29134791A Pending JPH05126726A (en) 1991-11-07 1991-11-07 Analysis optical system for centrifugal separation device

Country Status (1)

Country Link
JP (1) JPH05126726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763168B2 (en) 2003-05-07 2010-07-27 Thomas Broadbent & Sons Ltd Control of centrifuges

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142442A (en) * 1980-04-09 1981-11-06 Hitachi Koki Co Ltd Photoelectric scanning device for ultracentrifugal machine
JPS63128211A (en) * 1986-11-19 1988-05-31 Hitachi Ltd Spacing measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142442A (en) * 1980-04-09 1981-11-06 Hitachi Koki Co Ltd Photoelectric scanning device for ultracentrifugal machine
JPS63128211A (en) * 1986-11-19 1988-05-31 Hitachi Ltd Spacing measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763168B2 (en) 2003-05-07 2010-07-27 Thomas Broadbent & Sons Ltd Control of centrifuges

Similar Documents

Publication Publication Date Title
US5294806A (en) Optical submicron aerosol particle detector
US6128080A (en) Extended range interferometric refractometer
US2974561A (en) Polarimeter
US5325172A (en) Optical system for analyzing samples separated by a centrifugal separator
US5074666A (en) High stability interferometer for measuring small changes in refractive index and measuring method using the interferometer
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
KR100336696B1 (en) Apparatus and method for detecting polarization
JPH03504763A (en) optical measurement device
JPH05126726A (en) Analysis optical system for centrifugal separation device
JPH0256604B2 (en)
US3481671A (en) Apparatus and method for obtaining optical rotatory dispersion measurements
CN113324879A (en) Method for measuring anisotropic rotational movement particles
JPH0612333B2 (en) Automatic birefringence measuring device
JP4119385B2 (en) Photothermal conversion measuring device
Lunazzi et al. Fabry-Perot laser interferometry to measure refractive index or thickness of transparent materials
JP2735348B2 (en) Sample evaluation method with a single light source using thermal expansion vibration
JP2001074649A (en) Method for measuring angle of optical rotation, and method for inspecting urine
WO1985004713A1 (en) Sample signal for interferogram generation and method for obtaining same
JP4838012B2 (en) Photothermal conversion measuring device
JPS59211810A (en) Fine angle measuring apparatus by light heterodyne interference method
JPH0330101B2 (en)
CN117805431A (en) Laser Doppler instantaneous rotating speed measuring device and method
JPH06288893A (en) Ultracentrifugal molecular-weight measuring apparatus
JPH11304592A (en) Polarimeter
JPS60224044A (en) Surface inspecting device by light heterodyne interference method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980630