JPH05126534A - Method for calibrating line width measuring instrument - Google Patents

Method for calibrating line width measuring instrument

Info

Publication number
JPH05126534A
JPH05126534A JP3290068A JP29006891A JPH05126534A JP H05126534 A JPH05126534 A JP H05126534A JP 3290068 A JP3290068 A JP 3290068A JP 29006891 A JP29006891 A JP 29006891A JP H05126534 A JPH05126534 A JP H05126534A
Authority
JP
Japan
Prior art keywords
stage
sample
line width
image
measuring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3290068A
Other languages
Japanese (ja)
Inventor
Junichi Kitagawa
純一 北川
Nobuhiro Kita
信浩 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3290068A priority Critical patent/JPH05126534A/en
Publication of JPH05126534A publication Critical patent/JPH05126534A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To calibrate the title instrument by finding one picture element of a CCD element in terms of mum from the finely moved amount of a precise positioning stage for measuring the line width of an image taken with the CCD element by utilizing the stage. CONSTITUTION:By combining a precise positioning stage 1 and line width measuring instrument 4, luminance distribution on a sample 3 is first measured and an arbitrary reference point A is set on the luminance distribution of light irradiating the screen of a CCD element 8. By moving the stage 1 on which the sample 3 is set, the moving amount of the stage 1 is read and the measuring instrument 4 is calibrated by detecting the pitch corresponding to one picture element of a picture sensor 1 from the moved amount of the stage 1 and moved amount of the reference point A proportional to the moved amount of the stage 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サンプルを拡大投影で
撮像された画像からサンプルの線幅を測定する線幅測定
器の較正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calibrating a line width measuring device for measuring the line width of a sample from an image obtained by magnifying and projecting the sample.

【0002】[0002]

【従来の技術】一般に、線幅測定器の較正方法において
は、像を拡大する像拡大率は、数%のバラツキがある。
CCD素子のような受光素子によって像を取り込むので
あるが、顕微鏡のように取り込まれる像が倍率によって
変化する場合、或る像での受光素子1画素当たりに相当
する長さを較正することが必要であり、その較正値を基
に、その像での測定を行います。ところが、従来技術の
較正方法は、基準サンプルを用意する必要があって、而
もその基準サンプルは精度の良いピッチを備えた所謂高
精度なライン・アンド・スペースを有するものでなけれ
ばならないと云う問題があった。更に基準サンプルはミ
クロンオーダのものについては比較的高精度なものが存
在するが、光学系が高倍時に対応するサブミクロンオー
ダの基準サンプルについては信頼性の高いものに作るの
が非常に困難である。このためサブミクロンオーダ
(0.1〜0.9μm 範囲の桁)の較正については信頼
性が確保できず、線幅測定器の測定誤差要因になる。ま
た光学系の収差による画面外周近傍の歪曲のため、高倍
時に基準サンプルのピッチ若しくは長さがかかることに
よって、CCD素子に取り込んだ画像上で正確なサンプ
ルの長さが得られないと云う問題もある。
2. Description of the Related Art Generally, in a calibration method of a line width measuring device, an image magnification rate for enlarging an image has a variation of several percent.
An image is captured by a light receiving element such as a CCD element. However, if the image captured by a microscope changes depending on the magnification, it is necessary to calibrate the length corresponding to one pixel of the light receiving element in a certain image. Then, the image is measured based on the calibration value. However, in the calibration method of the prior art, it is necessary to prepare a reference sample, and the reference sample must have a so-called high-accuracy line and space with an accurate pitch. There was a problem. Furthermore, there are comparatively high-precision reference samples for micron-order ones, but it is very difficult to make highly reliable sub-micron-order reference samples that the optical system supports at high magnifications. .. For this reason, the reliability cannot be ensured for the calibration in the submicron order (digits in the range of 0.1 to 0.9 μm), which causes a measurement error of the line width measuring instrument. Further, since the distortion of the vicinity of the screen periphery due to the aberration of the optical system causes the pitch or length of the reference sample to be applied at high magnification, there is also the problem that an accurate sample length cannot be obtained on the image captured by the CCD element. is there.

【0003】[0003]

【発明が解決しようとする課題】特に顕微鏡のように撮
像レンズや対物レンズの組み合わせにより総合倍率が変
化する場合、CCD素子に撮影した像において、CCD
素子の1画素が何μm に相当するかを較正するに当た
り、従来の様に高精度の既知ピッチを有する基準サンプ
ルを必要とせず、サンプルが簡単に作れて、かつ、CC
D素子1画素長のサブミクロン(0.1μm )オーダの
線幅測定器の較正が実施できるよにすることを目的とす
る。
In particular, when the total magnification changes depending on the combination of the image pickup lens and the objective lens as in a microscope, the CCD in the image taken by the CCD element is changed.
When calibrating how many μm a pixel of an element corresponds to, it is possible to easily make a sample without requiring a reference sample having a known pitch with high accuracy as in the past, and to perform CC
It is an object of the present invention to enable the calibration of a line width measuring instrument on the order of submicron (0.1 μm) of D element one pixel length.

【0004】[0004]

【課題を解決するための手段】本発明は、画像を拡大す
る光学系を用いサンプルを拡大投影し、この像を電気的
に検出して計測する線幅測定器と、サンプルを保持する
精密な位置決めステージを組み合わせ、画面上のサンプ
ルの輝度分布を測定し、分布上に任意の基準点を設定
し、位置決めステージを一方向に既知量分移動させるこ
とにより、基準点の移動量から画像センサの1画素に相
当するピッチを検出し、測定器を較正するとことを特徴
とする。
According to the present invention, a line width measuring device for magnifying and projecting a sample using an optical system for magnifying an image and electrically detecting and measuring the image, and a precise line holding device for holding the sample. By combining the positioning stage, measuring the luminance distribution of the sample on the screen, setting an arbitrary reference point on the distribution, and moving the positioning stage in one direction by a known amount, the amount of movement of the reference point It is characterized in that the pitch corresponding to one pixel is detected and the measuring instrument is calibrated.

【0005】[0005]

【実施例】図1(イ)、(ロ)、図2を参照して第1の
実施例につき説明する。図2では位置決めステージにピ
エゾアクチュエータ式ステージが用いられている。位置
決めステージ1はアクチュエータ2によりサブミクロン
オーダから数ミクロンオーダにおよぶ直線距離(図にお
いて左右方向)の移動ができ、その移動量を検出される
ようになっている。この位置決めステージ1の上には基
準サンプル3がセットされる。線幅測定器4は、対物レ
ンズ5、結像レンズ6、撮影レンズ7及びCCD素子と
してのCCDカメラ素子8とからなり、サンプル3の像
は対物レンズ5、結像レンズ6、撮影レンズ7等を介し
てカメラ用のCCD素子8に結像するようになってい
る。このように対物レンズ5や撮影レンズ7等の組み合
わせにより総合倍率が変化しするものにおいては、各々
ノ画像においてCCD素子の1画素に相当するピッチが
変化するため、線幅測定器を較正しなければならない。
ここでは、精密位置決めステージを利用してステージの
絶対移動量から1画素に相当するピッチを求めることに
する。
EXAMPLE A first example will be described with reference to FIGS. 1 (a), 1 (b) and 2. In FIG. 2, a piezo actuator type stage is used as the positioning stage. The positioning stage 1 can be moved by a linear distance (horizontal direction in the drawing) ranging from sub-micron order to several-micron order by the actuator 2, and the amount of movement can be detected. A reference sample 3 is set on the positioning stage 1. The line width measuring device 4 is composed of an objective lens 5, an image forming lens 6, a photographing lens 7 and a CCD camera element 8 as a CCD element, and the image of the sample 3 is an objective lens 5, an image forming lens 6, a photographing lens 7, etc. An image is formed on the CCD element 8 for the camera via the. In the case where the total magnification changes depending on the combination of the objective lens 5 and the photographing lens 7 as described above, the pitch corresponding to one pixel of the CCD element in each image changes, so that the line width measuring instrument must be calibrated. I have to.
Here, a pitch corresponding to one pixel is obtained from the absolute movement amount of the stage using the precision positioning stage.

【0006】先ず、サンプル3の輝度分布を測定する。
図1(イ)はサンプルがCCD素子8の画面へ照射され
た輝度Lを縦軸に、CCD水平方向画素数Xを水平軸に
とった場合の輝度分布図であって、この輝度分布上にし
きい値(閾値)を任意に設定し、基準点Aとする。図1
(ロ)にはステージ1の位置が示されている。次に、ス
テージ1を、アクチュエータ2を用いてサブミクロン
(0.1μm )から数μm 位のオーダでX軸に沿い一方
向例えば図1(ロ)の右方向に△x(破線位置から実線
位置までの距離)だけ移動させて、その移動量△xを検
出する。このステージ1の移動に対応してCCDカメラ
素子8の画面上に設定された基準点Aもa画素数だけ移
動してA’の位置にくる。この基準点Aの画面上での移
動画素数aは、ステージ1の△x移動に対して比例する
ので、ステージ移動量△xに対し一義的に基準点移動量
の画素数aが決定する。そしてステージ1の移動量△x
は位置決めステージで読み取ればよい。これにより、1
画素当たりのピッチPは次式で較正できる。 △x/a =Pμm /pixel
First, the luminance distribution of Sample 3 is measured.
FIG. 1A is a luminance distribution diagram in which the vertical axis is the luminance L with which the sample is illuminated on the screen of the CCD 8 and the horizontal axis is the CCD horizontal pixel number X. A threshold value (threshold value) is arbitrarily set and used as a reference point A. Figure 1
The position of the stage 1 is shown in (b). Next, using the actuator 2, move the stage 1 in one direction along the X axis on the order of submicron (0.1 μm) to several μm, for example, in the right direction of FIG. The distance Δx is detected and the amount of movement Δx is detected. Corresponding to the movement of the stage 1, the reference point A set on the screen of the CCD camera element 8 also moves by the number of a pixels and comes to the position A '. Since the number of pixels a of the reference point A moving on the screen is proportional to the Δx movement of the stage 1, the number a of pixels of the reference point moving amount is uniquely determined with respect to the stage movement amount Δx. And the amount of movement of stage 1 Δx
Can be read by the positioning stage. This gives 1
The pitch P per pixel can be calibrated by the following equation. △ x / a = Pμm / pixel

【0007】図3は位置決めステージとして、干渉系に
よるレーザ測長器21によりステージ1を移動させる別
例1を示し、線幅測定器4との組み合わせについては、
前記の図2と同様である。この場合も、ステージ1をレ
ーザ測長器21で検出しながらサブμm ら数μm オーダ
で移動させ、その移動量△xから較正を行う。
FIG. 3 shows another example 1 in which the stage 1 is moved as a positioning stage by the laser length-measuring device 21 based on an interference system. Regarding the combination with the line width measuring device 4,
It is similar to FIG. In this case as well, the stage 1 is moved on the order of several μm to several μm while being detected by the laser length-measuring device 21, and the amount of movement Δx is calibrated.

【0008】図4は位置決めステージ1をエンコーダ2
2で移動させる装置を示した別例2である。この場合も
前述のものと同様に移動量△xにより線幅測定器4の較
正を行う。
FIG. 4 shows the positioning stage 1 and the encoder 2
It is another example 2 which showed the apparatus moved by 2. In this case as well, the line width measuring device 4 is calibrated by the movement amount Δx as in the case described above.

【0009】上述の装置には受光側にCCD素子8を用
いているが、図5に示す如くCCDラインセンサ9を備
えた線幅測定器10を使用してもよい。この装置の場合
も、上述のものと同様に、サブμm から数μm のオーダ
でステージ1を移動させ、その移動量△xと基準点Aの
移動画素数aから線幅測定器の較正を行う。
Although the above-mentioned apparatus uses the CCD element 8 on the light receiving side, a line width measuring device 10 having a CCD line sensor 9 may be used as shown in FIG. Also in the case of this device, similarly to the above-mentioned one, the stage 1 is moved on the order of sub μm to several μm, and the line width measuring instrument is calibrated from the amount of movement Δx and the number a of moving pixels of the reference point A. ..

【0010】以上の様に、本発明による線幅測定器の較
正方法では、サンプルがCCD素子や画像センサで撮像
でき、輝度分布を生じるものであれば、どんなものでも
使用できる。サンプル像の輝度分布の基準点の画素移動
量とステージの検出移動量から線幅測定器のCCD素子
1画素長の較正が実施される。更に、センサの輝度分布
上に設定される基準点を、1次微分像、2次微分像によ
って表されるれるエッジ部にも設定することができる。
即ち1次微分、2次微分をすることで、輝度の変わる境
界が明白になる。しかもこの画像はサンプル3にあるエ
ッジ部に相当するので、高倍時であっても関係なくエッ
ジ強調像についても利用出来、較正精度の向上に貢献す
るものである。また位置決めステージ1は、ステージ既
知移動量を検出できる機構のものであれば良く、前述の
レーザ測長器21、エンコーダ22やピエゾアクチュエ
ータ2であればサブμm オーダで対応できて、高精度の
較正が可能となる。またサンプルの形状や、しきい値に
よらず輝度分布の基準点で行えるため、較正が容易であ
る。
As described above, in the method for calibrating the line width measuring device according to the present invention, any sample can be used as long as the sample can be imaged by the CCD element or the image sensor and produces a luminance distribution. Calibration of one pixel length of the CCD element of the line width measuring device is performed based on the pixel movement amount of the reference point of the luminance distribution of the sample image and the detected movement amount of the stage. Further, the reference point set on the luminance distribution of the sensor can be set also on the edge portion represented by the primary differential image and the secondary differential image.
That is, the boundary where the brightness changes becomes clear by performing the first derivative and the second derivative. Moreover, since this image corresponds to the edge portion in the sample 3, the edge-enhanced image can be used regardless of the high magnification, which contributes to the improvement of the calibration accuracy. Further, the positioning stage 1 may have a mechanism capable of detecting a known movement amount of the stage, and the laser length measuring device 21, the encoder 22 and the piezo actuator 2 described above can correspond to a sub-μm order and can be highly accurately calibrated. Is possible. In addition, since calibration can be performed at the reference point of the luminance distribution regardless of the shape of the sample and the threshold value, calibration is easy.

【0011】[0011]

【発明の効果】本発明によれば、サンプルの形状による
ことなく、また基準点やしきい値の設定はサンプルの輝
度分布上なら任意であり、サンプルを所定量移動させる
ことによるステージの移動量と基準点の移動量から画素
センサの1画素に相当するピッチを検出し、測定器を較
正することが極めて簡単であると共に、信頼性の高い較
正が行える。更に、精密な位置決めステージを用いれ
ば、サブミクロンオーダまで対応し得、収差による誤差
が生じ易い高倍時であっても、これを考慮してサンプル
を作れるので較正が可能である。このとき較正はサンプ
ル像の分解能にはよらず分解能以上での較正が行える。
According to the present invention, the reference point and the threshold value can be set independently of the shape of the sample as long as they are on the luminance distribution of the sample, and the movement amount of the stage by moving the sample by a predetermined amount. It is extremely easy to calibrate the measuring device by detecting the pitch corresponding to one pixel of the pixel sensor from the movement amount of the reference point, and highly reliable calibration can be performed. Furthermore, if a precise positioning stage is used, it is possible to support up to the submicron order, and even at a high magnification at which errors due to aberrations are likely to occur, it is possible to calibrate because samples can be taken into consideration. At this time, the calibration can be performed at a resolution not lower than the resolution of the sample image.

【図面の簡単な説明】[Brief description of drawings]

【図1】(イ)はサンプルの輝度分布図である。(ロ)
はステージ移動量である。
FIG. 1A is a luminance distribution chart of a sample. (B)
Is the stage movement amount.

【図2】第1の実施例による線幅測定器と位置決めステ
ージである。
FIG. 2 is a line width measuring device and a positioning stage according to the first embodiment.

【図3】位置決めステージの別例1である。FIG. 3 is another example 1 of the positioning stage.

【図4】位置決めステージの別例2である。FIG. 4 is another example 2 of the positioning stage.

【図5】第2の実施例による線幅測定器と位置決めステ
ージである。
FIG. 5 shows a line width measuring device and a positioning stage according to a second embodiment.

【図6】(イ)は1次微分像の輝度分布図である。
(ロ)は2次微分像の輝度分布図である。
FIG. 6A is a luminance distribution diagram of a first-order differential image.
(B) is a luminance distribution diagram of the second-order differential image.

【符号の説明】[Explanation of symbols]

1 位置決めステージ 2 アクチュエータ 3 基準サンプル 4 線幅測定器 5 対物レンズ 6 結像レンズ 7 撮影レンズ 8 CCD素子 9 CCDラインセンサ 10 線幅測定器 21 レーザ測長器 22 エンコーダ 1 Positioning Stage 2 Actuator 3 Reference Sample 4 Line Width Measuring Device 5 Objective Lens 6 Imaging Lens 7 Photographing Lens 8 CCD Element 9 CCD Line Sensor 10 Line Width Measuring Device 21 Laser Length Measuring Machine 22 Encoder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 画像を拡大する光学系を用いサンプルを
拡大投影し、この像を電気的に検出して計測する線幅測
定器と、サンプルを保持して移動する精密な位置決めス
テージを組み合わせ、画面上のサンプルの輝度分布を測
定し、該分布上に任意の基準点を設定し、位置決めステ
ージを1方向に既知量分移動させることにより、基準点
の移動量から画像センサの1画素に相当するピッチを検
出して測定器を較正するとことを特徴とする線幅測定器
の較正方法。
1. A line width measuring instrument for magnifying and projecting a sample using an optical system for magnifying an image, electrically detecting and measuring this image, and a precise positioning stage for holding and moving the sample are combined. By measuring the luminance distribution of the sample on the screen, setting an arbitrary reference point on the distribution, and moving the positioning stage in one direction by a known amount, the amount of movement of the reference point corresponds to one pixel of the image sensor. A method for calibrating a line width measuring instrument, characterized in that the measuring instrument is calibrated by detecting the pitch.
JP3290068A 1991-11-06 1991-11-06 Method for calibrating line width measuring instrument Withdrawn JPH05126534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3290068A JPH05126534A (en) 1991-11-06 1991-11-06 Method for calibrating line width measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3290068A JPH05126534A (en) 1991-11-06 1991-11-06 Method for calibrating line width measuring instrument

Publications (1)

Publication Number Publication Date
JPH05126534A true JPH05126534A (en) 1993-05-21

Family

ID=17751376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3290068A Withdrawn JPH05126534A (en) 1991-11-06 1991-11-06 Method for calibrating line width measuring instrument

Country Status (1)

Country Link
JP (1) JPH05126534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164611A (en) * 2000-03-27 2005-06-23 Palm Microlaser Technologies Ag Control system of method and device for operating biological or non-biological object
JP2017084483A (en) * 2015-10-23 2017-05-18 日本電子株式会社 Calibration method and charged particle beam device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164611A (en) * 2000-03-27 2005-06-23 Palm Microlaser Technologies Ag Control system of method and device for operating biological or non-biological object
JP2017084483A (en) * 2015-10-23 2017-05-18 日本電子株式会社 Calibration method and charged particle beam device

Similar Documents

Publication Publication Date Title
KR101068078B1 (en) Image pickup apparatus, image pickup lens, and data writing method to image pickup lens
KR101640914B1 (en) Focus position adjusting method and inspecting method
JPH0117523B2 (en)
JP2004069314A (en) Focal distance measuring instrument
JPH05249656A (en) Mask inspecting device
JP2000252203A (en) Alignment mark and alignment method
US6677579B2 (en) Method and apparatus for phase correction of position and detection signals in scanning microscopy, and scanning microscope
US8731273B2 (en) Method and device for measuring the relative local position error of one of the sections of an object that is exposed section by section
CN211602945U (en) Sample plate
JP2005070225A (en) Surface image projector and the surface image projection method
JPH0324965B2 (en)
JPH05126534A (en) Method for calibrating line width measuring instrument
KR101234450B1 (en) Method and apparatus for evaluating thin films
US20240210442A1 (en) Method of calibrating in a scanning probe microscopy system an optical microscope, calibration structure and scanning probe microscopy device
KR20060132579A (en) Method of and apparatus for determining focus of an imaging system
JP6732680B2 (en) Map making method, mask inspection method and mask inspection apparatus
JP2000028336A (en) Device for measuring shape and method therefor
JP3040845B2 (en) Alignment mark
JP2005090962A (en) Measuring method and measuring device of optical element
TW202041982A (en) Autofocusing method for an imaging device
US20220398778A1 (en) Lens calibration method for digital imaging apparatus
JPS62278402A (en) Aligner
EP0094041B1 (en) Reduction projection aligner system
JPH11304651A (en) Lens inspecting method
CN115615354A (en) Calibration method and calibration device for measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204