JPH0512572B2 - - Google Patents

Info

Publication number
JPH0512572B2
JPH0512572B2 JP59090007A JP9000784A JPH0512572B2 JP H0512572 B2 JPH0512572 B2 JP H0512572B2 JP 59090007 A JP59090007 A JP 59090007A JP 9000784 A JP9000784 A JP 9000784A JP H0512572 B2 JPH0512572 B2 JP H0512572B2
Authority
JP
Japan
Prior art keywords
dip
strength
dip cord
cord
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59090007A
Other languages
Japanese (ja)
Other versions
JPS60234150A (en
Inventor
Kazuo Kurita
Hideaki Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP59090007A priority Critical patent/JPS60234150A/en
Publication of JPS60234150A publication Critical patent/JPS60234150A/en
Publication of JPH0512572B2 publication Critical patent/JPH0512572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/06Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with polyvinylchloride or its copolymerisation products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • F16G1/10Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/14Driving-belts made of plastics
    • F16G1/16Driving-belts made of plastics with reinforcement bonded by the plastic material

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は産業甚機械に䜿甚されるコンベアベル
ト等の平ベルトおよびベルトに関する。 埓来この皮のベルトは脂肪族ポリアミド、ポリ
゚チレンテレフタレヌト、ポリビニルアルコヌル
などの合成繊維よりなるフむラメント織物を基垃
ずし、耐摩耗性のあるゎム質たたは可撓性暹脂を
被芆したものが䜿甚されおいるが、匷力、䌞床、
耐薬品性などの点で充分なものずは蚀い難い。す
なわち平ベルトやベルト等に芁求される特性は
高匷力、䜎䌞床、寞法安定性および耐薬品性であ
る。高匷力が必芁なこずは圓然であり、それず同
時に適床な䜎い䌞床が芁求される。䌞床が高すぎ
るず経時的にベルトにたるみを生じさせる。極端
に䜎䌞床の堎合はベルトに充分な匵力を䞎えるこ
ずが困難になる。高匷力のベルトを補造するには
倪デニヌル糞を経糞ずしお甚いるこずができる
が、重量や厚みが増倧し、運搬や取扱䞊の䜜業面
で奜たしくない。 これらの課題を解決するために、実開昭52−
120775号公報においお、ポリパラプニレンテレ
フタルアミドを䞻䜓ずする繊維ずポリメタプニ
レンむ゜フタルアミドを䞻䜓ずする繊維より成る
合撚糞を経糞に甚い、ポリメタプニレンむ゜フ
タルアミドを䞻䜓ずする繊維を緯糞に甚いおなる
ベルトが提案されおいるが、長期間にわたり䜿甚
するず耐摩耗性に問題があり、ベルトずベルト駆
動郚の接觊面においおベルトが摩耗し、次第にベ
ルトの匷力が䜎䞋するずいう欠点がある。これは
ポリパラプニレンテレフタルアミド繊維が剛盎
な高分子鎖から成぀おいるため摩耗性が䜎いこず
に起因する。䞀方実開昭52−120774号公報におい
お、金属繊維を芯にし、該芯の倖呚を党芳銙族ポ
リアミド繊維でずり囲んでなるコアスパン糞を経
糞ずしお甚い、党芳銙族ポリアミド繊維を緯糞ず
しお甚いおなる織ベルトを同時に提䟛しおいる
が、この堎合に党芳銙族ポリアミド繊維がポリパ
ラプニレンテレフタルアミド繊の堎合は䞊蚘ず
同様な耐摩耗性に関する欠点を有しおいる。たた
産業甚機械に甚いられるベルトは、産業分野によ
り皮々の薬品、最も䞀般的に甚いられるのは硫酞
等の酞或いは苛性゜ヌダ等のアルカリずい぀た薬
品によりベルトが濡れたり、たた湿最する堎合が
あり、こうい぀た堎合はポリパラプニレンテレ
フタルアミド繊維の匷力は、酞、アルカリ等によ
る腐蝕により急激に䜎䞋するず共に耐摩耗性が顕
著に䜎䞋するこずも刀明しおいる。 このような珟状のもずに、本発明者らは高匷力
ず適床の䌞床を保有し、酞、アルカリ等による腐
蝕に耐え、か぀優れた耐摩耗性、寞法安定性を有
するベルトの構成に぀いお鋭意研究の結果、本発
明に到達したのである。 即ち、本発明は高匷床にしお優れた耐疲劎性を
瀺すポリヘキサメチレンアゞパミド以䞋ナむロ
ン66ずも称する繊維デむツプコヌドよりなる基
垃にゎム質たたは可撓性暹脂を片面あるいは䞡面
に被芆しおなるベルトを提䟛するこずを目的ずす
るものである。 䞀方、ナむロン66デむツプコヌドのこれらの特
性を改良する目的で特開昭58−60012号公報に芋
られるように玡速2000分以䞊の高速玡糞を甚
いお高配向床の未延䌞糞ずなした埌に延䌞するこ
ずにより、䜎収瞮で寞法安定性が改良されたゎム
補匷甚ナむロン66繊維が提案されおいる。 しかし、これらの方法により寞法安定性は改良
されるものの、匷力が䜎䞋するずいう欠点があ぀
た。 本発明者等は高匷力で、䞔぀、高モゞナラス
で、寞法安定性の優れたナむロン66系デむツプコ
ヌドよりなる加硫劣化が小さく、耐疲劎性の優れ
たベルトを埗る目的で鋭意研究を進めた結果、本
発明に到達した。 即ち、䞊蚘目的は (1) ヘキサメチレンアゞパミドの繰返し構造単䜍
が95モル以䞊のナむロン66ポリマからなり、
硫酞盞察粘床2.8以䞊の高重合床を有し、䞔぀
皮たたは皮以䞊の銅塩およびあるいは前蚘
銅塩以倖の無機あるいは有機の酞化防止剀を含
むポリアミドを溶融玡糞するこず。 (2) 玡出糞条を未延䌞糞の耇屈折率が25×10-3未
満ずなる条件で匕取るこず。 (3) 匕取ロヌルを通過した糞条を連続しおたたは
䞀旊巻取぀た埌、党延䌞倍率が4.0倍以䞊ずな
る様に熱延䌞するこず。 (4) 延䌞糞の糞質が䞋蚘の条件を満たすこず。 (ホ) DT≧10奜たしくはDT≧12 (ヘ) 20≧DE≧ (ト) IS≧35 (チ) SHD≩15 (5) 延䌞糞マルチフむラメントダヌンに撚係
数2000〜1300、奜たしくは1800〜1400の䞋撚お
よび䞊撚を斜しお、生コヌドを䜜成するこず。 (6) 該生コヌドたたは該生コヌドより線成した簟
織物をゎムずの接着性を改善するためのデむツ
プ液凊理に匕き続いお〜のホツトストレ
ツチを行うこず。 (7) 以䞊の様にしお埗たナむロン66コヌド織物
デむツプ凊理織物をゎム質あるいは可撓性
暹脂よりなるシヌトにはさんでカレンダヌリン
グしおベルトを圢成するこずによ぀お達成され
る。 そしおこの方法によるず、ポリヘキサメチレン
アゞパミドの繰返し構造単䜍が95モル以䞊のナ
むロン66ポリマからなり、硫酞盞察粘床2.8以䞊
の高重合床を有し、䞔぀、皮たたは皮以䞊の
銅塩およびあるいは該銅塩以倖の無機あるいは有
機の酞化防止剀を含むナむロン66系繊維よりな
り、ゎムずの接着性を改善するためのデむツプ液
が付着しおいる撚係数が2000〜1300、奜たしくは
1800〜1400の䞊撚および䞋撚を有するポリカプラ
ミド系デむツプコヌドであ぀お、䞋蚘特性を同時
に有する高匷力、高モゞナラスで䞔぀寞法安定性
および耐疲劎性の著しく改善されたポリカプラミ
ド系デむツプコヌドを甚いた基垃に、ゎム質たた
は可撓性暹脂を片面あるいは䞡面に被芆しおなる
高匷力ベルトが埗られる。 (ã‚€) デむツプコヌドの砎断匷床 ≧8.5 奜たしくは ≧9.0 (ロ) デむツプコヌドの䞭間䌞床 ≊8.5 (ハ) デむツプコヌドの也熱収瞮率 ≊ 奜たしくは ≊ (ニ) ≊−2B19 曎に具䜓的に本発明法およびその寞法によ぀お
埗られた繊維の特性に぀いお詳述する。 原料ポリマは分子鎖の繰返単䜍数の95モル以
䞊がポリヘキサメチレンアゞパミドで共重合成分
はモル未満含有しおいおもよい。共重合し埗
るポリアミド成分ずしおは䟋えば、ポリ−ε−カ
プラミド、ポリヘキサメチレンセバカミド、ポリ
ヘキサメチレンむ゜フタラミド、ポリヘキサメチ
レンテレフタラミド、ポリキシリレンフタラミド
等がある。共重合成分をモル以䞊含有するず
結晶性が䜎䞋し、寞法安定性が䜎䞋する為奜たし
くない。 ナむロン66ポリマ以䞋ポリマずも称するは
硫酞盞察粘床が2.8以䞊、特に3.0以䞊の高重合床
のポリマが本発明の高匷床糞を埗るのに奜たし
い。たた本発明のナむロン66繊維は䞻ずしお産資
甚途に甚いる為、熱、光、酞玠等に察しお十分な
耐久性を付䞎する目的でポリマに酞化防止剀を加
える。この酞化防止剀ずしお銅塩、䟋えば酢酞
銅、塩化第䞀銅、塩化第二銅、臭化第䞀銅、臭化
第二銅、沃化第䞀銅、フタル酞銅、ステアリン酞
銅、および各皮銅塩ず有機化合物ずの錯塩、䟋え
ば−オキシキノリン銅、−メルカプトベンゟ
むミダゟヌルの銅錯塩、奜たしくは沃化第䞀銅、
酢酞銅、−メルカプトベンゟむミダゟヌルの沃
化第䞀銅錯塩等や、アルカリたたはアルカリ土金
属のハロゲン化物䟋えば沃化カリりム、臭化カリ
りム、塩化カリりム、沃化ナトリりム、臭化ナト
リりム、塩化亜鉛、塩化カルシりム等や、有機ハ
ロゲン化物、䟋えばペンタペヌドベンれン、ヘキ
サブロムベンれン、テトラペヌドテレフタル酞、
ペり化メチレン、トリブチル゚チルアンモニりム
アむオダむド等や無機および有機リン化合物䟋え
ばピロリン酞゜ヌダ、亜リン酞゜ヌダ、トリプ
ニルホスフアむト、10−ゞハむドロ−10−
3′5′−ゞ−−ブチル−4′−ヒドロキシベン
ゞル−−オキサ−パ−フオスフアプナンス
レン−10−オキサむド等、およびプノヌル系抗
酞化剀䟋えば、テトラキス−〔メチレン−−
−ゞ−−ブチル−−ヒドロキシプ
ニル−プロピオネヌト〕−メタン、−
トリ−メチル−−トリス−ゞ
−−ブチル−−ヒドロキシベンゞルベンれ
ン、−オクタデシル−−−ゞ−−
ブチル−−ヒドロキシプニル−プロピオネ
ヌト、−ヒドロキシ−−ゞ−−ブチル
ベンゞルリン酞ゞ゚チル゚ステル等やアミン系抗
酞化剀䟋えばN′−ゞ−β−ナフチル−−
プニレンゞアミン、−メルカプトベンゟむミ
ダゟヌル、プニル−β−ナフチルアミン、
N′−ゞプニル−−プニレンゞアミン、ゞ
プニルアミンずアリルケトンずの瞮合反応物、
奜たしくはペり化カリりム、−メルカプトベン
ゟむミダゟヌル等がある。 酞化防止剀はポリアミドの重合工皋あるいは䞀
旊チツプ化したのちチツプにたぶしお含有させる
こずができる。酞化防止剀の含有量は銅塩は銅ず
しお10〜300ppm、奜たしくは50〜200ppm、他の
酞化防止剀は0.01〜、奜たしくは0.03〜0.5
の範囲である。酞化防止剀は奜たしくは通垞銅塩
ず他の酞化防止剀の皮たたは皮以を組合せお
䜿甚する。 氎分率0.1以䞋に也燥した䞊蚘ポリアミドを
溶融玡糞機で玡糞するが、このずき奜たしくぱ
クストルヌダ型玡糞機を甚いる。 玡糞匕取り速床は採取した糞条の耇屈折率が25
×10-3未満、奜たしくは10×10-3以䞋ずなるよう
に蚭定される。前蚘耇屈折率に察応する玡糞条件
は、玡糞匕取り速床だけではなく、ノズル孔埄、
ノズル〜ク゚ンチ間距離、ポリマヌの盞察粘床、
玡糞枩床等の倚数の芁因を最適化するこずにより
決定できる。 玡糞匕取り糞条の耇屈折率が25×10-3以䞊であ
れば安定的に切断匷床DTが10以䞊の高匷
力糞にならない。 ポリマヌの分子量が䞀定の堎合、高匷力糞を埗
るには玡糞匕取り糞条の耇屈折率をできるだけ小
さくするこずが奜たしい。 延䌞方法は、䟋えばRV3.0のナむロン66を溶
融玡糞しお、埗た耇屈折率×10-3〜10×10-3の
匕取糞を玡糞に連続しおたたは䞀旊巻取぀た埌延
䌞する際に、未延䌞糞第䟛絊ロヌラず100℃以
䞋に維持された未延䌞糞第䟛絊ロヌラずの間に
おいお、1.10倍以䞋の予備䌞長を䞎え、次いで第
延䌞ロヌラずの間においお党延䌞倍率の4.0
以䞊の第段延䌞を行うのがよく、必芁に応じお
未延䌞糞第䟛絊ロヌラず第延䌞ロヌラずの間
に高枩加圧蒞気噎出ノズルを蚭け、ノズル枩床を
200℃以䞊にしお高枩蒞気を噎出させ、高枩加圧
蒞気噎出ノズル付近に延䌞点を固定させる。曎に
第段延䌞を行う際に、第延䌞ロヌラず第延
䌞ロヌラずの間に蚭けられた雰囲気枩床170〜350
℃のスリツトヒヌタヌ糞条走行路ずしおスリツ
トを蚭けた加熱装眮で、該スリツト䞭に非接觊状
態で糞条を走行させながら加熱するもの雰囲気
枩床ずは該スリツト内の枩床を蚀う䞭を糞条が
0.3sec以䞊滞圚できる様に通過せしめ、しかる
埌、第延䌞ロヌラに䟛する。その際、スリツト
ヒヌタヌ䞭に枩床募配を蚭け、糞条入口の雰囲気
枩床を160℃以䞊、出口雰囲気枩床を350℃以䞋ず
し、䞔぀170〜350℃の雰囲気に糞条が0.3sec以䞊
滞圚できる様に糞条を通過せしめるこずが奜たし
い。たた、段延䌞終了埌、䞀旊巻取るこずなく
連続的に、あるいは䞀旊巻取぀た埌に、210〜150
℃で10以䞋のリラツクス凊理を行うこずによ
り、寞法安定性を曎に向䞊させるこずも可胜であ
る。 本発明に甚いられる高匷力、䜎䌞床糞を埗る
為、最高延䌞倍率の85以䞊、奜たしくは90以
䞊の高倍率で延䌞し、残留䌞床が〜20ずなる
ようにするが、個々の詊料の延䌞倍率はそれぞれ
の匕取糞の配向床によ぀お基本的に決定される。 なお、最高延䌞倍率ずは延䌞可胜な最倧延䌞倍
率をいう。 かくしお埗られるナむロン66繊維は次の特性を
備えおいる。 (ホ) DT≧10 (ヘ) 20≧DE≧ (ト) IS≧35 (チ) SHD≩15 䞊蚘によ぀お埗られたナむロン66のマルチフむ
ラメントダヌンは、これを垞法に準じお撚糞し、
生コヌドずする。 曎に、該生コヌドたたは該生コヌドより織成し
た簟織物をゎムずの接着性を改善するためのデむ
ツプ液凊理に匕き続いおホツトストレツチを行
う。 本発明者らは、これらの生コヌド䜜成からデむ
ツプ凊理たでの工皋を鋭意怜蚎し、デむツプコヌ
ドを高匷力化し、䞭間䌞床を䜎くし、䞔぀収瞮率
を䜎くでき、埓来のナむロンデむツプコヌドで
は発珟できない優れた性胜を実珟できるこずを芋
出し本発明に至぀た。 即ち、本発明に甚いる高匷力䜎䌞床ナむロン66
繊維の堎合、撚係数×√が通垞良く甚い
られる2000〜2200たずえば840d撚では
47turn10cmでは生コヌドの匷力利甚率が䜎䞋
するが、撚係数を1300〜2000、奜たしくは1400〜
1800の範囲に蚭定するず匷力利甚率が非垞に優れ
おおり、デむツプ工皋でのホツトストレツチ比を
〜ず䜎くするこずにより、䜎収瞮率で、䞭
間䌞床の䜎いデむツプコヌドが埗られる。 䞭間䌞床は、コヌドのモゞナラスに盞圓するメ
ゞダヌであるが、前蚘のデむツプコヌドの䞭間䌞
床が䜎いずいうこずは、該コヌドのモゞナラスが
高いこずを瀺しおいる。 通垞ナむロン66デむツプコヌドを補造する際
に、コヌドのモゞナラスを高くするためにデむツ
プ工皋におけるホツトストレツチ比を〜12
に蚭定する。䞀方、䞀般にデむツプ工皋における
ホツトストレツチ比を高くするず、デむツプコヌ
ドの収瞮率が高くなり、寞法安定性が䜎䞋する。 埓぀おこれたでのナむロン66デむツプコヌド
は、寞法安定性ず高モゞナラス性ずの䞡者を満足
できるものではなか぀た。 本発明の特城は、高匷力糞補造段階で埓来のナ
むロン66高匷力糞に比范しお分子鎖をより䌞匵せ
しめるこずにより、すでに高匷力、高モゞナラス
䜎䌞床糞を䜜成しおおき、撚糞埌、デむツプ工皋
においおホツトストレツチによりデむツプコヌド
のモゞナラスを高くする。即ち䞭間䌞床を䜎くす
る必芁はないため、デむツプ凊理工皋においおコ
ヌドに察する負荷が小さくなり、結果的に埓来で
はナむロン66で考えられなか぀たような䜎収瞮
率、䜎䞭間䌞床高モゞナラスの高匷力デむツ
プコヌドを達成したこずにある。 埓来のナむロン66デむツプコヌドは、デむツプ
コヌドの砎断匷床が8.5以䞊で、䞭間䌞
床および也熱収瞮率がそれぞれ䞋蚘の匏を満
足するものはなか぀た。第図参照 (ロ) ≊8.5 (ハ) ≊ (ニ) ≊−2B19 これらのデむツプコヌド特性は撚係数を2000〜
1300、曎に奜たしくは1800〜1400の䜎撚数領域
で、デむツプ工皋でのホツトストレツチ比〜
の䜎ストレツチ条件ではじめお達成できる。 撚数を枛少させるこずは、撚糞速床をアツプで
き、コストダりンが図れるずいうメリツトがある
が、埓来の知芋では耐疲劎性が萜ちおくるずいう
欠点があ぀た。 しかし、本発明のデむツプコヌドは(ã‚€)〜(ニ)の匏
を満足するこずにより、䜎撚コヌドでも埓来の撚
数のコヌド以䞊の耐疲劎性を有しおいる。これら
の特性は、たずえばデむスク疲劎テスト埌の残留
匷床が高いこずより明らかである。 本発明に蚀うゎム質あるいは可撓性暹脂ずは、
ポリりレタン暹脂、スチレン−ブタゞ゚ンゎム、
クロロプレンゎム、゚チレン−プロピレンゎム、
ゞ゚ンゎム等を蚀う。 産業甚機械に䜿甚されるコンベダ−ベルト等の
平ベルトは、片面のみベルト駆動ロヌラヌに圧接
されお駆動する堎合ず、ニツプロヌラヌによりベ
ルトの䞡面を圧接されお駆動する堎合ずがあり、
機械の駆動系により異なる。埓぀お暹脂の被芆は
甚途によりベルトの片面あるいは䞡面に暹脂を塗
垃、含浞たたはスプレヌなどする。たた暹脂膜を
基垃に重ねお加熱加圧し圧着させる方法で行うこ
ずもできる。 本発明のベルトは、特蚱請求の範囲に蚘茉した
ごずく構成せしめた結果、埓来のベルトに比范し
高匷力であるずずもに、甚途に適した適床の䌞床
を保有するこずができ、さらに耐摩耗性ならびに
耐薬品性を兌ね備えたベルトである。 以䞋に本発明を構成する繊維の構造の特定や物
性の枬定に甚いられる䞻なパラメヌタの枬定法に
぀いお述べる。 〈盞察粘床の枬定法〉 96.3±0.1重量詊薬特玚濃硫酞䞭に重合䜓濃
床が10mgmlになるように詊料を溶解させおサン
プル溶液を調敎し、20℃±0.05℃の枩床で氎溶䞋
秒数〜秒のオストワルド粘床蚈を甚い、溶液
盞察粘床を枬定する。枬定に際し、同䞀の粘床蚈
を甚い、サンプル溶液を調敎した時ず同じ硫酞20
mlの萜䞋時間T0秒ず、サンプル溶液20mlの萜
䞋時間T1秒の比より、盞察粘床RVを䞋蚘の
匏を甚いお算出する。 RVT1T0 〈耇屈折率Δnの枬定法〉 ニコン偏光顕埮鏡POH型ラむツ瀟ベレツクコ
ンベンセヌタヌを甚い、光源ずしおはスペクトル
光源甚起動装眮東芝SLS−−型を甚いた
Na光源。〜mm長の繊維軞に察し45床の角
床に切断した詊料を、切断面を䞊にしお、スラむ
ドグラス䞊に茉せる。詊料スラむドグラスを回転
茉物台にのせ、詊料が偏光子に察しお45床になる
様、回転茉物台を回転させお調節し、アナラむザ
ヌを挿入し暗芖界ずした埌、コンペンセヌタヌを
30にしお瞞数を数える個。コンペンセヌタ
ヌを右ネゞ方向にたわしお詊料が最初に䞀番暗く
なる点のコンペンセヌタヌの目盛、コンペンセ
ヌタヌを巊ネゞ方向にたわしお詊料が最初に䞀番
暗くなる点のコンペンセヌタヌの目盛を枬定し
た埌いずれも1/10目盛たで読む、コンペンセ
ヌタヌを30にもどしおアナラむザヌをはずし、詊
料の盎埄を枬定し、䞋蚘の匏にもずずき耇屈折
率Δnを算出する枬定数20個の平均倀。 ΔnΓΓnλ0ε λ0589.3Ό εラむツ瀟のコンペンセヌタヌの説明曞の
10000ずより求める −コンペンセヌタヌの読みの
差 〈繊維およびコヌドの匷䌞床特性の枬定法〉 JIS−L1017の定矩による。詊料をカセ状にず
り、20℃、65RHの枩湿床調節された郚屋で24
時間攟眮埌、“テンシロン”UTM−4L型匕匵詊
隓機〔東掋ボヌルドりむン(æ ª)補〕を甚い、詊長20
cm、匕匵速床20cm分で枬定した。 〈撚係数の蚈算匏〉 撚係数撚数×デニヌル1/2 撚数turn10cm 〈デむスク疲劎の枬定法〉 通垞のデむスク疲劎詊隓機を甚い、デむツプコ
ヌドを埋め蟌んで加硫しお䜜成した詊隓片をセツ
トし、圧瞮比12.5、䌞長比6.3の䞋に2500rpm
の速床で48時間回転による匷制疲劎を䞎えた埌、
デむツプコヌドをゎムから取出しお残留匷力を枬
定した。 〈䞭間䌞床の枬定法〉 JIS−L1017の定矩による。䞀定荷重Kgに
おける䌞び率を枬定する。䌞び率枬定条件は匷䌞
床特性の枬定条件に準ずる。䞀定荷重は、䞋蚘
の匏で定矩される。 4.5×d2d1 d2詊料デニヌル、d1基準デニヌルで原糞の
堎合840デニヌル、コヌドの堎合1680デニヌルで
ある。 〈也熱収瞮率SHDの枬定法〉 詊料をカセ状にずり、20℃、65RHの枩湿床
調節宀で24時間以䞊攟眮したのち、詊料の0.1
に盞圓する荷重をかけお枬定された長さl0
の詊料を、無匵力状態で150℃のオヌブン䞭に30
分攟眮したのち、オヌブンから取り出しお䞊蚘枩
湿床調節宀で時間攟眮し、再び䞊蚘荷重をかけ
お枬定した長さl1から次匏により算出した。 也熱収瞮率SHDl0−l1l0×100 〈補造䟋〉 第衚に瀺す盞察粘床のナむロン66を原料ず
し、同衚に瀺す条件で玡糞を行い、同衚に瀺す耇
屈折率Δn20℃65RHで24時間攟眮埌枬定お
よび盞察粘床の未延䌞糞を埗た。 たた玡糞にあた぀おは、未延䌞糞匕取り前に適
量の玡糞油剀を糞条衚面に付着させた。 埗られた未延䌞糞を第衚で瀺す条件で延䌞
し、第衚に瀺す糞質の延䌞糞を埗た。 第衚に比范䟋ずしお垂販のタむダコヌド甚
ポリヘキサメチレンアゞパミド繊維の糞質を瀺
す。 次いで、実斜䟋ず比范䟋の延䌞糞をそれぞ
れ別々に合糞し、それぞれ840デニヌルのマルチ
フむラメントダヌンを埗た。
The present invention relates to flat belts and V-belts such as conveyor belts used in industrial machines. Traditionally, belts of this type have been made with a filament fabric made of synthetic fibers such as aliphatic polyamide, polyethylene terephthalate, or polyvinyl alcohol, and coated with abrasion-resistant rubber or flexible resin. , strong, elongation,
It is hard to say that it is sufficient in terms of chemical resistance, etc. That is, the properties required for flat belts, V-belts, etc. are high strength, low elongation, dimensional stability, and chemical resistance. It goes without saying that high strength is required, and at the same time, moderately low elongation is also required. If the elongation is too high, the belt will sag over time. If the elongation is extremely low, it will be difficult to apply sufficient tension to the belt. To manufacture a high-strength belt, thick denier yarns can be used as warp yarns, but this increases the weight and thickness, which is undesirable in terms of transportation and handling. In order to solve these problems,
In Publication No. 120775, a twisted yarn consisting of fibers mainly composed of polyparaphenylene terephthalamide and fibers mainly composed of polymetaphenylene isophthalamide is used for the warp, and a fiber mainly composed of polymethaphenylene isophthalamide is used as the weft. Belts made of belts have been proposed, but when used for a long period of time, there are problems with abrasion resistance, and the belt wears out at the contact surface between the belt and the belt drive unit, and the strength of the belt gradually decreases. . This is because polyparaphenylene terephthalamide fibers are composed of rigid polymer chains and have low abrasion resistance. On the other hand, in Japanese Utility Model Application Publication No. 52-120774, a core spun yarn consisting of a metal fiber as a core and a wholly aromatic polyamide fiber surrounding the core is used as the warp, and a wholly aromatic polyamide fiber is used as the weft. A woven belt is also provided, but in this case, if the wholly aromatic polyamide fiber is polyparaphenylene terephthalamide fiber, it has the same drawbacks regarding abrasion resistance as described above. Additionally, belts used in industrial machinery may become wet due to various chemicals depending on the industrial field, the most commonly used being acids such as sulfuric acid or alkalis such as caustic soda. In such cases, it has been found that the strength of the polyparaphenylene terephthalamide fibers rapidly decreases due to corrosion by acids, alkalis, etc., and the abrasion resistance significantly decreases. Under these circumstances, the present inventors have developed a belt structure that has high strength and appropriate elongation, resists corrosion by acids and alkalis, and has excellent abrasion resistance and dimensional stability. As a result of intensive research, the present invention was arrived at. That is, the present invention coats a base fabric made of polyhexamethylene adipamide (hereinafter also referred to as nylon 66) fiber dip cord, which exhibits high strength and excellent fatigue resistance, with rubber or flexible resin on one or both sides. The purpose is to provide a belt that will On the other hand, in order to improve these properties of nylon 66 dip cord, as seen in Japanese Patent Application Laid-Open No. 58-60012, after forming an undrawn yarn with a high degree of orientation by using high-speed spinning at a spinning speed of 2000 m/min or more, Nylon 66 fibers for rubber reinforcement have been proposed, which have low shrinkage and improved dimensional stability by stretching. However, although these methods improve dimensional stability, they have the disadvantage of decreasing strength. The inventors of the present invention have carried out intensive research with the aim of obtaining a belt that is made of nylon 66 dip cord that has high strength, high modulus, and excellent dimensional stability, and has low vulcanization deterioration and excellent fatigue resistance. , arrived at the present invention. That is, the above objectives are (1) consisting of a nylon 66 polymer containing 95 mol% or more of hexamethylene adipamide repeating structural units;
Melt-spinning a polyamide having a high degree of polymerization with a relative viscosity of sulfuric acid of 2.8 or more and containing one or more copper salts and/or an inorganic or organic antioxidant other than the copper salt. (2) The spun yarn is taken under conditions such that the birefringence of the undrawn yarn is less than 25×10 -3 . (3) After the yarn that has passed through the take-up roll is wound up continuously or once, it is hot-stretched so that the total stretching ratio is 4.0 times or more. (4) The quality of the drawn yarn must meet the following conditions. (E) DT≧10g/d preferably DT≧12g/d (F) 20%≧DE≧8% (G) IS≧35g/d (H) SHD≩15% (5) Drawn yarn (multifilament yarn) A raw cord is created by subjecting the cord to first twisting and final twisting with a twist coefficient of 2000 to 1300, preferably 1800 to 1400. (6) The raw cord or the blind fabric knitted from the raw cord is treated with a dip solution to improve its adhesion to rubber, followed by 0 to 5% hot stretching. (7) This can be achieved by sandwiching the nylon 66 cord fabric (dipped fabric) obtained as described above between sheets of rubber or flexible resin and calendering to form a belt. According to this method, the repeating structural unit of polyhexamethylene adipamide is composed of 95 mol% or more of nylon 66 polymer, has a high polymerization degree of sulfuric acid relative viscosity of 2.8 or more, and has one or more types of polyhexamethylene adipamide. It is made of nylon 66 fiber containing a copper salt and/or an inorganic or organic antioxidant other than the copper salt, and has a twist coefficient of 2000 to 1300, preferably to which a dip liquid is attached to improve adhesion to rubber. teeth
A base fabric using a polycapramide dip cord having a top twist and a first twist of 1800 to 1400, which has the following properties at the same time: high strength, high modulus, and significantly improved dimensional stability and fatigue resistance. In addition, a high-strength belt having one or both sides coated with rubber or flexible resin can be obtained. (B) Breaking strength of dip cord A≧8.5g/d Preferably A≧9.0g/d (B) Intermediate elongation of dip cord B≩8.5% (C) Dry heat shrinkage rate of dip cord C≩6% Preferably C≩ 5% (d) C≩-2B+19 More specifically, the characteristics of the fiber obtained by the method of the present invention and its dimensions will be described in detail. The raw material polymer may contain polyhexamethylene adipamide in 95 mol % or more of the number of repeating units in the molecular chain and less than 5 mol % of the copolymer component. Examples of polyamide components that can be copolymerized include poly-ε-capramide, polyhexamethylene sebamide, polyhexamethylene isophthalamide, polyhexamethylene terephthalamide, and polyxylylene phthalamide. If the copolymer component is contained in an amount of 5 mol % or more, crystallinity and dimensional stability are reduced, which is not preferable. Nylon 66 polymer (hereinafter also referred to as polymer) is preferably a polymer with a high degree of polymerization having a sulfuric acid relative viscosity of 2.8 or more, particularly 3.0 or more for obtaining the high strength yarn of the present invention. Furthermore, since the nylon 66 fiber of the present invention is mainly used for industrial purposes, an antioxidant is added to the polymer in order to provide sufficient durability against heat, light, oxygen, etc. The antioxidants include copper salts such as copper acetate, cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide, copper phthalate, copper stearate, and various other antioxidants. Complex salts of copper salts and organic compounds, such as copper complex salts of 8-oxyquinoline copper, 2-mercaptobenzimidazole, preferably cuprous iodide,
Copper acetate, cuprous iodide complex salts of 2-mercaptobenzimidazole, etc., halides of alkali or alkaline earth metals such as potassium iodide, potassium bromide, potassium chloride, sodium iodide, sodium bromide, zinc chloride, chloride Calcium etc., organic halides such as pentaiodobenzene, hexabromobenzene, tetraiodoterephthalic acid,
Methylene iodide, tributylethylammonium iodide, etc., and inorganic and organic phosphorus compounds such as sodium pyrophosphate, sodium phosphite, triphenyl phosphite, 9,10-dihydro-10-
(3',5')-di-t-butyl-4'-hydroxybenzyl)-9-oxa-perphosphaphenanthrene-10-oxide, etc., and phenolic antioxidants such as tetrakis-[methylene -3-
(3,5-di-t-butyl-4-hydroxyphenyl)-propionate]-methane, 1,3,5-
Tri-methyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, n-octadecyl-3-(3,5-di-t-
butyl-4-hydroxyphenyl)-propionate, 4-hydroxy-3,5-di-t-butylbenzyl phosphate diethyl ester, etc., and amine antioxidants such as N,N'-di-β-naphthyl-p-
Phenyl diamine, 2-mercaptobenzimidazole, phenyl-β-naphthylamine, N,
N'-diphenyl-p-phenylenediamine, a condensation reaction product of diphenylamine and allyl ketone,
Preferred are potassium iodide, 2-mercaptobenzimidazole, and the like. The antioxidant can be incorporated during the polyamide polymerization process or by sprinkling on the chips after the polyamide is once made into chips. The content of antioxidant is 10 to 300 ppm as copper for copper salt, preferably 50 to 200 ppm, and 0.01 to 1% for other antioxidants, preferably 0.03 to 0.5%.
is within the range of The antioxidant is preferably a copper salt and another antioxidant, or a combination of two or more thereof. The polyamide dried to a moisture content of 0.1% or less is spun using a melt spinning machine, preferably an extruder type spinning machine. The spinning take-off speed is determined when the birefringence of the collected yarn is 25.
It is set to be less than ×10 −3 , preferably 10×10 −3 or less. The spinning conditions corresponding to the birefringence index include not only the spinning take-off speed but also the nozzle hole diameter,
Distance between nozzle and quench, relative viscosity of polymer,
It can be determined by optimizing a number of factors such as spinning temperature. If the birefringence of the spun yarn is 25×10 -3 or more, it will not be possible to stably produce a high-strength yarn with a cutting strength DT of 10 g/d or more. When the molecular weight of the polymer is constant, it is preferable to make the birefringence of the spun yarn as small as possible in order to obtain a high-strength yarn. The stretching method involves, for example, melt-spinning nylon 66 with RV = 3.0, and stretching the resulting yarn with a birefringence index of 5 x 10 -3 to 10 x 10 -3 either continuously after spinning or after it has been wound once. At this time, preliminary stretching of 1.10 times or less is applied between the undrawn yarn first supply roller and the undrawn yarn second supply roller maintained at 100°C or lower, and then the full stretching is applied between the undrawn yarn first supply roller and the first stretching roller. 4.0% of magnification
It is best to carry out the above first-stage drawing, and if necessary, a high-temperature pressurized steam jet nozzle is provided between the undrawn yarn second supply roller and the first drawing roller to control the nozzle temperature.
High-temperature steam is ejected at 200°C or higher, and the stretching point is fixed near the high-temperature pressurized steam ejection nozzle. Furthermore, when performing the second stage stretching, the atmosphere temperature provided between the first stretching roller and the second stretching roller is 170 to 350.
°C in a slit heater (a heating device that has a slit as a yarn running path, and heats the yarn while running through the slit in a non-contact state: ambient temperature refers to the temperature inside the slit) The thread is
The film is allowed to pass through the film for a period of 0.3 seconds or more, and then subjected to a second stretching roller. At that time, a temperature gradient is provided in the slit heater, so that the atmospheric temperature at the yarn inlet is 160°C or higher and the exit atmospheric temperature is 350°C or lower, and the yarn can stay in an atmosphere of 170 to 350°C for 0.3 seconds or more. It is preferable to allow the thread to pass through the thread. In addition, after the completion of the two-stage stretching, it can be stretched continuously without winding or after winding.
It is also possible to further improve dimensional stability by performing a relaxation treatment of 10% or less at ℃. In order to obtain the high tenacity, low elongation yarn used in the present invention, it is drawn at a high draw ratio of 85% or more of the maximum draw ratio, preferably 90% or more, and the residual elongation is 8 to 20%. The stretching ratio of each sample is basically determined by the degree of orientation of each drawn yarn. Note that the maximum stretching ratio refers to the maximum stretching ratio that can be stretched. The nylon 66 fiber thus obtained has the following properties. (E) DT≧10g/d (F) 20%≧DE≧8% (G) IS≧35g/d (H) SHD≩15% The nylon 66 multifilament yarn obtained above is Twist the yarn according to the usual method,
Use raw code. Furthermore, the raw cord or the blind fabric woven from the raw cord is treated with a dip solution to improve its adhesion to rubber, followed by hot stretching. The inventors of the present invention have carefully studied the process from making these raw cords to dip processing, and have made the dip cords highly strong, have low intermediate elongation, and have a low shrinkage rate, which cannot be achieved with conventional nylon 6 dip cords. The present inventors have discovered that excellent performance can be achieved, leading to the present invention. That is, the high strength, low elongation nylon 66 used in the present invention
In the case of fibers, the twist coefficient (T x √) is usually 2000 to 2200 (for example, 840d/2 twist
47turn/10cm), the strength utilization rate of the raw cord will decrease, but the twist coefficient should be set at 1300-2000, preferably 1400-2000.
When set in the range of 1800, the strength utilization rate is very excellent, and by lowering the hot stretch ratio in the dip process to 0 to 5%, a dip cord with a low shrinkage rate and low intermediate elongation can be obtained. The intermediate elongation is a measure corresponding to the modulus of the cord, and the fact that the intermediate elongation of the dip cord is low indicates that the modulus of the cord is high. Normally, when manufacturing nylon 66 dip cord, the hot stretch ratio in the dip process is 7% to 12% to increase the modulus of the cord.
Set to . On the other hand, in general, when the hot stretch ratio in the dip process is increased, the shrinkage rate of the dip cord increases and the dimensional stability decreases. Therefore, conventional nylon 66 dip cords have not been able to satisfy both dimensional stability and high modulus. The feature of the present invention is that by elongating the molecular chains more than conventional nylon 66 high-strength yarn at the high-strength yarn production stage, a high-strength, high-modulus, low-elongation yarn is already created, and after twisting, In the dip process, the modulus of the dip cord is increased by hot stretching. In other words, since there is no need to lower the intermediate elongation, the load on the cord during the dip treatment process is reduced, resulting in low shrinkage and low intermediate elongation (high modulus) that were previously unimaginable for nylon 66. The reason is that we have achieved a high-strength dip cord. None of the conventional nylon 66 dip cords had a breaking strength A of 8.5 g/d or more, and an intermediate elongation B and a dry heat shrinkage C satisfying the following formulas. (See Figure 1) (b) B≩8.5% (c) C≩6% (d) C≩-2B+19 These dip cord characteristics are based on twist coefficients of 2000 to 2000.
In the low twist number region of 1300, more preferably 1800 to 1400, the hot stretch ratio in the dip process is 0 to 5.
This can only be achieved under low stretch conditions of %. Reducing the number of twists has the advantage of increasing the twisting speed and reducing costs, but according to conventional knowledge, it has the disadvantage of decreasing fatigue resistance. However, since the dip cord of the present invention satisfies the formulas (a) to (d), even a cord with a low twist has a fatigue resistance higher than that of a cord with a conventional number of twists. These properties are evident, for example, in the high residual strength after disk fatigue tests. The rubbery or flexible resin referred to in the present invention is
Polyurethane resin, styrene-butadiene rubber,
Chloroprene rubber, ethylene-propylene rubber,
Diene rubber etc. Flat belts such as conveyor belts used in industrial machinery are driven either by having only one side pressed against a belt drive roller or by having both sides of the belt pressed by nip rollers.
Depends on the drive system of the machine. Therefore, the resin coating is performed by coating, impregnating, or spraying resin on one or both sides of the belt, depending on the purpose. Alternatively, the resin film may be stacked on the base fabric and bonded by heating and pressing. As a result of the belt of the present invention being constructed as described in the claims, it is stronger than conventional belts, has an appropriate elongation suitable for the application, and has high abrasion resistance. The belt also has chemical resistance. Below, methods for measuring the main parameters used to identify the structure and measure the physical properties of the fibers constituting the present invention will be described. <Relative viscosity measurement method> Prepare a sample solution by dissolving the sample in 96.3±0.1% by weight reagent special grade concentrated sulfuric acid so that the polymer concentration is 10mg/ml, and incubate in water at a temperature of 20℃±0.05℃. Measure the relative viscosity of the solution using an Ostwald viscometer with 6-7 seconds. For measurement, use the same viscometer and use the same 20% sulfuric acid as when preparing the sample solution.
The relative viscosity RV is calculated from the ratio of the falling time T 0 (seconds) for ml and the falling time T 1 (seconds) for 20 ml of the sample solution using the following formula. RV=T 1 /T 0 <Method for measuring birefringence (Δn)> Nikon polarizing microscope POH type Leitz Beretsk convenser was used, and the light source was a spectral light source activation device (Toshiba SLS-3-B type). (Na light source). A sample cut at an angle of 45 degrees to the fiber axis with a length of 5 to 6 mm is placed on a glass slide with the cut side facing up. Place the sample slide glass on the rotating stage, adjust the rotating stage so that the sample is at a 45 degree angle to the polarizer, insert the analyzer and set the dark field, and then turn on the compensator.
30 and count the number of stripes (n pieces). Turn the compensator clockwise to mark the point at which the sample first becomes darkest (a), and turn the compensator counterclockwise to mark the point at which the sample first becomes darkest (mark b). After measuring (read up to 1/10 scale in both cases), return the compensator to 30, remove the analyzer, measure the diameter d of the sample, and calculate the birefringence (Δn) based on the formula below. (Average value of 20 measurements). Δn=Γ/d (Γ=nλ 0 +ε) λ 0 =589.3mÎŒ ε: Calculated from C/10000 and i in the Leitz compensator manual i: (a-b) (: Difference in compensator reading ) <Method for measuring strength and elongation properties of fibers and cords> Based on the definition of JIS-L1017. Take the sample in a skein shape and store it in a temperature and humidity controlled room at 20℃ and 65%RH for 24 hours.
After standing for a period of time, a test length of 20
cm, and the tensile speed was 20 cm/min. <Formula for calculating twist coefficient> Twist coefficient K = Number of twists x (denier) 1/2 Number of twists: turn/10cm <Method for measuring disk fatigue> Using an ordinary disk fatigue tester, embed dip cord and vulcanize. The prepared test piece was set and heated at 2500 rpm under a compression ratio of 12.5% and an elongation ratio of 6.3%.
After being subjected to forced fatigue by rotation at a speed of 48 hours,
The dip cord was removed from the rubber and its residual strength was measured. <Measurement method of intermediate elongation> According to the definition of JIS-L1017. Measure the elongation rate under a constant load W (Kg). The elongation measurement conditions are similar to those for strength and elongation properties. The constant load W is defined by the following formula. W=4.5×d 2 /d 1 d 2 : sample denier, d 1 : reference denier, which is 840 denier for yarn and 1680 denier for cord. <Measurement method of dry heat shrinkage rate SHD> Take a sample in the form of a skein, leave it in a temperature and humidity controlled room at 20℃ and 65%RH for more than 24 hours, and then 0.1 of the sample
Length l 0 measured by applying a load equivalent to g/d
The sample was placed in an oven at 150℃ under no tension for 30 minutes.
After being left for a few minutes, it was taken out from the oven and left in the above temperature and humidity control room for 4 hours, and the above load was applied again to calculate the measured length l1 using the following formula. Dry heat shrinkage rate SHD=l 0 −l 1 /l 0 ×100 (%) <Production example> Nylon 66 with the relative viscosity shown in Table 1 was used as the raw material, and spinning was performed under the conditions shown in the table. An undrawn yarn with the birefringence Δn (measured after standing for 24 hours at 20° C. and 65% RH) and relative viscosity was obtained. In addition, during spinning, an appropriate amount of spinning oil was applied to the surface of the yarn before taking off the undrawn yarn. The obtained undrawn yarn was drawn under the conditions shown in Table 2 to obtain drawn yarn having the quality shown in Table 3. Table 3 shows the yarn quality of a commercially available polyhexamethylene adipamide fiber for tire cord as Comparative Example 1. Next, the drawn yarns of Example 1 and Comparative Example 1 were separately combined to obtain multifilament yarns of 840 denier.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 埗られたダヌンにそれぞれ47T10cm、42T
10cm、および37T10cmの䞊撚および䞋撚をかけ
840dプラむの本撚りコヌドずなした。 こうしお埗た生コヌドを、レゟルシン・ホルマ
リン・ラテツクス液よりなるナむロンデむツプ
液䞭に浞挬し、次いで120℃で分間、1.5のス
トレツチの䞋に熱颚也燥した。 匕き続いおホツトストレツチゟヌンに導入し、
200℃の加熱空気䞭で、、ホツトス
トレツチした埌、曎に定長䞋200℃の加熱空気䞭
で36秒間熱凊理を行぀お、デむツプコヌドを補造
した。 本補造䟋による生コヌドおよびデむツプコヌド
の特性は第衚に瀺す通りであ぀た。 本発明で埗たデむツプコヌドは、比范䟋で埗た
デむツプコヌドに比べお、著しく匷力が向䞊する
ずずもに、䜎䞭間䌞床でか぀寞法安定性のメゞダ
ヌである也熱収瞮率も小さく、䜎撚領域での耐疲
劎性も優れおいる。
[Table] 47T/10cm and 42T/
10cm, and 37T/10cm twisted and untwisted
840d/2-ply 2-strand cord. The raw cord thus obtained was immersed in a nylon 6 dip solution consisting of a resorcinol-formalin latex solution, and then dried with hot air at 120° C. for 2 minutes under a 1.5% stretch. Subsequently, it is introduced into the hot stretch zone,
After 1%, 3%, and 7% hot stretching in heated air at 200°C, a dip cord was produced by further heat-treating at a fixed length for 36 seconds in heated air at 200°C. The properties of the raw cord and dip cord according to this production example were as shown in Table 4. The dip cord obtained in the present invention has significantly improved strength compared to the dip cord obtained in the comparative example, and has low intermediate elongation and low dry heat shrinkage, which is a measure of dimensional stability, and has a low dry heat shrinkage rate in the low twist region. It also has excellent fatigue resistance.

【衚】【table】

【衚】 次いで第衚の本発明及び比范䟋の比で
埗られたデむツプコヌドをそれぞれ経糞に、高匷
力ポリ゚ステル繊維よりなるデむツプコヌドを緯
糞に甚いお二重の綟織組織に補織し、ゎムで䞡面
を被芆し、ベルトを䜜成し、その匷力及び䌞床特
性を比范した。 それぞれ甚いた基垃の糞䜿い、密床及び埗られ
た補品の物性の比范結果を第衚に瀺す。
[Table] Next, the dip cords obtained in the ratio 7 of Invention 1 and Comparative Example 1 in Table 4 were used as the warp yarns, and the dip cords made of high-strength polyester fibers were used as the weft yarns to form a double twill structure. A belt was prepared by coating both sides with the material, and its strength and elongation characteristics were compared. Table 5 shows the comparison results of the thread usage, density, and physical properties of the obtained products of the base fabrics used.

【衚】【table】

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明のデむツプコヌド特性を瀺す図
である。  本発明。
FIG. 1 is a diagram showing dip code characteristics of the present invention. 1...This invention.

Claims (1)

【特蚱請求の範囲】  ヘキサメチレンアゞパミドの繰返し構造単䜍
が95モル以䞊、硫酞盞察粘床が2.8以䞊の高重
合床を有し、䞔぀、皮たたは皮以䞊の銅塩お
よびあるいは前蚘銅塩以倖の無機あるいは有機の
酞化防止剀を含むポリヘキサメチレンアゞパミド
繊維よりなり、ゎムずの接着性を改善するための
デむツプ液が付着しおいる撚係数が2000〜1300の
䞊撚および䞋撚を有するポリヘキサメチレンアゞ
パミド系デむツプコヌドであ぀お、䞋蚘特性を同
時に有する高匷力、高モゞナラスで、䞔぀寞法安
定性および耐疲劎性の著しく改善されたポリヘキ
サメチレンアゞパミド系デむツプコヌドを甚いた
基垃に、ゎム質たたは可撓性暹脂を片面あるいは
䞡面に被芆しおなる高匷力ベルト。 (ã‚€) デむツプコヌドの砎断匷床 ≧8.5 (ロ) デむツプコヌドの䞭間䌞床 ≊8.5 (ハ) デむツプコヌドの也熱収瞮率 ≊ (ニ) ≊−2B19  特蚱請求の範囲第項においお、デむツプコ
ヌドの砎断匷床が9.0以䞊、デむツプコヌ
ドの也熱収瞮率が以䞋であるこずを特城ずす
るポリヘキサメチレンアゞパミド系デむツプコヌ
ドを甚いた高匷力ベルト。  特蚱請求の範囲第項たたは第項におい
お、デむツプコヌドの撚係数が1800〜1400である
こずを特城ずするポリヘキサメチレンアゞパミド
系デむツプコヌドを甚いた高匷力ベルト。  ゎム質あるいは可撓性暹脂がポリりレタン暹
脂、スチレン−ブタゞ゚ンゎム、クロロプレンゎ
ム、゚チレンプロピレンゎム、ゞ゚ンゎムからな
る矀から遞ばれた皮たたは皮以䞊の組合せで
ある特蚱請求の範囲第〜項のいずれかに蚘茉
の高匷力ベルト。
[Scope of Claims] 1 Hexamethylene adipamide has a repeating structural unit of 95 mol % or more, a sulfuric acid relative viscosity of 2.8 or more, and a high degree of polymerization, and one or more copper salts and/or the above-mentioned Ply-twisted and polyhexamethylene adipamide fibers containing inorganic or organic antioxidants other than copper salts, with a twist coefficient of 2000 to 1300 and coated with a dip liquid to improve adhesion to rubber. A polyhexamethylene adipamide dip cord with a first twist, which has high strength and high modulus, and has significantly improved dimensional stability and fatigue resistance. A high-strength belt made of a base fabric coated with rubber or flexible resin on one or both sides. (a) Breaking strength of dip cord A≧8.5g/d (b) Intermediate elongation of dip cord B≩8.5% (c) Dry heat shrinkage rate of dip cord C≩6% (d) C≩−2B+19 2. Scope of Claims The high-strength belt using a polyhexamethylene adipamide dip cord according to item 1, wherein the dip cord has a breaking strength of 9.0 g/d or more and a dry heat shrinkage rate of the dip cord of 5% or less. 3. A high-strength belt using a polyhexamethylene adipamide dip cord according to claim 1 or 2, characterized in that the dip cord has a twist coefficient of 1800 to 1400. 4. Claims 1 to 3 in which the rubbery or flexible resin is one or a combination of two or more selected from the group consisting of polyurethane resin, styrene-butadiene rubber, chloroprene rubber, ethylene propylene rubber, and diene rubber. The high-strength belt described in any of the above.
JP59090007A 1984-05-04 1984-05-04 High-tenacity belt Granted JPS60234150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59090007A JPS60234150A (en) 1984-05-04 1984-05-04 High-tenacity belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59090007A JPS60234150A (en) 1984-05-04 1984-05-04 High-tenacity belt

Publications (2)

Publication Number Publication Date
JPS60234150A JPS60234150A (en) 1985-11-20
JPH0512572B2 true JPH0512572B2 (en) 1993-02-18

Family

ID=13986577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59090007A Granted JPS60234150A (en) 1984-05-04 1984-05-04 High-tenacity belt

Country Status (1)

Country Link
JP (1) JPS60234150A (en)

Also Published As

Publication number Publication date
JPS60234150A (en) 1985-11-20

Similar Documents

Publication Publication Date Title
US3987136A (en) Process for the production of a synthetic fiber cord
JP2717160B2 (en) Monofilament for embedding in rubber
JP2744974B2 (en) Monofilament of tire cord
JPH02175909A (en) Monofilament with high tenacity and a crosssection with a shape longer in the transverse direction
US5240772A (en) High tenacity, oblong cross-section monofilaments having a modification ratio of at least 4.4
JPS6170008A (en) Polyamide fiber for rubber reinforcement
JPH0512572B2 (en)
JPH02452B2 (en)
JPS5860012A (en) Polyhexamethylene adipamide fiber and its preparation
JPS60197407A (en) Tire
JPS60157545A (en) Belt
JPS6350519A (en) Polyhexamethylene adipamide fiber
JPS60154901A (en) Tire
KR102573974B1 (en) Nylon cord having high modulus and method for preparing the same
JPH01207436A (en) Hgih-tenacity polyamide fiber cord excellent in resistance to fatigue
JPH0549847B2 (en)
JPS6088116A (en) Polyhexamethylene adipamide fiber having high dimensional stability and fatigue resistance
US2341423A (en) Process of producing synthetic linear polyamide filaments
JPS60151331A (en) Polycapramide dip code and its production
JPS62133116A (en) Polycapramide fiber and production thereof
US3518138A (en) Nylon tire cord
JPH0441A (en) Toothed belt
JPH03294537A (en) Cord for reinforcing rubber hose
JPS5837419B2 (en) Rubber product reinforcement material
JPS59187639A (en) Polyamide tire cord and production thereof