JPH05125973A - Fuel injection quantity control device for diesel engine - Google Patents

Fuel injection quantity control device for diesel engine

Info

Publication number
JPH05125973A
JPH05125973A JP3313338A JP31333891A JPH05125973A JP H05125973 A JPH05125973 A JP H05125973A JP 3313338 A JP3313338 A JP 3313338A JP 31333891 A JP31333891 A JP 31333891A JP H05125973 A JPH05125973 A JP H05125973A
Authority
JP
Japan
Prior art keywords
fuel
injection
injection amount
diesel engine
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3313338A
Other languages
Japanese (ja)
Other versions
JP3180387B2 (en
Inventor
Yasuhiro Toyoda
恭大 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP31333891A priority Critical patent/JP3180387B2/en
Publication of JPH05125973A publication Critical patent/JPH05125973A/en
Application granted granted Critical
Publication of JP3180387B2 publication Critical patent/JP3180387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide a fuel injection quantity control device for a diesel engine in which a basic injection quantity is corrected based on a correction characteristic determined according to the relationship between fuel temperature and the kind of fuel used, so that the accuracy of fuel injection quantity control is enhanced. CONSTITUTION:A fuel identification means 307 identifies the kind of fuel used according to the relationship between the amount of correction of engine speed that an engine speed correction amount computing means 303 computes according to the deviation between a desired speed of a diesel engine 300 in a predetermined stable driving state and actual engine speed, and fuel temperature that a fuel temperature detection means 306 detects. Then a correction means 308, according to the relationship between a correction characteristic selected by the kind of fuel used and the fuel temperature, corrects the commanded quantity of fuel injection which is computed by a commanded fuel quantity computing means 304. A fuel injection control means 305 performs injection control for the corrected quantity of injection commanded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジンの
燃料噴射量制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection amount control device for a diesel engine.

【0002】[0002]

【従来の技術】」ディーゼルエンジンの燃料噴射量制御
に関する従来技術としては、特開平1−290945号
公報に開示されたディーゼルエンジンの燃料噴射制御装
置がある。該デイーゼルエンジンの燃料噴射制御装置
は、ディーゼルエンジンが所定の安定状態で運転してい
るとき、燃料温度変化に対する燃料噴射ポンプの噴射量
の変化特性を求めるとともに、該変化特性と燃料温度及
び各運転状態とに基づき、該各運転状態における最適な
燃料噴射量を補正算出するようにしたものである。
2. Description of the Related Art As a conventional technique for controlling the fuel injection amount of a diesel engine, there is a fuel injection control device for a diesel engine disclosed in Japanese Patent Laid-Open No. 1-290945. The fuel injection control device for the diesel engine obtains the change characteristic of the injection amount of the fuel injection pump with respect to the change in the fuel temperature when the diesel engine is operating in a predetermined stable state, and the change characteristic, the fuel temperature and each operation. The optimal fuel injection amount in each operating state is corrected and calculated based on the state.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
燃料温度変化が燃料噴射ポンプの噴射量の変化に寄与す
る度合いは小さく、エンジンフリクションや補機類の負
荷等が大きく影響する。このため、燃料温度に対する安
定運転状態の燃料噴射量変化特性に基づいて、各運転状
態における最適な燃料噴射量を補正算出すると、燃料噴
射量の制御精度が確保できないという問題点がある。本
発明は上記の問題点を解決するためなされたものであ
り、噴射ポンプの対燃料温度特性の個体間差は小さいこ
とから、燃料温度と燃料種類との関係から求まる基本補
正特性に基づいて、基本噴射量を補正することにより各
運転状態における燃料噴射量制御の精度を高め得るディ
ーゼルエンジンの燃料噴射量制御装置を提供することを
目的とするものである。
However, the degree to which the fuel temperature change described above contributes to the change in the injection amount of the fuel injection pump is small, and engine friction and the load of auxiliary machinery have a great influence. Therefore, if the optimum fuel injection amount in each operation state is corrected and calculated based on the fuel injection amount change characteristic in the stable operation state with respect to the fuel temperature, there is a problem in that the control accuracy of the fuel injection amount cannot be ensured. The present invention has been made in order to solve the above problems, since the difference between the individual characteristics of the fuel temperature characteristics of the injection pump is small, based on the basic correction characteristics obtained from the relationship between the fuel temperature and the fuel type, An object of the present invention is to provide a fuel injection amount control device for a diesel engine that can improve the accuracy of fuel injection amount control in each operating state by correcting the basic injection amount.

【0005】[0005]

【問題点を解決するための手段】上記目的を達成するた
めの具体的手段として、図1に示すようにエンジン回転
数、アクセル開度等の各種機関情報を入力して、ディー
ゼルエンジン300の運転状態を検出する運転状態検出
手段301と、該運転状態検出手段301の検出結果に
基づいて燃料の基本噴射量を演算する基本噴射量演算手
段302と、前記ディーゼルエンジン300が所定の安
定運転状態にあるときの目標回転数と実際の回転数との
偏差に基づいて回転数補正量を演算する回転数補正量演
算手段303と、回転数補正量と前記基本噴射量とに基
づいて燃料の指令噴射量を演算する指令噴射量演算手段
304と、演算した指令噴射量の燃料を噴射制御する燃
料噴射制御手段305とを有するディーゼルエンジン3
00の燃料噴射量制御装置において、燃料温度を検出す
る燃料温度検出手段306と、前記回転数補正量と前記
燃料温度との関係から使用燃料の種類を判別する燃料種
類判別手段307と、該燃料種類判別手段307の判別
結果に応じて選択する補正特性と前記燃料温度との関係
から前記指令噴射量を補正する補正手段308とを備え
ることを特徴とするディーゼルエンジンの燃料噴射量制
御装置が提供される。
[Means for Solving the Problems] As a specific means for achieving the above object, as shown in FIG. 1, various engine information such as engine speed and accelerator opening is input to operate the diesel engine 300. The operating state detecting means 301 for detecting the state, the basic injection amount calculating means 302 for calculating the basic injection amount of fuel based on the detection result of the operating state detecting means 301, and the diesel engine 300 are brought into a predetermined stable operating state. A rotation speed correction amount calculating means 303 for calculating a rotation speed correction amount based on a deviation between a target rotation speed and an actual rotation speed at a certain time, and a command injection of fuel based on the rotation speed correction amount and the basic injection amount. Diesel engine 3 having command injection amount calculation means 304 for calculating the amount and fuel injection control means 305 for controlling the injection of the calculated command injection amount of fuel
No. 00 fuel injection amount control device, fuel temperature detection means 306 for detecting the fuel temperature, fuel type determination means 307 for determining the type of fuel used from the relationship between the rotational speed correction amount and the fuel temperature, and the fuel Provided is a fuel injection amount control device for a diesel engine, comprising: a correction unit 308 that corrects the command injection amount based on a relationship between a correction characteristic selected according to a determination result of the type determination unit 307 and the fuel temperature. To be done.

【0006】[0006]

【作用】上記ディーゼルエンジン300の燃料噴射量制
御装置の作用は以下の通りである。回転数補正量演算手
段303が、所定の安定運転状態にあるときのディーゼ
ルエンジン300の目標回転数と実際の回転数との偏差
に基づいて演算する回転数補正量と燃料検出手段306
が検出する燃料温度との関係から、燃料種類判別手段3
07が使用燃料の種類を判別する。そして、使用燃料の
種類に応じて選択する補正特性と燃料温度との関係に基
づき補正手段308が、指令噴射量演算手段にて演算さ
れる燃料の指令噴射量を補正する。補正された指令噴射
量を燃料噴射制御手段305が噴射制御する。
The operation of the fuel injection amount control device for the diesel engine 300 is as follows. The rotation speed correction amount calculation means 303 calculates the rotation speed correction quantity and the fuel detection means 306 based on the deviation between the target rotation speed and the actual rotation speed of the diesel engine 300 when in a predetermined stable operation state.
From the fuel temperature detected by the fuel type discriminating means 3
07 determines the type of fuel used. Then, the correction unit 308 corrects the command injection amount of the fuel calculated by the command injection amount calculation unit, based on the relationship between the correction characteristic selected according to the type of fuel used and the fuel temperature. The fuel injection control unit 305 controls the injection of the corrected command injection amount.

【0007】[0007]

【実施例】本発明の実施例について図面に従って具体的
に説明する。図2は本発明を適用した燃料噴射ポンプの
断面を示す構成図、図3は図2におけるA−A線拡大断
面図である。燃料噴射ポンプ1は公知のボッシュタイプ
分配型燃料噴射ポンプをベースとする電磁スピル式のも
のである。エンジンのクランク軸に同期してその1/2
の速度で回転する駆動軸2は、ベーン式フィードポンプ
3を回転駆動する。尚、図2中には軸方向から見たベー
ン式フィードポンプ3を併せて記載する。このベーン式
フィードポンプ3は吸入口4から導入して加圧した燃料
を、燃料調圧弁5により所定の圧力に調圧した後、ポン
プハウジング6内に形成した燃料室7へ供給する。
Embodiments of the present invention will be specifically described with reference to the drawings. 2 is a configuration diagram showing a cross section of a fuel injection pump to which the present invention is applied, and FIG. 3 is an enlarged cross sectional view taken along the line AA in FIG. The fuel injection pump 1 is an electromagnetic spill type based on a known Bosch type distribution type fuel injection pump. Half that in synchronization with the engine crankshaft
The drive shaft 2 rotating at the speed of rotatably drives the vane type feed pump 3. In FIG. 2, the vane type feed pump 3 viewed from the axial direction is also shown. The vane feed pump 3 regulates the fuel, which is introduced from the suction port 4 and pressurized, to a predetermined pressure by the fuel pressure regulating valve 5, and then supplies the fuel to the fuel chamber 7 formed in the pump housing 6.

【0008】また、前記駆動軸2はカップリング8を介
してプランジャ9を回転駆動する。該カップリング8は
プランジャ9の回転のみを拘束して一体的に回転駆動
し、プランジャ9の軸方向の往復移動を自在とする。ま
た、プランジャ9にはフェースカム10が一体的に設け
られている。フェースカム10はエンジンの気筒数に対
応する4つのカム山を有し、スプリング11によりカム
ローラ12に押し付けられている。カムローラ12とフ
ェースカム10との摺接により、プランジャ9は1回転
中に気筒数に応じた回数だけ軸方向へ往復動される。
Further, the drive shaft 2 rotationally drives the plunger 9 via the coupling 8. The coupling 8 restrains only the rotation of the plunger 9 and integrally rotates and drives the plunger 9 to freely reciprocate in the axial direction. A face cam 10 is integrally provided on the plunger 9. The face cam 10 has four cam peaks corresponding to the number of cylinders of the engine, and is pressed against the cam roller 12 by the spring 11. Due to the sliding contact between the cam roller 12 and the face cam 10, the plunger 9 is reciprocated in the axial direction a number of times corresponding to the number of cylinders during one rotation.

【0009】プランジャ9はハウジング6に固定された
ヘッド13に摺動自在にかつ精密に嵌合されて、該ヘッ
ド13とプランジャ9の端面とでポンプ室14を構成し
ている。燃料室7から吸入孔16を通じ吸入された燃料
は往復移動するプランジャ9により加圧される。ポンプ
室14内で加圧された高圧燃料は、プランジャ9の回転
位置により選択された分配ポート17を経由して各気筒
毎の圧送弁18に送られ、エンジン本体の各気筒の噴射
ノズルに圧送され燃焼室に噴射される。
The plunger 9 is slidably and precisely fitted to a head 13 fixed to the housing 6, and the head 13 and the end surface of the plunger 9 form a pump chamber 14. The fuel sucked from the fuel chamber 7 through the suction hole 16 is pressurized by the reciprocating plunger 9. The high-pressure fuel pressurized in the pump chamber 14 is sent to the pressure feed valve 18 of each cylinder via the distribution port 17 selected by the rotational position of the plunger 9, and is pressure-fed to the injection nozzle of each cylinder of the engine body. It is then injected into the combustion chamber.

【0010】また、上記ポンプ室14は高圧通路21を
経由して電磁スピル弁22に連通している。電磁スピル
弁22は高圧通路21と燃料室7に連通する溢流路23
とを開閉するものであり、通電により閉弁する。コイル
24に通電されると、パイロットバルブをなすニードル
弁25がオリフィス26を閉塞し、スプール室27内の
燃料が流失できなくなり、メインバルブをなすスプール
28が弁を閉じる。コイル24の通電を遮断すると、ス
プール室27内の燃料が溢流路23に流出し、スプール
28がリフトされて弁が開かれる。従って、前記プラン
ジャ9の圧縮行程中に電磁スピル弁22への通電を遮断
すると、高圧燃料が溢流路23を経由して燃料室7に逃
がされ圧送弁18へ圧送されなくなり燃料の噴射が停止
される。電磁スピル弁22への通電を遮断するタイミン
グを制御することにより各気筒での燃料噴射量が制御さ
れる。
The pump chamber 14 communicates with an electromagnetic spill valve 22 via a high pressure passage 21. The electromagnetic spill valve 22 has an overflow passage 23 communicating with the high pressure passage 21 and the fuel chamber 7.
And are opened and closed by energizing. When the coil 24 is energized, the needle valve 25, which is a pilot valve, closes the orifice 26, the fuel in the spool chamber 27 cannot flow out, and the spool 28, which is a main valve, closes the valve. When the coil 24 is de-energized, the fuel in the spool chamber 27 flows out to the overflow passage 23, the spool 28 is lifted and the valve is opened. Therefore, when the electromagnetic spill valve 22 is de-energized during the compression stroke of the plunger 9, the high-pressure fuel escapes to the fuel chamber 7 through the overflow passage 23 and is not pressure-fed to the pressure-feed valve 18, so that fuel injection is performed. Be stopped. The fuel injection amount in each cylinder is controlled by controlling the timing at which the power supply to the electromagnetic spill valve 22 is cut off.

【0011】フェースカム10と摺接するカムローラ1
2はローラリング31に保持されている。このローラリ
ング31は数10度の角度範囲で回動可能に設けられ、
タイマピストン32によりピン33を介して回動位置を
制御される。ローラリング31の回動位置によりカムロ
ーラ12とフェースカム10との摺動タイミングがず
れ、駆動軸2の回転角位置に対するプランジャ9の往復
運動の位相が変化して燃料噴射時期が変るようになって
いる。これらローラリング31、タイマピストン32等
は燃料噴射時期を制御する油圧タイマ機構をなす。
A cam roller 1 in sliding contact with the face cam 10.
2 is held by a roller ring 31. This roller ring 31 is provided so as to be rotatable within an angle range of several tens of degrees,
The rotation position is controlled by the timer piston 32 via the pin 33. The sliding position of the cam roller 12 and the face cam 10 is deviated by the rotating position of the roller ring 31, the phase of the reciprocating motion of the plunger 9 relative to the rotational angle position of the drive shaft 2 is changed, and the fuel injection timing is changed. There is. The roller ring 31, the timer piston 32, etc. form a hydraulic timer mechanism for controlling the fuel injection timing.

【0012】タイマピストン32は高圧室34と低圧室
35との差圧及びタイマスプリング36の荷重により位
置が決まる。高圧室34は図示しない絞りを経由してベ
ーン式フィードポンプ3の高圧側、すなわち燃料室7に
連通し、低圧室35はベーン式フィードポンプ3の低圧
側に連通する。そして、高圧室34と低圧室35は電磁
調整弁37を介して連通され、電磁調整弁37の開度に
より高圧室34の圧力が調整されタイマピストン32の
位置が調整される。尚、実際はタイマピストン32は摺
動方向が駆動軸2と直交する方向に設けられているが、
構造を明確に示すため作図上90゜展開して図2の様に
示す。
The position of the timer piston 32 is determined by the pressure difference between the high pressure chamber 34 and the low pressure chamber 35 and the load of the timer spring 36. The high pressure chamber 34 communicates with the high pressure side of the vane type feed pump 3, that is, the fuel chamber 7 via a throttle not shown, and the low pressure chamber 35 communicates with the low pressure side of the vane type feed pump 3. Then, the high pressure chamber 34 and the low pressure chamber 35 are communicated with each other via the electromagnetic adjustment valve 37, and the pressure of the high pressure chamber 34 is adjusted by the opening degree of the electromagnetic adjustment valve 37, and the position of the timer piston 32 is adjusted. Although the timer piston 32 is actually provided so that the sliding direction is orthogonal to the drive shaft 2,
In order to clearly show the structure, it is expanded 90 ° on the drawing and shown as in FIG.

【0013】駆動軸2の回転を検出しプランジャ9のリ
フトタイミングを検出するため、外周に突起41が設け
られた円盤42が駆動軸2に固定され、円盤42の突起
41を検出する回転角センサ43がローラリング31に
固定されている。図3に示すように、円盤42の突起4
1は90°/16(=5.625°)間隔に並び、円盤4
2の90°毎に突起2つ分の欠落部44を有する。そし
て噴射ポンプ駆動軸2の90°回転即ちエンジンの18
0°クランク角毎に欠落部44を検出して基準角信号と
し、エンジンの11.25°クランク角毎に突起41を
検出して角度信号としている。
In order to detect the rotation of the drive shaft 2 and the lift timing of the plunger 9, a disc 42 having a protrusion 41 on its outer periphery is fixed to the drive shaft 2 and a rotation angle sensor for detecting the protrusion 41 of the disc 42 is provided. 43 is fixed to the roller ring 31. As shown in FIG. 3, the protrusion 4 of the disk 42
1 are arranged at 90 ° / 16 (= 5.625 °) intervals, and disk 4
There is a missing portion 44 for two protrusions for every 90 ° of 2. Then, the injection pump drive shaft 2 rotates 90 °, that is, the engine 18
The missing portion 44 is detected for every 0 ° crank angle and used as a reference angle signal, and the projection 41 is detected for every 11.25 ° crank angle of the engine and used as an angle signal.

【0014】マイクロコンピュータを有する電子制御装
置(ECU)50にはエンジンの運転状態信号を与えるア
クセル位置センサ51、冷却水温センサ52、吸気温セ
ンサ53等からの信号が入力される。また、燃料噴射ポ
ンプ1には、燃料室7の燃料温度を検出する燃料温度セ
ンサ54が設けられ、燃料温度を検出して電子制御装置
50へ入力する。
Signals from an accelerator position sensor 51, a cooling water temperature sensor 52, an intake air temperature sensor 53, etc., which give an engine operating state signal, are input to an electronic control unit (ECU) 50 having a microcomputer. Further, the fuel injection pump 1 is provided with a fuel temperature sensor 54 that detects the fuel temperature of the fuel chamber 7, and detects the fuel temperature and inputs it to the electronic control unit 50.

【0015】電子制御装置50ではこれらの運転状態信
号及び回転角センサ43からの信号等の機関情報に基い
て噴射時期及び噴射量を算出する。噴射量は燃料温度セ
ンサ54及び回転角センサ43からの検出信号に従って
補正される。そして、演算された噴射時期を実現すべく
電磁調整弁37の開度が制御され、演算され補正された
噴射量を実現すべく電磁スピル弁22の開閉タイミング
が制御される。
The electronic control unit 50 calculates the injection timing and the injection amount based on the engine state information such as the operation state signal and the signal from the rotation angle sensor 43. The injection amount is corrected according to the detection signals from the fuel temperature sensor 54 and the rotation angle sensor 43. Then, the opening degree of the electromagnetic adjustment valve 37 is controlled to realize the calculated injection timing, and the opening / closing timing of the electromagnetic spill valve 22 is controlled to realize the calculated and corrected injection amount.

【0016】以上の機械的構成に基き燃料噴射量の補正
処理について説明する。燃料噴射量に影響を及ぼす高圧
燃料の漏れの主なものは、ポンプ室14の高圧燃料がプ
ランジャ9とヘッド13との摺接部を通って燃料室7に
漏れるものと、スプール室27の高圧燃料がスプール2
8とスピル弁22本体との摺接部を通って溢流路23に
漏れるものである。これらの漏れによりプランジャ9の
リフト量だけの燃料が圧送弁18に圧送されなくなり、
実際の燃料噴射量が減少する。この減量分を予かじめ想
定し、指令する噴射量を補正する。
The correction process of the fuel injection amount based on the above mechanical structure will be described. The main leaks of high-pressure fuel that affect the fuel injection amount are high-pressure fuel in the pump chamber 14 leaking into the fuel chamber 7 through the sliding contact portion between the plunger 9 and the head 13, and high-pressure fuel in the spool chamber 27. Fuel is spool 2
8 and the spill valve 22 main body through a sliding contact portion to leak into the overflow passage 23. Due to these leaks, fuel corresponding to the lift amount of the plunger 9 is not pumped to the pump valve 18,
The actual fuel injection amount decreases. The injection amount to be commanded is corrected by presuming this reduction amount in advance.

【0017】図4は電子制御装置50内のマイクロコン
ピュータでの実際の噴射量制御処理を示すフローチャー
トである。処理が開始されると、ステップ101では、
アクセル位置センサ51、冷却水温センサ52、吸気温
センサ53等が検出するディーゼルエンジンの運転状態
信号が読込まれ、回転角センサ43からの基準角信号の
発生間隔からエンジンの回転数が計算される。また、燃
料温度センサ54からの燃料温度及び図5のフローチャ
ートで求められるアイドル回転数制御の補正量が読込ま
れる。ステップ102では、上記のエンジン状態及び負
荷の情報からその運転状態に適した指令噴射量を与える
基本噴射量Q0が算出される。
FIG. 4 is a flow chart showing the actual injection amount control processing by the microcomputer in the electronic control unit 50. When the process starts, in step 101,
The operating state signal of the diesel engine detected by the accelerator position sensor 51, the cooling water temperature sensor 52, the intake air temperature sensor 53 and the like is read, and the engine speed is calculated from the generation interval of the reference angle signal from the rotation angle sensor 43. Further, the fuel temperature from the fuel temperature sensor 54 and the correction amount of the idle speed control obtained in the flowchart of FIG. 5 are read. In step 102, a basic injection amount Q 0 that gives a command injection amount suitable for the operating state is calculated from the information on the engine state and the load.

【0018】ステップ103では、高圧燃料の漏れによ
る実際の噴射量の減少分を補正するための補正係数
1,K2が演算される。補正係数K1は燃料温度による
粘度変化に対応した漏れの変化を補正する係数であり、
図6に示すように燃料温度センサ54で検出される燃料
温度が高い程大きな値が与えられる。補正係数K1は使
用燃料の種類の相違による漏れの変化を補正するアイド
ル回転数制御の補正量と、燃料温度との関係から求めら
れる。補正係数K2はエンジンの回転数が低い場合に漏
れが増加することを補正する係数であり、図7に示すよ
うに回転数が低い程大きな値が与えられる。
In step 103, correction coefficients K 1 and K 2 for correcting the actual decrease in the injection amount due to the leakage of the high pressure fuel are calculated. The correction coefficient K 1 is a coefficient for correcting the change in leakage corresponding to the change in viscosity due to the fuel temperature,
As shown in FIG. 6, a larger value is given as the fuel temperature detected by the fuel temperature sensor 54 is higher. The correction coefficient K 1 is obtained from the relationship between the fuel temperature and the correction amount of the idle speed control that corrects the change in leakage due to the difference in the type of fuel used. The correction coefficient K 2 is a coefficient for correcting an increase in leakage when the engine speed is low, and a larger value is given as the engine speed is lower, as shown in FIG. 7.

【0019】図6及び図8に示すように、前記補正係数
1はアイドル回転数の補正量が大きい程大きな値が与
えられる。これは冷寒地である程、3号軽油、あるいは
特3号軽油といった粘度の低いディーゼル燃料が使用さ
れることに対応している。使用されるディーゼル燃料の
種類を所定の温度でのアイドル回転数補正量から想定
し、その粘度に対応した漏れの補正を行う。
As shown in FIGS. 6 and 8, the correction coefficient K 1 is given a larger value as the correction amount of the idle speed is larger. This corresponds to the use of diesel fuel having a low viscosity such as No. 3 gas oil or No. 3 gas oil in colder regions. The type of diesel fuel to be used is assumed from the idle speed correction amount at a predetermined temperature, and leakage is corrected according to its viscosity.

【0020】ここで、アイドル回転数の補正量からの燃
料種類の判別であるが、所定の機関温度でアイドル安定
条件を満たす状態で、図8に示すように燃料温度が50
℃の場合の補正量が所定値範囲(例えば−30rpm〜
+50rpm)であれば、A領域に入る2号軽油と判断
し、+50rpmをより大きければC領域に入る3号軽
油、特3号軽油と判断し、−30rpmを下回ればB領
域に入る1号軽油と判断する。そして、この判断結果に
応じて図6に示す特性曲線(A′),(C′),(B′)の何
れかを選択し補正係数K1を求める。尚、本実施例では
補正係数K1をアイドル回転数補正量に対してステップ
的に変化させているが、勿論連続的に変化させることも
可能である。
Here, in the determination of the fuel type from the correction amount of the idle speed, the fuel temperature is 50 as shown in FIG. 8 under the condition that the idle stability condition is satisfied at a predetermined engine temperature.
The correction amount in the case of ℃ is within a predetermined value range (for example, -30 rpm to
(+50 rpm), it is judged to be No. 2 diesel oil that enters the A region, if +50 rpm is larger, it is judged to be No. 3 diesel oil and special No. 3 diesel oil, and if it is less than -30 rpm, it is No. 1 diesel oil that enters the B region. To judge. The characteristic curve shown in FIG. 6 according to the determination result (A '), (C' ), determining the correction factor K 1 to select one of (B '). In the present embodiment, the correction coefficient K 1 is changed stepwise with respect to the idle rotation speed correction amount, but it is of course possible to change it continuously.

【0021】上述のようにステップ103で2つの補正
係数K1, K2が算出されるとステップ104に進む。ス
テップ104では、2つの補正係数K1,K2を掛け合わ
せ、総合補正係数K=K1・K2を算出する。次に、ステ
ップ105では、基本噴射量QOを総合補正係数Kで補
正し、指令噴射量QFIN=QO・Kを算出する。そして、
図示しない割込処理により、ステップ105で補正され
算出された指令噴射量QFINに対応するスピル角でもっ
て電磁スピル弁22への通電が遮断され、燃料噴射が終
了する。
When the two correction coefficients K 1 and K 2 are calculated in step 103 as described above, the process proceeds to step 104. In step 104, the two correction coefficients K 1 and K 2 are multiplied to calculate a total correction coefficient K = K 1 · K 2 . Next, at step 105, the basic injection amount Q O is corrected by the total correction coefficient K to calculate the command injection amount Q FIN = Q O · K. And
By an interrupt process (not shown), the electromagnetic spill valve 22 is de-energized with the spill angle corresponding to the command injection amount Q FIN corrected and calculated in step 105, and the fuel injection is ended.

【0022】図4のフローチャートは、電子制御装置5
0内のマイクロコンピュータでの実際のアイドル回転数
制御処理を示すフローチャートである。処理が開始され
ると、ステップ201では、アクセル位置センサ51、
冷却水温センサ52、吸気温センサ53等が検出するデ
ィーゼルエンジンの運転状態信号が読込まれ、回転角セ
ンサ43からの基準角信号の発生間隔からエンジンの回
転数が計算される。また、図示しない車速センサから車
速が入力される。ステップ202では、アイドル安定状
態か否かの判定を行い、安定状態であれば所定の演算処
理プログラムに従いステップ203で目標アイドル回転
数を算出し、ステップ204で目標回転数と実際の回転
数との偏差を算出し、さらにステップ205へ進んで回
転数補正量(噴射量)を算出する。そして、算出された回
転数補正量は前記したように噴射量制御処理の情報とし
て用いられる。
The flow chart of FIG. 4 shows the electronic control unit 5
It is a flow chart which shows the actual idle speed control processing in the microcomputer in 0. When the process is started, in step 201, the accelerator position sensor 51,
The operation state signal of the diesel engine detected by the cooling water temperature sensor 52, the intake air temperature sensor 53, etc. is read, and the engine speed is calculated from the generation interval of the reference angle signal from the rotation angle sensor 43. Further, the vehicle speed is input from a vehicle speed sensor (not shown). In step 202, it is judged whether or not the engine is in the idle stable state, and if it is in the stable state, a target idle speed is calculated in step 203 according to a predetermined arithmetic processing program, and in step 204, the target speed and the actual speed are calculated. The deviation is calculated, and the routine proceeds to step 205, where the rotation speed correction amount (injection amount) is calculated. Then, the calculated rotation speed correction amount is used as information of the injection amount control process as described above.

【0023】上記したように本実施例装置は、先ずアイ
ドル回転数制御において目標アイドル回転数と実際の回
転数との偏差を算出し、この偏差に基づいて高圧燃料の
漏れによる実際の噴射量の減少分を補正するため、アイ
ドル回転数補正量を算出する。このアイドル回転数補正
量に対する燃料温度の影響の寄与度は小さいため、燃料
温度との関係からは使用燃料の種類の判別を行うに止
め、この判別結果に基づいて前記実際の噴射量の減少分
を補正する補正係数K1を求めるため予め設定された特
性を選択するとともに、燃料温度に応じて補正係数K1
を求める。そして、エンジン回転数に応じて高圧燃料の
漏れを補正するために求めた補正係数K2と、前記補正
係数K1とにより基本噴射量QOを補正して指令噴射量Q
FINを算出する。従って、アイドル回転数補正量と燃料
温度との関係から単純に全運転領域に対する補正係数を
求める場合に比べて、燃料噴射量制御の精度が高まる。
As described above, the apparatus according to the present embodiment first calculates the deviation between the target idle speed and the actual speed in the idle speed control, and based on this deviation the actual injection amount due to the leakage of high-pressure fuel. In order to correct the decrease, an idle speed correction amount is calculated. Since the contribution of the influence of the fuel temperature to the idle speed correction amount is small, it is only necessary to determine the type of fuel used from the relationship with the fuel temperature, and based on this determination result, the reduction amount of the actual injection amount is reduced. with selecting a preset characteristic for obtaining the correction factor K 1 for correcting the correction coefficient K 1 depending on the fuel temperature
Ask for. Then, the basic injection amount Q O is corrected by the correction coefficient K 2 obtained for correcting the leakage of high-pressure fuel according to the engine speed, and the correction coefficient K 1 to correct the command injection amount Q.
Calculate FIN . Therefore, the accuracy of the fuel injection amount control is enhanced as compared with the case where the correction coefficient for the entire operating region is simply obtained from the relationship between the idle speed correction amount and the fuel temperature.

【0024】[0024]

【発明の効果】以上説明したように本発明は上記の構成
を有し、使用燃料の種類別にデイーゼルエンジンの安定
運転状態時における、漏れによる噴射量の変化を補正す
るための特性を設定し、燃料種類の判別結果に基づいて
前記特性を選択するとともに、燃料温度に応じて燃料噴
射量の補正をするから、燃料温度のみに応じて補正する
場合に比し、全運転領域に対する精度の高い燃料噴射量
制御を行うことができる効果がある。
As described above, the present invention has the above-mentioned structure, and sets the characteristics for correcting the change in the injection amount due to the leakage in the stable operation state of the diesel engine according to the type of fuel used, Since the above-mentioned characteristic is selected based on the determination result of the fuel type and the fuel injection amount is corrected according to the fuel temperature, the fuel with high accuracy for the entire operating range is compared with the case where the correction is performed only according to the fuel temperature. There is an effect that the injection amount can be controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】クレーム対応図である。FIG. 1 is a diagram corresponding to a complaint.

【図2】本発明が適用される燃料噴射ポンプの断面を示
す構成図である。
FIG. 2 is a configuration diagram showing a cross section of a fuel injection pump to which the present invention is applied.

【図3】図2におけるA−A線拡大断面図である。3 is an enlarged cross-sectional view taken along the line AA in FIG.

【図4】噴射量制御処理を示すフローチャートである。FIG. 4 is a flowchart showing an injection amount control process.

【図5】アイドル回転数制御処理を示すフローチャート
である。
FIG. 5 is a flowchart showing idle speed control processing.

【図6】燃料温度に対する補正係数を示す特性図であ
る。
FIG. 6 is a characteristic diagram showing a correction coefficient with respect to a fuel temperature.

【図7】回転数に対する補正係数を示す特性図である。FIG. 7 is a characteristic diagram showing a correction coefficient with respect to a rotation speed.

【図8】各種燃料の動粘特性と温度との関係を示す特性
図である。
FIG. 8 is a characteristic diagram showing a relationship between kinematic viscosity characteristics of various fuels and temperature.

【符号の説明】[Explanation of symbols]

1...燃料噴射ポンプ、 2...駆動軸、 7...燃料
室、9...プランジャ、22...電磁スピル弁、 2
3...溢流路、43...回転角センサ、 50...電子制
御装置(ECU)、 54...燃料温度センサ、 30
0...ディーゼルエンジン、 301...運転状態検出手
段、 302...基本噴射量演算手段、 303...回転
数補正量演算手段、 304...指令噴射量演算手段、
305...燃料噴射制御手段、 306...燃料温度検
出手段、 307...燃料種類判別手段、308...補正
手段。
1 ... Fuel injection pump, 2 ... Drive shaft, 7 ... Fuel chamber, 9 ... Plunger, 22 ... Electromagnetic spill valve, 2
3 ... overflow passage, 43 ... rotation angle sensor, 50 ... electronic control unit (ECU), 54 ... fuel temperature sensor, 30
0 ... Diesel engine, 301 ... Operating state detecting means, 302 ... Basic injection amount calculating means, 303 ... Rotation speed correction amount calculating means, 304 ... Command injection amount calculating means,
305 ... Fuel injection control means, 306 ... Fuel temperature detection means, 307 ... Fuel type determination means, 308 ... Correction means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジン回転数、アクセル開度等の各種
機関情報を入力して、ディーゼルエンジンの運転状態を
検出する運転状態検出手段と、該運転状態検出手段の検
出結果に基づいて燃料の基本噴射量を演算する基本噴射
量演算手段と、前記ディーゼルエンジンが所定の安定運
転状態にあるときの目標回転数と実際の回転数との偏差
に基づいて回転数補正量を演算する回転数補正量演算手
段と、回転数補正量と前記基本噴射量とに基づいて燃料
の指令噴射量を演算する指令噴射量演算手段と、演算し
た指令噴射量の燃料を噴射制御する燃料噴射制御手段と
を有するディーゼルエンジンの燃料噴射量制御装置にお
いて、 燃料温度を検出する燃料温度検出手段と、前記回転数補
正量と前記燃料温度との関係から使用燃料の種類を判別
する燃料種類判別手段と、該燃料種類判別手段の判別結
果に応じて選択する補正特性と前記燃料温度との関係か
ら前記指令噴射量を補正する補正手段とを備えることを
特徴とするディーゼルエンジンの燃料噴射量制御装置。
1. An operating state detecting means for detecting an operating state of a diesel engine by inputting various engine information such as an engine speed and an accelerator opening degree, and a basic fuel based on a detection result of the operating state detecting means. A basic injection amount calculation means for calculating an injection amount, and a rotation speed correction amount for calculating a rotation speed correction amount based on a deviation between a target rotation speed and an actual rotation speed when the diesel engine is in a predetermined stable operation state. Computation means, instruction injection quantity computation means for computing a command injection quantity of fuel based on the rotational speed correction quantity and the basic injection quantity, and fuel injection control means for controlling injection of the calculated command injection quantity of fuel. In a fuel injection amount control device for a diesel engine, a fuel temperature detecting means for detecting a fuel temperature, and a fuel type for discriminating a kind of fuel to be used from a relationship between the rotational speed correction amount and the fuel temperature. A fuel injection amount of a diesel engine, comprising: a determining unit; and a correcting unit that corrects the command injection amount based on a relationship between a correction characteristic selected according to a determination result of the fuel type determining unit and the fuel temperature. Control device.
JP31333891A 1991-10-31 1991-10-31 Fuel injection control system for diesel engine Expired - Lifetime JP3180387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31333891A JP3180387B2 (en) 1991-10-31 1991-10-31 Fuel injection control system for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31333891A JP3180387B2 (en) 1991-10-31 1991-10-31 Fuel injection control system for diesel engine

Publications (2)

Publication Number Publication Date
JPH05125973A true JPH05125973A (en) 1993-05-21
JP3180387B2 JP3180387B2 (en) 2001-06-25

Family

ID=18040045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31333891A Expired - Lifetime JP3180387B2 (en) 1991-10-31 1991-10-31 Fuel injection control system for diesel engine

Country Status (1)

Country Link
JP (1) JP3180387B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036289A1 (en) * 1998-12-17 2000-06-22 Clean Fuels Technology, Inc. Fuel emulsion detection method and system for an electronically controlled engine
JP2009209790A (en) * 2008-03-04 2009-09-17 Nissan Motor Co Ltd Fuel supply device of engine
JP2012172549A (en) * 2011-02-18 2012-09-10 Denso Corp Fuel injection device
WO2023233888A1 (en) * 2022-05-31 2023-12-07 Hitachi Astemo, Ltd. Method for determining the fuel type of a fuel injected into an internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036289A1 (en) * 1998-12-17 2000-06-22 Clean Fuels Technology, Inc. Fuel emulsion detection method and system for an electronically controlled engine
US6343571B1 (en) 1998-12-17 2002-02-05 Clean Fuels Technology, Inc. Fuel emulsion detection method and system for an electronically controlled engine
JP2009209790A (en) * 2008-03-04 2009-09-17 Nissan Motor Co Ltd Fuel supply device of engine
JP2012172549A (en) * 2011-02-18 2012-09-10 Denso Corp Fuel injection device
US8812215B2 (en) 2011-02-18 2014-08-19 Denso Corporation Fuel injection system for internal combustion engine
WO2023233888A1 (en) * 2022-05-31 2023-12-07 Hitachi Astemo, Ltd. Method for determining the fuel type of a fuel injected into an internal combustion engine

Also Published As

Publication number Publication date
JP3180387B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US7784447B2 (en) Fuel injection system comprising a high-pressure variable-delivery pump
JPS60147550A (en) Apparatus for controlling injection quantity of fuel in diesel engine
JP3540095B2 (en) Abnormality judgment device in diesel engine injection timing control device
JPH05125973A (en) Fuel injection quantity control device for diesel engine
JPH1054317A (en) Fuel supply device
JPS5932633A (en) Fuel injection controlling apparatus for diesel engine
JP2985464B2 (en) Fuel device abnormality cause determination device
JPH0223252A (en) Fuel injection rate control device for compression ignition engine
JP2611357B2 (en) Fuel injection control device
JPH0633817A (en) Fuel injection timing control device for diesel engine
JP3774905B2 (en) Injection timing control device for fuel injection pump
JPS63150443A (en) Fuel injection quantity control device
JP3735888B2 (en) Fuel injection timing control device for diesel engine fuel injection pump
JP3588737B2 (en) Fuel injection control device for diesel engine
JP2950010B2 (en) Fuel injection device for electronically controlled diesel engine and method for adjusting fuel injection
JPH08312414A (en) Electronic control fuel injection device of diesel engine
JPH051603A (en) Idle speed control device of diesel engine
JP2002285933A (en) Fuel injection pump
JPH07332146A (en) Rotational angle reference position sensing device of internal combustion engine
JP3756603B2 (en) Injection timing control device for diesel engine
JP2002235583A (en) Fuel injection controller of diesel engine
JPH10252504A (en) Fuel injection timing control device for fuel injection pump
JPH09126081A (en) Injection timing control device for fuel injection pump
JP2002242731A (en) Autonomous correction type fuel injector
JP2000110649A (en) Fuel injection timing control device for engine and vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11