JPH05125614A - Drawing of polyvinyl alcohol-based fiber - Google Patents

Drawing of polyvinyl alcohol-based fiber

Info

Publication number
JPH05125614A
JPH05125614A JP31358591A JP31358591A JPH05125614A JP H05125614 A JPH05125614 A JP H05125614A JP 31358591 A JP31358591 A JP 31358591A JP 31358591 A JP31358591 A JP 31358591A JP H05125614 A JPH05125614 A JP H05125614A
Authority
JP
Japan
Prior art keywords
fiber
stretching
stage
hot
raw yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31358591A
Other languages
Japanese (ja)
Inventor
Akio Omori
昭夫 大森
Masahiro Sato
政弘 佐藤
Katsuji Ejiri
勝司 江尻
Isao Sakuragi
功 桜木
Yuichiro Yoshida
吉田祐一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP31358591A priority Critical patent/JPH05125614A/en
Publication of JPH05125614A publication Critical patent/JPH05125614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title inexpensive fiber good in whiteness with little degradative deterioration by multistage dry heat drawing under specified conditions of polyvinyl alcohol raw yarn low in fiber/fiber coefficient of static friction. CONSTITUTION:A spinning dope prepared by dissolving polyvinyl alcohol in a solvent is put to such dry spinning as to extrude the dope through a nozzle into a hot air to evaporate and expel the solvent, and the resultant raw yarn is then put to dry heat drawing. In this case, (A) for the raw yarn, fiber/fiber coefficient of static friction is <=0.270; (B) the raw yarn is heated using a thermally conductive type heating means; and (C) the raw yarn is put to the first stage dry heat drawing at 130-220 deg.C by a factor of 2.5-6.0 followed by the second stage dry heat drawing at 220-250 deg.C by a factor of 1.3-3.0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリマーの分解劣化が
少ないポリビニルアルコール系(以下PVAと略記す
る)繊維をコンパクトな延伸設備により延伸し、安価な
PVA繊維を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an inexpensive PVA fiber by drawing polyvinyl alcohol (hereinafter referred to as PVA) fiber in which polymer degradation and deterioration are small by a compact drawing equipment.

【0002】[0002]

【従来の技術】PVA繊維は、ポリアミド繊維、ポリエ
ステル繊維などの汎用合成繊維に比べて強度弾性率が高
く、その主用途である産業資材用繊維としてはもちろ
ん、最近ではアスベスト代替のセメント補強材、ゴム補
強材あるいはプラスチック補強材などに利用されつつあ
る。
2. Description of the Related Art PVA fibers have a higher strength and elastic modulus than general-purpose synthetic fibers such as polyamide fibers and polyester fibers, and as a main purpose, they are fibers for industrial materials, and recently, cement reinforcements that replace asbestos, It is being used as a rubber reinforcing material or a plastic reinforcing material.

【0003】ポリエステル繊維の最終延伸法は、熱水延
伸、ポットピン、ホットプレート、ホットローラーなど
繊維への熱の与え方としては最も伝熱性の大きい熱伝導
型の延伸機を利用しており、通常ネツキング延伸が行わ
れている。このため糸速は500m/分以上と極めて大
きいにもかかわらず延伸設備はコンパクトである。
The final stretching method for polyester fibers utilizes a heat-conducting type stretching machine, which has the largest heat transfer property, such as hot water stretching, pot pins, hot plates, and hot rollers, as a method of applying heat to the fibers. The necking stretching is being performed. Therefore, the drawing equipment is compact even though the yarn speed is extremely high at 500 m / min or more.

【0004】一方PVA繊維の最終延伸法は、熱オイル
中、ウッドメタル中、加熱チューブ、熱風炉などが試み
られてきたが、工業的には熱風炉が主体で、一部加熱チ
ューブが使用されている程度である。
On the other hand, in the final drawing method of PVA fiber, hot oil, wood metal, heating tube, hot air stove, etc. have been tried, but industrially the hot air oven is mainly used and a part of the heating tube is used. It is only about.

【0005】近年、高分子量ポリエチレンのゲル紡糸超
延伸の考え方を高強力PVA繊維の製造方法に応用した
提案が多くなされている。例えば特開昭59ー1007
10号では分子量50万以上の高分子量PVAをグリセ
リンに溶解し、冷却ゲル化後メタノールで糸中のグリセ
リンを抽出し、メタノールを乾燥し、得られたキセロフ
ァイバーを窒素雰囲気の252〜261℃熱管中に少な
くとも1分以上滞留させて乾熱延伸を施こし、強度17
g/d以上の高強度PVA繊維を得ている。しかし熱管
中の滞留時間が40秒以下では、高分子量PVAを使用
しても15g/d以下しか得られていない。また特開昭
61ー252313号によれば、ジメチルスルホキシド
(以下DMSOと略記する)系紡糸原液をメタノール中
へ乾湿式紡糸し、最終的な延伸方法として空気(或いは
好ましくは窒素)雰囲気の220℃以上の加熱チューブ
を用いることにより、繊維の内外層における複屈折率差
を有しない及至繊維の表層よりも繊維の中心部の屈折率
が大である繊維構造を有するPVA系繊維が得られ、ま
た融断し難い繊維が得られているが、該明細書比較例に
記載されているように、熱板(ホットプレート)を用い
る延伸法では引張強度及び結節強度が低いものしか得ら
れていない。
In recent years, many proposals have been made in which the concept of gel-spun super-drawing of high-molecular-weight polyethylene is applied to a method for producing a high-strength PVA fiber. For example, JP-A-59-1007
In No. 10, a high molecular weight PVA having a molecular weight of 500,000 or more was dissolved in glycerin, glycerin in the yarn was extracted with methanol after cooling and gelling, and the methanol was dried, and the obtained xerofiber was heated in a nitrogen atmosphere at 252 to 261 ° C in a hot tube. It is retained for at least 1 minute or more and subjected to dry heat drawing to obtain a strength of 17
High-strength PVA fibers of g / d or more are obtained. However, when the residence time in the hot tube is 40 seconds or less, even if high molecular weight PVA is used, only 15 g / d or less is obtained. According to JP-A-61-252313, a dimethyl sulfoxide (hereinafter abbreviated as DMSO) -based spinning solution is dry-wet spun into methanol, and the final stretching method is 220 ° C. in an air (or preferably nitrogen) atmosphere. By using the above heating tube, a PVA-based fiber having a fiber structure in which there is no difference in birefringence between the inner and outer layers of the fiber and the refractive index of the central portion of the fiber is larger than that of the surface layer of the fiber is obtained, and Fibers that are difficult to melt are obtained, but as described in the comparative example of the specification, the stretching method using a hot plate (hot plate) only gives low tensile strength and knot strength.

【0006】以上のように、従来のPVA繊維の最終延
伸は伝熱性のよくない熱輻射型の加熱チューブや熱管あ
るいは熱対流型の熱風炉を用いて行なわれている。従っ
て、工業的規模で実施しようとすると加熱滞留時間を長
く必要とし、このため延伸設備が長大となり、従って高
価となる。さらにPVAが分解し着色し易くなって繊維
劣化を起こす問題点を有している。
As described above, the final drawing of the conventional PVA fiber is carried out by using a heat radiation type heating tube or a heat tube or a heat convection type hot air oven, which does not have good heat conductivity. Therefore, when it is carried out on an industrial scale, a long heating residence time is required, which makes the stretching equipment long and therefore expensive. Further, there is a problem that PVA is decomposed and easily colored to cause fiber deterioration.

【0007】以上のような状況に鑑み、本発明者らの一
部は、延伸原糸の予備延伸倍率、第1段と第2段延伸の
各々の温度と倍率及び合計の滞留時間と全延伸倍率を限
定した熱伝導型の加熱手段を用いた多段延伸を行うこと
を先に出願したが、該出願では捲取速度がせいぜい70
m/minまでであった。その後さらに高速化をはかる
べく検討したところ、捲取速度が80m/minを越え
ると延伸率がわるく、毛羽が発生し易いことを認めた。
In view of the above circumstances, some of the inventors of the present invention have found that the preliminary draw ratio of the drawn raw yarn, the temperatures and draw ratios of the first and second stage draws, the total residence time and the total draw. We have previously filed an application to carry out multistage drawing using a heat conduction type heating means with a limited magnification, but in this application, the winding speed is at most 70.
It was up to m / min. After further studying to further increase the speed, it was found that when the winding speed exceeded 80 m / min, the draw ratio was poor and fuzz was likely to occur.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明は、乾
式紡糸法によって得たPVA繊維の最終乾熱延伸法に関
して、伝熱性がよく、捲取速度を80m/minとして
も毛羽が出ず、滞留時間が短かく、よって延伸設備のコ
ンパクト化が可能で、しかもPVAの分解劣化の少ない
繊維の製造が可能な熱伝導タイプの乾熱延伸を如何にし
たら適用可能となるかを追求したものである。
Therefore, the present invention relates to a final dry heat drawing method of PVA fibers obtained by a dry spinning method, which has good heat conductivity and does not generate fluff even when the winding speed is 80 m / min. The goal is to find out how to apply the heat conduction type dry heat drawing, which allows the residence time to be short and therefore the drawing equipment to be made compact, and also allows the production of fibers with less decomposition and deterioration of PVA. is there.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記課題を
追及し、繊維対繊維の静摩擦係数(以後F/Fμsと略
記)を小さくした原糸を用い、延伸中の繊維同志の滑り
をよくし、かつ特定条件の2段延伸とすることにより、
捲取速度(以後TUと略記)を80m/min以上とし
ても毛羽の発生なしに延伸しうることを見出し、本発明
を達成した。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors of the present invention used a raw yarn having a small fiber-to-fiber static friction coefficient (hereinafter abbreviated as F / Fμs) to prevent slippage between fibers during drawing. By improving and performing a two-stage stretching under specific conditions,
The present invention has been accomplished by finding that even when the winding speed (hereinafter abbreviated as TU) is 80 m / min or more, the film can be drawn without generating fluff.

【0010】すなわち本発明は、「 PVAを溶媒に溶
解して得た紡糸原液をノズルを通して加熱空気中に押し
出して溶媒を蒸発除去する乾式紡糸を行ない、得られた
原糸を乾熱延伸するに際して、(1)原糸は繊維対繊維の
静摩擦係数が0.270以下であること、(2)原糸を熱
伝導型の加熱手段を用いて加熱すること、(3)温度13
0〜220℃で2.5〜6.0倍の第1段延伸を行な
い、次いで温度220〜250℃で1.3〜3.0倍の
第2段延伸を行うこと、を特長とするPVA系繊維の延
伸方法。」である。
That is, according to the present invention, "a spinning stock solution obtained by dissolving PVA in a solvent is extruded through a nozzle into heated air to carry out dry spinning to evaporate and remove the solvent, and dry-stretching the obtained raw thread. , (1) the fiber has a fiber-to-fiber static friction coefficient of 0.270 or less, (2) the fiber is heated using a heat conduction type heating means, (3) the temperature 13
PVA characterized by performing a first stage stretching of 2.5 to 6.0 times at 0 to 220 ° C, and then performing a second stage stretching of 1.3 to 3.0 times at a temperature of 220 to 250 ° C. Method for stretching base fiber. It is.

【0011】本発明に用いるPVAの重合度に特別な限
定はないが、30℃の水溶液で粘度法により求めた平均
重合度が1500以上であると、得られる繊維の強度が
大きくなるので好ましい。平均重合度が2200以上で
あるとより好ましい。本発明に用いるPVAのケン化度
に特別な限定はないが、98モル%以上が好ましく、9
9モル%以上であるとさらに好ましく、99.8モル%
以上であると特に耐熱水性優れるのでもっとも好まし
い。本発明に用いるPVAの分岐度に特別な限定はない
が、分岐度の低い直鎖状のものがより結晶化し易く高強
力となり易いので好ましい。また本発明に用いるPVA
は他のビニル基を有するモノマー、例えばエチレン、プ
ロピレン、ブチレン、イタコン酸、ビニルピロリドンな
どのモノマーを10モル%以下の比率で共重合したPV
A系ポリマーであってもよい。またPVA系ポリマーに
対して混和性を有する他種ポリマー、例えばポリビニル
ピロリドン、ポリアクリル酸などが少量(10%以下)
ブレンドされていてもよい。
The degree of polymerization of the PVA used in the present invention is not particularly limited, but it is preferable that the average degree of polymerization determined by the viscosity method in an aqueous solution at 30 ° C. is 1500 or more, because the strength of the obtained fiber increases. More preferably, the average degree of polymerization is 2200 or more. The degree of saponification of PVA used in the present invention is not particularly limited, but it is preferably 98 mol% or more,
It is more preferably 9 mol% or more, and 99.8 mol%
It is most preferable because it is excellent in hot water resistance. The degree of branching of the PVA used in the present invention is not particularly limited, but linear ones having a low degree of branching are preferred because they are more likely to crystallize and have higher strength. PVA used in the present invention
Is a PV obtained by copolymerizing another vinyl group-containing monomer, for example, a monomer such as ethylene, propylene, butylene, itaconic acid or vinylpyrrolidone at a ratio of 10 mol% or less.
It may be an A-based polymer. In addition, a small amount (10% or less) of another type of polymer that is miscible with the PVA-based polymer, such as polyvinylpyrrolidone or polyacrylic acid.
It may be blended.

【0012】本発明の紡糸法は、PVAを溶媒に溶解し
て得た紡糸原液を、ノズルを通して加熱空気中に押し出
して溶媒を蒸発除去する乾式紡糸である。例えば溶媒と
して水を使用する場合、PVA濃度を、湿式や乾湿式の
10〜20%に比べて40〜70%と大幅に高くするこ
とができる点及び固化浴使用の必要がない点で湿式や乾
湿式紡糸に比べて有利である。なお熱伝導型の延伸を行
なう場合には、延伸に供する原糸はしなやかなフィラメ
ント束とする必要があるため、湿式や乾湿式紡糸では
2.5倍以上の湿延伸が必須であったが、乾式紡糸では
その必要がなく、従って湿延伸なしで原糸とすることが
できる。熱風延伸ではフィラメント束がばらけないよ
う、極端な場合には糊剤を付与して篠成形をしっかりす
ることがポイントとなるのに対し、熱伝導型延伸ではし
なやかさがポイントである点など両延伸法で明確な傾向
の違いがみられる。
The spinning method of the present invention is dry spinning in which a spinning dope obtained by dissolving PVA in a solvent is extruded into heated air through a nozzle to evaporate and remove the solvent. For example, when water is used as the solvent, the PVA concentration can be significantly increased to 40 to 70% as compared with 10 to 20% for wet or dry-wet, and it is not necessary to use a solidifying bath. It is advantageous over dry-wet spinning. In the case of conducting the heat conduction type drawing, since the raw yarn used for the drawing needs to be a flexible filament bundle, the wet drawing or the wet drawing of 2.5 times or more is essential in the wet or dry-wet spinning. In dry spinning, this is not necessary, and thus a raw yarn can be obtained without wet drawing. In an extreme case, the point is to add a sizing agent to secure the Shino molding so that the filament bundle does not come apart in the hot air drawing, whereas in the heat conduction drawing the flexibility is the point. There is a clear difference in the tendency depending on the stretching method.

【0013】このようにして得た延伸用原糸の摩擦係数
を小さくすることが本発明のポイントである。本発明で
は伝熱性の高い熱伝導型の延伸を採用し、具体的にはホ
ットプレート、ホットピン、ホットローラーなどで延伸
するので繊維がこれらの上で摩擦抵抗を受ける。従って
摩擦係数が小さい方が好ましいことは考え易い。特に糸
速が高い程重要となる。当初繊維対金属の動摩擦係数
(F/Mμdと略記)が重要でF/Fμsは重要ではな
いと考えていたが、種々検討の結果、意外にもF/Mμ
dは重要でなく、F/Fμsが小さいこと、すなわちF
/Fμsが0.270以下であることが極めて重要であ
ることがわかった。何故F/Fμsが重要であるかの理
由は不明だが、マルチフィラメントは延伸中繊維同志相
互に摩擦し合い、単繊維間の相対速度は小さく静的状態
に近いためF/Fμsは小さいことが重要であると推定
される。F/Fμsが0.250以下であるとより好ま
しく、0.220以下であるとさらに好ましい。
The point of the present invention is to reduce the friction coefficient of the thus-obtained original yarn for drawing. In the present invention, a heat conduction type drawing having a high heat transfer property is adopted, and specifically, the drawing is performed by a hot plate, a hot pin, a hot roller or the like, so that the fiber receives frictional resistance on these. Therefore, it is easy to think that a smaller friction coefficient is preferable. In particular, the higher the yarn speed, the more important it becomes. Initially, I thought that the dynamic friction coefficient of fiber-to-metal (abbreviated as F / Mμd) was important and F / Fμs was not important, but as a result of various studies, surprisingly, F / Mμd
d is not important and F / Fμs is small, that is, F
It has been found that it is extremely important that / Fμs is 0.270 or less. The reason why F / Fμs is important is unknown, but since multifilaments rub against each other during drawing, the relative velocity between single fibers is small and it is close to a static state, so it is important that F / Fμs is small. Is estimated to be The F / F μs is more preferably 0.250 or less, further preferably 0.220 or less.

【0014】延伸用原糸のμsを小さくする手法に特別
な限定はないが、一般的にはμsを低下させるのに有効
な界面活性剤を原液に添加したり、紡糸工程で付与する
ことにより達成しうる。界面活性剤としては、長鎖アル
キルリン酸のアミン中和物、長鎖カルボン酸のグリセリ
ンエステル、ジメチルシリコーン、アミノ変性シリコー
ンなどがあげられる。界面活性剤の添加或は付与量は界
面活性剤の種類によっても異なるが、ポリマーに対し
0.005〜2%である。界面活性剤を紡糸工程で付与
する場合、ディップ−ニップ方式、タッチローラー方
式、ギアポンプ方式などがあり、特に限定はないが、デ
ィップ−ニップ方式は単糸間の付着斑が少なく、ギアポ
ンプ方式はフィラメントヤーンでの付着量制御性に優れ
ている。
There is no particular limitation on the method for reducing the μs of the drawing raw yarn, but in general, a surfactant effective for reducing the μs is added to the stock solution or added in the spinning step. Can be achieved. Examples of the surfactant include amine neutralized products of long-chain alkyl phosphoric acid, glycerin ester of long-chain carboxylic acid, dimethyl silicone, amino-modified silicone and the like. The amount of the surfactant added or added varies depending on the type of the surfactant, but is 0.005 to 2% with respect to the polymer. When a surfactant is applied in the spinning process, there are dip-nip method, touch roller method, gear pump method, etc., but there is no particular limitation, but the dip-nip method has less adhesion unevenness between single yarns, and the gear pump method uses filaments. It has excellent controllability of the amount of coating on the yarn.

【0015】本発明においては上記の如く得られた延伸
原糸を熱伝導型の延伸機を用いて乾熱延伸を施こす。本
発明にいう熱伝導型の延伸機とは、ポットプレート、ホ
ットピン、ホットローラーなど繊維と直接接触させて繊
維を熱伝導により昇温させる加熱手段を有し、入りロー
ラーの速度と出ローラーの速度の比により延伸する設備
である。加熱チューブや熱管の気体中を通過させる間に
輻射により繊維を昇温する輻射型や熱風を積極的に循環
し繊維に熱風を吹きつけて対流により昇温する対流型な
どに比べて熱伝導型は伝熱性が格段に大きい特徴を有し
ている。
In the present invention, the drawn raw yarn obtained as described above is subjected to dry heat drawing using a heat conduction type drawing machine. The heat-conduction type stretching machine referred to in the present invention has a heating means such as a pot plate, a hot pin, and a hot roller for directly contacting the fibers and raising the temperature of the fibers by heat conduction, and the speed of the entrance roller and the speed of the exit roller. It is equipment for stretching according to the ratio. Heat conduction type compared to the radiation type that heats the fiber by radiation while passing through the gas in the heating tube or heat tube and the convection type that actively circulates hot air and blows hot air to the fiber to raise the temperature by convection Has the characteristic that the heat transfer property is remarkably large.

【0016】本発明においては乾熱延伸を少なくとも2
段で行なわなければ、膠着や毛羽のない高強度の繊維を
得ることはできない。第1段の乾熱延伸は加熱体(ホッ
トプレート、ホットローラー、ホットピン)の温度を1
30〜220℃とし、第1段延伸倍率を2.5〜6.0
倍としなければならない。第1段延伸温度が130℃よ
り低温では延伸性が低く、たとえ延伸できても配向結晶
化効果が小さく、第2段延伸において高温となった際に
融着が防止できない。第1段延伸温度が220℃より高
いと原糸の配向結晶化が十分でないため膠着する。第1
段延伸温度が160〜210℃であるとさらに好まし
い。第1段延伸倍率が2.5倍未満であると第1段での
配向結晶化が十分でなく、次の高温の第2段延伸に耐え
る構造とすることができない。第1段延伸倍率が6.0
倍を越えると過延伸となり、第2段延伸を円滑に行うこ
とができない。第1段延伸倍率が3.0〜5.0倍であ
るとさらに好ましい。また第1段延伸自体を多段に分け
て延伸することが好ましい場合が多い。例えばプレート
温度を220℃以下の160℃と190℃とに温度勾配
をつけることにより、第1段延伸を2段に分けて延伸す
る。以上の如く、第1段延伸は、より完全な配向結晶化
を目指して結晶の融点近傍の高温で行なう第2段延伸を
円滑に行うための予備延伸工程と把えることができ、P
VAの熱伝導型延伸には必須の要件であることを見出し
た。
In the present invention, dry heat drawing is performed at least 2.
If not done in steps, it is not possible to obtain high-strength fibers free of sticking and fluff. In the first stage dry heat drawing, the temperature of the heating element (hot plate, hot roller, hot pin) is set to 1
30 to 220 ° C., and the first stage draw ratio is 2.5 to 6.0.
It must be doubled. If the first stage stretching temperature is lower than 130 ° C., the stretchability is low, the oriented crystallization effect is small even if stretching is possible, and fusion cannot be prevented when the second stage stretching temperature becomes high. If the first stage drawing temperature is higher than 220 ° C., the orientation and crystallization of the raw yarn is not sufficient, resulting in sticking. First
It is more preferable that the stage drawing temperature is 160 to 210 ° C. If the first stage draw ratio is less than 2.5 times, the oriented crystallization in the first stage is not sufficient, and the structure cannot withstand the next high temperature second stage stretch. First stage draw ratio is 6.0
If it exceeds twice, it will be over-stretched and the second stage stretching cannot be carried out smoothly. More preferably, the first stage draw ratio is 3.0 to 5.0 times. In many cases, it is preferable that the first-stage stretching itself is divided into multiple stages. For example, the first stage stretching is divided into two stages to perform stretching by setting a temperature gradient between the plate temperature of 160 ° C. and 190 ° C., which are 220 ° C. or less. As described above, the first stage stretching can be understood as a preliminary stretching step for smoothly performing the second stage stretching performed at a high temperature near the melting point of the crystal for the purpose of more complete oriented crystallization.
It has been found that it is an essential requirement for the heat conduction type stretching of VA.

【0017】第1段延伸に続いて第2段延伸を施こす。
第2段の延伸はホットプレート、ホットローラーなどの
加熱体の温度を220〜250℃とし延伸倍率を1.3
〜3.0倍とする。220℃より低温であると最終延伸
として必要な配向結晶化が十分でなく強度、耐水性の優
れたものとすることが出来ない。250℃より高温であ
ると結晶が融解し繊維が膠着する。またPVAが分解劣
化する。より好ましい第2段延伸温度はPVAの重合度
によって異なるが230〜245℃である。高重合度程
高温に設定するとよい。第2段延伸倍率が1.3倍より
低いと得られる繊維の配向結晶化が十分でなく強度耐熱
水性が劣る。第2段延伸倍率が3.0倍より高いと毛羽
が出る。第2段延伸自体を多段に分けて延伸することも
できる。例えば、プレート温度を230℃と235℃と
にすることにより、第2段延伸を、2段に分けて延伸す
ると好ましい場合がある。またプレート延伸の場合、第
1段延伸と第2段延伸の中間に駆動ローラーを設けて第
1段延伸倍率と第2案延伸倍率を各々の所定値に制御す
ることも出来る。一方、中間に駆動ローラーを全く設け
ず、入りローラーと出ローラーのみとし、220℃より
低温の領域を第1段延伸部とし、220℃より高温の領
域を第2段延伸部とし、各々の温度と接触長さを制御す
ることにより連続的に延伸する態様もある。後者の場
合、各領域で張力が同じとなるように延伸倍率が設定さ
れる。各領域の延伸倍率は糸速を実測するかあるいは繊
維デニールの細化カーブの実測により求めることが出来
る。各領域の延伸倍率を所望値に設定し易い点では中間
ローラーを用いる方がよいが、中間ローラーで冷却がさ
れない点や中間ローラーへの捲付きの可能性なしの点で
は中間ローラーなしの方が優れている。また多段プレー
ト延伸の場合、各プレートに繊維を完全に接触させるた
めに、プレート間にフリーのガイドローラーを設けるこ
とが出来る。
After the first-stage stretching, the second-stage stretching is performed.
In the second stage stretching, the temperature of a heating body such as a hot plate or hot roller is set to 220 to 250 ° C. and the stretching ratio is set to 1.3.
~ 3.0 times. If the temperature is lower than 220 ° C., the oriented crystallization required for the final stretching is not sufficient and the strength and water resistance cannot be excellent. When the temperature is higher than 250 ° C, the crystals melt and the fibers stick. Further, PVA is decomposed and deteriorated. A more preferable second stage drawing temperature is 230 to 245 ° C, although it depends on the degree of polymerization of PVA. The higher the degree of polymerization, the higher the temperature should be set. If the second stage draw ratio is less than 1.3 times, the orientation crystallization of the obtained fiber is insufficient and the strength / hot water resistance is poor. If the second stage draw ratio is higher than 3.0 times, fuzz appears. The second stage stretching itself can be divided into multiple stages for stretching. For example, it may be preferable to perform the second stage stretching in two stages by setting the plate temperature to 230 ° C. and 235 ° C. In the case of plate stretching, a driving roller may be provided between the first stage stretching and the second stage stretching to control the first stage stretching ratio and the second proposed stretching ratio to their respective predetermined values. On the other hand, no driving roller is provided in the middle, only the entrance roller and the exit roller are used, the region lower than 220 ° C is the first stage stretching part, and the region higher than 220 ° C is the second stage stretching part. There is also a mode in which the film is continuously stretched by controlling the contact length. In the latter case, the stretching ratio is set so that the tension is the same in each region. The draw ratio in each region can be obtained by actually measuring the yarn speed or by measuring the thinning curve of the fiber denier. It is better to use an intermediate roller in that it is easy to set the draw ratio of each region to a desired value, but it is better to use no intermediate roller in that it is not cooled by the intermediate roller and there is no possibility of winding around the intermediate roller. Are better. In the case of multi-stage plate drawing, a free guide roller can be provided between the plates in order to bring the fibers into complete contact with each plate.

【0018】第1段延伸倍率、第2段延伸倍率の全てを
掛け合わせた全延伸倍率(以下TDと略記する)が性能
に大きな影響を有しており、少なくとも8倍とすると好
ましい場合が多い。TDが8倍より低いと最終の延伸糸
としての配向結晶化が不十分であり、強度、耐熱水性が
不十分となる。TDが10倍以上であるとさらに好まし
い。
The total draw ratio (hereinafter abbreviated as TD) obtained by multiplying all of the first-stage draw ratio and the second-stage draw ratio has a great influence on the performance, and it is often preferable to set it to at least 8 times. .. If the TD is lower than 8 times, the orientation and crystallization as the final drawn yarn will be insufficient, and the strength and hot water resistance will be insufficient. More preferably, the TD is 10 times or more.

【0019】本願においては、第1段延伸と第2段延伸
の滞留時間の合計を10秒以下さらに殆どの場合5秒以
下としうることが大きな特徴である。これは、従来の加
熱チューブ、熱管、熱風炉では滞留時間を少なくとも3
0秒以上を必要とし、しかもさらに長くすることによっ
てより高性能となるのに対して、際立った相違である。
A major feature of the present invention is that the total residence time of the first-stage stretching and the second-stage stretching can be 10 seconds or less, and in most cases, 5 seconds or less. This is a residence time of at least 3 for conventional heating tubes, hot tubes and hot blast stoves.
It requires 0 seconds or more, and the higher the length, the higher the performance becomes.

【0020】本発明に用いるホットピン、ホットプレー
ト、ホットローラーなどの加熱体は繊維と接触しても損
傷を与えず、接触表面を所定の温度に制御出来るものな
ら限定はないが、伝熱性の大きい金属製が好ましい。加
熱体の表面形状は特に限定はないが、鏡面または梨地仕
上げが好ましい。第1段延伸領域の加熱体はホットピ
ン、ホットプレート、ホットローラーが好ましい。第2
段延伸領域の加熱体はホットプレート、ホットローラー
が好ましい。なおホットプレートの場合、適当な温度勾
配をつけることにより1基のプレートで第1段、第2段
の加熱体を構成することもできる。この加熱体の大きさ
(繊維との接触長)は、延伸条件より異なるが0.5〜
10m程度である。なお延伸後、必要に応じて熱固定あ
るいは熱収縮を施こしてもよい。熱伝導型の延伸が常用
されているポリエステル繊維では、ある点でネツキング
延伸が起こり、ネツキング延伸以降ではさらに延伸する
必要がなく、また高温にして延伸しようとしても延伸困
難であるのに対して、PVA繊維では温度に応じて多段
延伸が可能で、かつ多段延伸が必須であることを見出
し、ポリマーの種類により延伸挙動が大きく異なること
を認めた。
The heating elements such as hot pins, hot plates, and hot rollers used in the present invention are not limited as long as they do not damage even when they come into contact with fibers and the contact surface can be controlled to a predetermined temperature, but they have high heat conductivity. It is preferably made of metal. The surface shape of the heating element is not particularly limited, but a mirror finish or satin finish is preferable. The heating element in the first-stage stretching region is preferably a hot pin, hot plate or hot roller. Second
A hot plate or hot roller is preferably used as the heating element in the step drawing region. In the case of a hot plate, it is also possible to form the first-stage and second-stage heating bodies with one plate by providing an appropriate temperature gradient. The size of this heating element (contact length with the fiber) varies depending on the stretching conditions, but is 0.5 to
It is about 10 m. After stretching, heat setting or heat shrinking may be performed as necessary. In polyester fibers that are commonly used for heat conduction type stretching, necking stretching occurs at a certain point, it is not necessary to further stretch after the necking stretching, and it is difficult to stretch even when trying to stretch at a high temperature. It was found that multi-stage drawing is possible with PVA fiber depending on the temperature, and multi-stage drawing is indispensable, and it was recognized that the drawing behavior greatly differs depending on the type of polymer.

【0021】以上の如く、本発明は、熱伝導型の延伸機
を用いて乾式紡糸したPVA繊維を延伸するにあたり、
F/Fμsを所定値以下として滑りのよい原糸とし、か
つ特定条件下で2段延伸することにより、TU80m/
min以上の高速でも毛羽がなく、熱劣化のない、熱風
延伸に遜色のない強度の高い繊維を、熱風延伸より大幅
に短い滞留時間で製造することを実現できたものであ
る。
As described above, according to the present invention, when the dry-spun PVA fiber is drawn by using the heat conduction type drawing machine,
By setting F / Fμs to a predetermined value or less to obtain a slippery raw yarn, and drawing two stages under specific conditions, TU80m /
It was possible to produce a fiber having no fluff even at a high speed of min or more, no thermal deterioration, and having high strength comparable to hot air drawing with a residence time significantly shorter than that of hot air drawing.

【0022】本発明にいう繊維対繊維静摩擦係数(F/
Fμs)はJIS L−1015に準拠して測定したも
のである。すなわち、JIS L−1015(化学繊維
ステープル試験方法)の摩擦係数測定法において、ステ
ープルをハンドカードして円筒に捲き付けた円筒スライ
バの代りに、図1の如き両ツバ針付ボビンに図2の如く
試料フィラメントを平行に鼓状に捲き付けた鼓状フィラ
メントを用いた。その他はJIS L−1015に拠っ
た。
Fiber-to-fiber static friction coefficient (F /
F μs) is measured according to JIS L-1015. That is, in the friction coefficient measuring method of JIS L-1015 (chemical fiber staple test method), instead of a cylindrical sliver in which staples are hand-carded and wound around a cylinder, a bobbin with double brim needles as shown in FIG. Thus, a drum-shaped filament in which the sample filaments were wound in parallel in a drum shape was used. Others were based on JIS L-1015.

【0023】[0023]

【実施例】以下実施例により、本発明を具体的に説明す
るが、本発明はこれら実施例に限定されるものではな
い。
EXAMPLES The present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.

【0024】実施例1: 粘度平均重合度が1700、
ケン化度99.9モル%のPVAを40%となるように
水に添加し、窒素雰囲気下で混練溶解して、PVAの濃
厚水溶液を得た。得られた紡糸原液を孔数36のノズル
を通して加熱空気中に押し出し、水分を蒸発、乾燥して
捲き取った。得られたヤーンデニール2000drの原
糸を、ジメチルシリコンの0.1%ヘキサン溶液をタッ
チローラー方式で接触させて120℃の熱ローラーで乾
燥し、続いて150℃、200℃、233℃のプレート
に接触走行させて乾熱延伸を行った。熱ローラー乾燥後
のF/Fμsは0.221であり、入速は9.0m/m
in、TUは90m/min、TDは10倍であった。
200℃プレート通過直後の糸速度の実測により、15
0℃及び190℃プレートでの合計の第1段延伸倍率は
3.7倍であり、233℃プレートによる第2段延伸倍
率は2.3倍であった。また全滞留時間は約4秒であっ
た。延伸調子は良好であり、毛羽は殆ど見られず、得ら
れた延伸系の単繊維強度は10.5g/dであり、TU
15m/min、滞留30秒の熱風延伸と同等の性能を
示した。
Example 1: Viscosity average degree of polymerization is 1700,
PVA having a saponification degree of 99.9 mol% was added to water so as to be 40%, and kneaded and dissolved in a nitrogen atmosphere to obtain a concentrated aqueous solution of PVA. The obtained spinning dope was extruded into heated air through a nozzle having a hole number of 36, water was evaporated, dried and wound up. The obtained yarn denier yarn 2000dr was contacted with a 0.1% hexane solution of dimethyl silicone in a touch roller system and dried with a hot roller at 120 ° C, and then dried on a plate at 150 ° C, 200 ° C, 233 ° C. Dry running was carried out by running in contact. F / Fμs after drying with a hot roller was 0.221, and the speed of entry was 9.0 m / m.
The in and TU were 90 m / min, and the TD was 10 times.
By measuring the yarn speed immediately after passing through the 200 ° C plate, 15
The total first stage draw ratio on the 0 ° C and 190 ° C plates was 3.7 times, and the second stage draw ratio on the 233 ° C plate was 2.3 times. The total residence time was about 4 seconds. The stretching condition was good, almost no fluff was observed, and the single fiber strength of the obtained stretched system was 10.5 g / d.
The performance was the same as that of hot air drawing at 15 m / min and residence time of 30 seconds.

【0025】比較例1: 実施例1と同じ原糸を用い、
ジメチルシリコンを付与しない以外は実施例1と同様に
多段プレート延伸を行ったが、毛羽が多く発生し、正常
な延伸を行うことが出来なかった。入速を11.3m/
minまで上げ、TDを8倍まで下げると毛羽の発生は
なくなったが、強度は8g/d台で低いものしか得られ
なかった。なお原糸のF/Fμsは0.301と大きか
った。
Comparative Example 1: Using the same yarn as in Example 1,
Multi-stage plate stretching was performed in the same manner as in Example 1 except that dimethyl silicon was not applied, but many fluffs were generated and normal stretching could not be performed. Enter speed 11.3m /
When it was raised to min and TD was lowered to 8 times, the generation of fluff disappeared, but the strength was as low as 8 g / d and only low strength was obtained. The F / Fμs of the raw yarn was as large as 0.301.

【0026】実施例2: 実施例1と同じ原糸を用い、
実施例1と同様にジメチルシリコンを付与し、120℃
の熱ローラーで乾燥後、160℃、190℃、210℃、2
36℃のプレート上を接触走行させて乾熱延伸を行っ
た。入速は12.5m/min、TUは120m/mi
n,TDは9.6倍であった。210℃プレート通過後
の糸速度の実測により、160℃、190℃、210℃
のプレートによる合計の第1段延伸倍率は3.5倍であ
り、236℃プレートによる第2段延伸倍率は2.7倍
であった。また全滞留時間は約3秒と短かかった。延伸
調子は良好であり、毛羽は殆ど見られず、得られた延伸
糸の単繊維強度は10.1g/dであった。
Example 2: Using the same yarn as in Example 1,
Dimethyl silicon was added in the same manner as in Example 1, and the temperature was 120 ° C.
After drying with a hot roller, 160 ℃, 190 ℃, 210 ℃, 2
Dry heat drawing was carried out by traveling while contacting on a plate at 36 ° C. Entry speed is 12.5 m / min, TU is 120 m / mi
n and TD were 9.6 times. By measuring the yarn speed after passing the 210 ℃ plate, 160 ℃, 190 ℃, 210 ℃
The total first stage draw ratio by the plate was 3.5 times, and the second stage draw ratio by the 236 ° C. plate was 2.7 times. The total residence time was as short as about 3 seconds. The stretched condition was good, fluff was hardly seen, and the single fiber strength of the obtained stretched yarn was 10.1 g / d.

【0027】比較例2: プレート温度を全て236℃
とする以外は実施例2と同様に延伸を行った。しかしこ
の条件ではプレート上で溶断し、導糸不能であった。T
Uを下げても同じく溶断し導糸不能であった。
Comparative Example 2: All plate temperatures were 236 ° C.
Stretching was performed in the same manner as in Example 2 except that However, under these conditions, the fibers were fused on the plate and the yarn could not be introduced. T
Even if U was lowered, it was also melted and the yarn could not be guided.

【0028】比較例3: 最終プレート温度を218℃
とする以外は実施例2と同様に延伸を行った。しかしこ
の条件ではTD10倍が断糸した。入速を上げ、TDを
下げると強度の低いものしか得られなかった。
Comparative Example 3: Final plate temperature of 218 ° C.
Stretching was performed in the same manner as in Example 2 except that However, under this condition, 10 times the TD was broken. When the speed was increased and the TD was decreased, only those with low strength were obtained.

【0029】比較例4: 第3プレートと第4プレート
の間に中間駆動ローラーを設け、入速12m/min、
中間駆動ローラー28m/minとする以外は実施例2
と同様に延伸を行おうとした。しかし、TU120m/
minでは断糸した。そこでTUを変更することによ
り、毛羽と強度が両立する点を見出そうとしたが、毛羽
なしで単繊維強度9g/d以上の延伸糸を得ることはで
きなかった。
Comparative Example 4: An intermediate drive roller was provided between the third plate and the fourth plate, and the speed of entry was 12 m / min.
Example 2 except that the intermediate drive roller is 28 m / min
An attempt was made to perform stretching in the same manner as in. However, TU120m /
The thread was broken at min. Therefore, it was attempted to find a point where the fluff and the strength were compatible by changing the TU, but it was not possible to obtain a drawn yarn having a single fiber strength of 9 g / d or more without the fluff.

【0030】実施例3: 実施例1と同じ原糸を用い、
実施例1と同じ方法によりアミノシリコンを付与し14
0℃の熱ローラーで乾燥後、170℃、190℃、21
0℃、238℃のプレート上を接触走行させて乾熱延伸
を行った。入速は19m/min、TUは180m/m
in、TDは9.5倍であった。熱ローラーで乾燥後の
F/Fμsは0.16であり、210℃プレート通過後
の糸速度の実測により、160℃、190℃、210℃
のプレートによる合計の第1段延伸倍率は3.4倍であ
り、238℃プレートによる第2段延伸倍率は2.8倍
であった。また全滞留時間は約2秒と短かかった。延伸
調子は良好であり、毛羽は殆どなく、得られた延伸糸の
単繊維強度は9.9g/dであった。
Example 3: Using the same yarn as in Example 1,
Amino silicon was applied by the same method as in Example 1 14
After drying with a hot roller at 0 ° C, 170 ° C, 190 ° C, 21
Dry heat drawing was performed by making the plate run in contact with the plate at 0 ° C and 238 ° C. Entry speed is 19m / min, TU is 180m / m
in and TD were 9.5 times. The F / F μs after drying with a heat roller was 0.16, and by measuring the yarn speed after passing the plate at 210 ° C., 160 ° C., 190 ° C., 210 ° C.
The total first stage draw ratio by the plate of No. 2 was 3.4 times, and the second stage draw ratio by the 238 ° C. plate was 2.8 times. The total residence time was as short as about 2 seconds. The stretched condition was good, there was almost no fluff, and the single fiber strength of the obtained stretched yarn was 9.9 g / d.

【0031】[0031]

【発明の効果】以上の如く、本発明は、熱伝導型の延伸
機を用いて乾式紡糸したPVA繊維を延伸するにあた
り、F/Fμsが所定値以下の滑りのよい原糸とし、か
つ特定条件下において2段延伸することにより、TU8
0m/min以上の高速でも毛羽なしで熱風延伸におい
て遜色ない強度を有するPVA繊維を、熱風延伸より大
幅に短い滞留時間で製造することを可能にしたものであ
る。これによりコンパクトな設備とすることが可能とな
り、従って設備費の低減が可能となった。さらに得られ
た繊維は、従来の熱風延伸方式に比べて熱劣化が少な
く、白度が良好で安価に製造しうるので自動車タイヤや
ブレーキホースなどのゴム資材、ロープ類などの分野に
有用である。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, when the dry-spun PVA fiber is stretched by using the heat conduction type stretching machine, F / Fμs is a slippery raw yarn having a predetermined value or less, and specific conditions are satisfied. TU8 by stretching two stages below
It is possible to produce a PVA fiber having a strength comparable to that in hot air drawing without fluff even at a high speed of 0 m / min or more and with a residence time significantly shorter than that in hot air drawing. As a result, it is possible to make the equipment compact and, therefore, to reduce the equipment cost. Further, the obtained fiber has less heat deterioration as compared with the conventional hot air drawing method, has good whiteness and can be manufactured at low cost, and thus is useful in the fields of rubber materials such as automobile tires and brake hoses, ropes, etc. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において、原糸の摩擦係数の測定に用い
た両側ツバ部に針1が付いたボビンの側面および断面の
説明図。
FIG. 1 is an explanatory view of a side surface and a cross section of a bobbin having needles 1 on both side brim portions used for measuring a friction coefficient of a raw yarn in the present invention.

【図2】図1のボビンに測定用サンプル2を巻き付けた
鼓状フィラメントの外観図。
FIG. 2 is an external view of a drum-shaped filament obtained by winding a measurement sample 2 around the bobbin shown in FIG.

【符号の説明】[Explanation of symbols]

1・・・・・・針 2・・・・・・サンプルフィラメント 1 ・ ・ Needle 2 ・ ・ ・ ・ ・ ・ Sample filament

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D02J 1/22 J (72)発明者 桜木 功 岡山市海岸通1丁目2番1号 株式会社ク ラレ内 (72)発明者 吉田祐一郎 岡山市海岸通1丁目2番1号 株式会社ク ラレ内Continuation of front page (51) Int.Cl. 5 Identification number In-house reference number FI Technical indication location D02J 1/22 J (72) Inventor Isao Sakuragi 1-2-1 Kaigandori, Okayama-shi Kuraray Co., Ltd. ( 72) Inventor Yuichiro Yoshida 1-2-1, Kaigan-dori, Okayama-shi Kuraray Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリビニルアルコールを溶媒に溶解して
得た紡糸原液をノズルを通して加熱空気中に押し出して
溶媒を蒸発除去する乾式紡糸を行ない、得られた原糸を
乾熱延伸するに際して、(1)原糸は繊維対繊維の静摩擦
係数が0.270以下であること、(2)原糸を熱伝導型
の加熱手段を用いて加熱すること、(3)温度130〜2
20℃で2.5〜6.0倍の第1段延伸を行ない、次い
で温度220〜250℃で1.3〜3.0倍の第2第段
延伸を行うこと、を特徴とするポリビニルアルコール系
繊維の延伸方法。
1. A dry spinning process in which a spinning dope obtained by dissolving polyvinyl alcohol in a solvent is extruded through a nozzle into heated air to evaporate and remove the solvent, and the obtained spinning yarn is subjected to dry heat drawing (1). ) The fiber has a fiber-to-fiber static friction coefficient of 0.270 or less, (2) the fiber is heated using a heat conduction type heating means, and (3) a temperature of 130 to 2
Polyvinyl alcohol characterized by performing a first stage stretching of 2.5 to 6.0 times at 20 ° C. and then performing a second stage stretching of 1.3 to 3.0 times at a temperature of 220 to 250 ° C. Method for stretching base fiber.
JP31358591A 1991-10-30 1991-10-30 Drawing of polyvinyl alcohol-based fiber Pending JPH05125614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31358591A JPH05125614A (en) 1991-10-30 1991-10-30 Drawing of polyvinyl alcohol-based fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31358591A JPH05125614A (en) 1991-10-30 1991-10-30 Drawing of polyvinyl alcohol-based fiber

Publications (1)

Publication Number Publication Date
JPH05125614A true JPH05125614A (en) 1993-05-21

Family

ID=18043085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31358591A Pending JPH05125614A (en) 1991-10-30 1991-10-30 Drawing of polyvinyl alcohol-based fiber

Country Status (1)

Country Link
JP (1) JPH05125614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745708A2 (en) * 1995-05-22 1996-12-04 Kuraray Co., Ltd. Polyvinyl alcohol-based fiber and manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745708A2 (en) * 1995-05-22 1996-12-04 Kuraray Co., Ltd. Polyvinyl alcohol-based fiber and manufacturing thereof
EP0745708A3 (en) * 1995-05-22 1997-06-04 Kuraray Co Polyvinyl alcohol-based fiber and manufacturing thereof

Similar Documents

Publication Publication Date Title
JP3595846B2 (en) Polyketone fiber and method for producing the same
JP3966867B2 (en) Polyketone treatment cord and method for producing the same
US20220049378A1 (en) Cut resistant polyethylene yarn, method for manufacturing the same, and protective article produced using the same
US8845938B2 (en) Polyacrylonitrile fiber manufacturing method and carbon fiber manufacturing method
JPH06158423A (en) Production of polyeter fiber and apparatus therefor
JP3704015B2 (en) Polyketone fiber and method for producing the same
US4850186A (en) Thread of carbon fiber
KR102127495B1 (en) Poly(ethyleneterephthalate) Yarn, Method for Manufacturing The Same, and Tire Cord Manufactured Using The Same
JPH05125614A (en) Drawing of polyvinyl alcohol-based fiber
JP3053277B2 (en) Polyvinyl alcohol fiber drawing method
JP3130683B2 (en) Method for producing polyester fiber with improved dimensional stability
JP2002020926A (en) Method for producing polypropylene multifilament yarn
JPS62299513A (en) Production of polyphenylene sulfide monofilament
JP2000027029A (en) Production of low shrinkage polyester yarn having high toughness
KR880001033B1 (en) Acrylic fiber and it&#39;s making method
JP3047427B2 (en) Rubber hose reinforcement cord
JPH04174709A (en) Method for drawing polyvinyl alcohol-based fiber
JP2000027028A (en) Production of low shrinkage polyester yarn having high toughness
JPH0136921Y2 (en)
JP2023543600A (en) Polyethylene yarn with improved post-processability and raw fabric containing it
JP2000178828A (en) Production of polyester fiber
JPH09316725A (en) Spin-draw unit for polyester fiber
JP2829893B2 (en) Spontaneously extensible polyester thick filament yarn and method for producing the same
JPS63159541A (en) Direct spinning and stretching of synthetic fiber
JPH0377287B2 (en)